NL2024662B1 - Machine vision-based robot line-tracking navigation system - Google Patents

Machine vision-based robot line-tracking navigation system Download PDF

Info

Publication number
NL2024662B1
NL2024662B1 NL2024662A NL2024662A NL2024662B1 NL 2024662 B1 NL2024662 B1 NL 2024662B1 NL 2024662 A NL2024662 A NL 2024662A NL 2024662 A NL2024662 A NL 2024662A NL 2024662 B1 NL2024662 B1 NL 2024662B1
Authority
NL
Netherlands
Prior art keywords
line
module
obstacle
machine vision
image analysis
Prior art date
Application number
NL2024662A
Other languages
Dutch (nl)
Inventor
Han Tao
Yourui Huang
Xu Shanyong
Liuyi Ling
Tang Chaoli
Xu Jiachang
Bao Shishui
Original Assignee
Univ Anhui Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Anhui Sci & Technology filed Critical Univ Anhui Sci & Technology
Application granted granted Critical
Publication of NL2024662B1 publication Critical patent/NL2024662B1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention discloses a machine vision—based robot line—tracking navigation system, and belongs to the field of robot control systems. The machine vision—based robot line—tracking navigation system includes a machine vision module, 5 an information input module, an image analysis module, a main controller and a steering driver. The machine vision module acquires an environment image surrounding a robot, a course marking line and a navigation line, and outputs the environment image, the course marking line and the navigation line to the image analysis module. The image analysis module measures a distance and an included angle between the course 10 marking line and the navigation line, and outputs the distance and the included angle to the main controller. Meanwhile, the image analysis module analyzes and judges Whether an obstacle exits in the environment image, and outputs a judging result to the main controller. The main controller includes a line—tracking correction module and an obstacle avoidance control module. Compared With the prior art, the robot obstacle 15 avoidance system of the present invention is applicable to robots With different shapes, and can realize continuous obstacle avoidance according to maneuvering characteristics of the robot. 2024662

Description

MACHINE VISION-BASED ROBOT LINE-TRACKING NAVIGATION SYSTEM
BACKGROUND Technical Field The present invention relates to the field of robot control, in particular to a machine vision-based robot line-tracking navigation system.
Related Art Line-tracking navigation is a common robot navigation method. A principle is that a navigation line is set on the ground, and a robot recognizes the navigation line and moves along the navigation line. By the use of a color sensor for recognition, an existing robot line-tracking navigation system has a small recognition range, and cannot recognize obstacles.
SUMMARY For deficiencies in the prior art, the present invention provides a machine vision-based robot line-tracking navigation system, which recognizes a navigation line through machine vision and recognizes and avoids obstacles.
The objective of the present invention may be implemented through the following technical solutions: A machine vision-based robot line-tracking navigation system includes a machine vision module, an information input module, an image analysis module, a main controller and a steering driver.
The machine vision module acquires an environment image surrounding a robot, a course marking line and a navigation line, and outputs the environment image, the course marking line and the navigation line to the image analysis module. The course marking line is consistent with a forward motion direction of the robot.
The image analysis module measures a distance and an included angle between the course marking line and the navigation line, and outputs the distance and the included angle to the main controller. Meanwhile, the image analysis module analyzes and judges whether an obstacle exits in the environment image, and outputs a judging result to the main controller.
The main controller includes a line-tracking correction module and an obstacle avoidance control module. When the image analysis module judges that no obstacle exists, the line-tracking correction module controls the steering driver to reduce the distance and the included angle between the marking line and the navigation line. When the image analysis module judges that an obstacle exists, the obstacle avoidance control module adjusts the steering driver to avoid the obstacle.
Further, the image analysis module recognizes an obstacle contour, and transmits the obstacle contour to the obstacle avoidance control module, and the obstacle avoidance control module biases the obstacle contour to the outside of the obstacle to obtain an obstacle avoidance path. The obstacle avoidance control module controls the steering driver, so that the robot moves along the obstacle avoidance path.
Further, the obstacle avoidance control module receives and stores a preset safety distance, and a biased distance is equal to the safety distance.
Further, a proportion integration differentiation (PID) control module is also included. An angle sensor for measuring a rotation angle of the steering driver is arranged on the steering driver. The PID control module receives a control signal output by the line-tracking correction module, subtracts a feedback signal of the angle sensor, and outputs a signal to the steering driver.
The present invention has the following beneficial effects: The robot line-tracking navigation system of the present invention recognizes the navigation line on the ground through the arrangement of the machine vision module, and the machine vision module is also configured to recognize the obstacle in the path; and the obstacle avoidance control module controls the steering driver to turn according to the position and contour of the obstacle, so as to avoid the obstacle.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention is further described below with reference to the accompanying drawings.
FIG. 1 1s a schematic structural diagram of a robot line-tracking navigation system of the present invention.
DETAILED DESCRIPTION The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some embodiments instead of all embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.
Referring to FIG. 1, a machine vision-based robot line-tracking navigation system includes a machine vision module 1, an information input module, an image analysis module 2, a main controller 3 and a steering driver 4.
The machine vision module 1 acquires an environment image surrounding a robot, a course marking line and a navigation line, and outputs the environment image, the course marking line and the navigation line to the image analysis module 2. The course marking line is consistent with a forward motion direction of the robot.
The image analysis module 2 measures a distance and an included angle between the course marking line and the navigation line, and outputs the distance and the included angle to the main controller 3. Meanwhile, the image analysis module 2 analyzes and judges whether an obstacle exits in the environment image, and outputs a judging result to the main controller 3.
The main controller 3 includes a line-tracking correction module 31 and an obstacle avoidance control module 32. When the image analysis module 2 judges that no obstacle exists, the line-tracking correction module 31 controls the steering driver 4 to reduce the distance and the included angle between the marking line and the navigation line. When the image analysis module 2 judges that an obstacle exists, the obstacle avoidance control module 32 adjusts the steering driver 4 to avoid the obstacle.
That is, the robot line-tracking navigation system of the present invention may be applied to line-tracking detection through the arranged machine vision module 1, and may monitor whether an obstacle exists on a motion path. If an obstacle appears, the obstacle avoidance control module 32 controls the steering driver 4 to turn to avoid the obstacle. After the robot crosses the obstacle, that is, after the machine vision module 1 detects no obstacle, the obstacle avoidance control module 32 stops outputting a control signal, and the line-tracking correction module 31 is recovered for control, so that the robot re-approaches the navigation line.
Further, the image analysis module 2 recognizes an obstacle contour, and transmits the obstacle contour to the obstacle avoidance control module 32, and the obstacle avoidance control module 32 biases the obstacle contour to the outside of the obstacle to obtain an obstacle avoidance path. The obstacle avoidance control module 32 controls the steering driver, so that the robot moves along the obstacle avoidance path. The obstacle avoidance control module 32 receives and stores a preset safety distance, and a biased distance is equal to the safety distance.
In addition, the robot line-tracking navigation system of the present invention also includes a proportion integration differentiation (PID) control module 6. An angle sensor 5 for measuring a rotation angle of the steering driver is arranged on the steering driver 4. The PID control module 6 receives a control signal output by the line-tracking correction module 31, subtracts a feedback signal of the angle sensor 5, and outputs a signal to the steering driver 4. Through the arrangement of the PID control module 6, a control signal of the steering driver 4 may be adjusted according to real-time feedback of the steering driver 4, so that a steering angle is closer to a desired value.
The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the foregoing embodiments, descriptions in the foregoing embodiments and the specification merely describe the principles of the present invention, various changes and improvements may be made to the present invention without departing from the spirit and scope of the present invention, and such changes and improvements shall all fall within the protection scope of the present invention.

Claims (4)

CONCLUSIESCONCLUSIONS 1. Een op machine-vision gebaseerd robot lijnvolgnavigatiesysteem, omvattende een machine-vision module, een gegevensinvoermodule, een beeldanalysemodule, een hoofdbesturingsinrichting (main controller) en een stuuraandrijving, waarbij 5 de machine-vision module een omgevingsbeeld om een robot, een trajectmarkeringslijn en een navigatielijn verkrijgt, en het omgevingsbeeld, de trajectmarkeringslijn en de navigatielijn uitvoert naar de beeldanalysemodule; en de trajectmarkeringslijn overeenkomt met een voorwaartse bewegingsrichting van de robot; de beeldanalysemethode een afstand en een ingesloten hoek tussen de trajectmarkeringslijn en de navigatielijn meet en de afstand en de ingesloten hoek naar de hoofdbesturingsinrichting uitvoert, en de beeldanalysemodule analyseert en beoordeelt of er zich een obstakel in het omgevingsbeeld bevindt, en een beoordelingsresultaat naar de hoofdbesturingsinrichting uitvoert; de hoofdbesturingsinrichting een lijnvolgcorrectiemodule en een obstakelvermijdregelmodule omvat; wanneer de beeldanalysemodule beoordeelt dat er geen obstakels is, bestuurt de lijnvolgcorrectiemodule de stuuraandrijving om de afstand en de ingesloten hoek tussen de markeringslijn en de navigatielijn te verkleinen; en als de beeldanalysemodule oordeelt dat er een obstakel is, past de obstakelvermijdbestuurmodule de stuuraandrijving on het obstakel te vermijden.1. A machine vision based robotic line following navigation system, comprising a machine vision module, a data entry module, an image analysis module, a main controller and a steering drive, wherein the machine vision module has an environmental image around a robot, a trajectory marker line and acquires a navigation line, and outputs the scenery image, the trajectory marker line and the navigation line to the image analysis module; and the trajectory marker line corresponds to a forward movement direction of the robot; the image analysis method measures a distance and an included angle between the trajectory marker line and the navigation line and outputs the distance and the included angle to the main controller, and the image analysis module analyzes and judges whether there is an obstacle in the scene image, and outputs an assessment result to the main controller ; the main controller includes a line tracking correction module and an obstacle avoidance control module; when the image analysis module judges that there are no obstacles, the line following correction module controls the steering drive to reduce the distance and included angle between the marker line and the navigation line; and if the image analysis module judges that there is an obstacle, the obstacle avoidance control module adjusts the steering drive to avoid the obstacle. 2. Het op machine-vision gebaseerd robot lijnvolgnavigatiesysteem volgens conclusie 1, waarbij de beeldanalysemodule een obstakelcontour detecteert, en het obstakelcontour naar de obstakelvermijdbestuurmodule stuurt, en de obstakelvermijdbestuurmodule het obstakelcontour naar de buitenzijde van het obstakel verplaatst om een obstakelvermijdpad te verkrijgen, en de obstakelvermijdbestuurmodule de stuuraandrijving bestuurt zodat de robot beweegt langs het obstakelvermijdtraject.The machine vision-based robotic line following navigation system according to claim 1, wherein the image analysis module detects an obstacle contour, and sends the obstacle contour to the obstacle avoidance control module, and the obstacle avoidance control module moves the obstacle contour to the outside of the obstacle to obtain an obstacle avoidance path, and the obstacle avoidance control module controls the steering drive so that the robot moves along the obstacle avoidance trajectory. 3. Het op machine-vision gebaseerd robot lijnvolgnavigatiesysteem volgens conclusie 2, waarbij de obstakelvermijdbestuurmodule een vooraf ingestelde veiligheidsafstand ontvangt en opslaat, en de verplaats afstand is gelijk aan de veiligheidsafstand.The machine vision based robotic line following navigation system according to claim 2, wherein the obstacle avoidance control module receives and stores a preset safety distance, and the moving distance is equal to the safety distance. 4. Het op machine-vision gebaseerd robot lijnvolgnavigatiesysteem volgens conclusie 1, verder omvattende een proportioneel integrerende en differentiérende ( PID) regelmodule, waarbij een hoeksensor voor het meten van een rotatiehoek van de stuuraandrijving is voorzien op de stuuraandrijving en de PID-regelmodule een stursignaal uitgevoerd door de lijnvolgcorrectiemodule ontvangt, een terugkoppelsignaal van de hoeksensor aftrekt, en een signaal uitvoert naar de stuuraandrijving.The machine vision based robotic line following navigation system according to claim 1, further comprising a proportional integrating and differentiating (PID) control module, wherein an angle sensor for measuring an angle of rotation of the steering drive is provided on the steering drive and the PID control module provides a steering signal. output by the line tracking correction module, subtracts a feedback signal from the angle sensor, and outputs a signal to the steering drive.
NL2024662A 2019-12-04 2020-01-13 Machine vision-based robot line-tracking navigation system NL2024662B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911225521.6A CN110825094A (en) 2019-12-04 2019-12-04 Robot patrols line navigation based on machine vision

Publications (1)

Publication Number Publication Date
NL2024662B1 true NL2024662B1 (en) 2021-04-20

Family

ID=69542349

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024662A NL2024662B1 (en) 2019-12-04 2020-01-13 Machine vision-based robot line-tracking navigation system

Country Status (2)

Country Link
CN (1) CN110825094A (en)
NL (1) NL2024662B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237488A (en) * 2021-05-14 2021-08-10 徕兄健康科技(威海)有限责任公司 Navigation system and navigation method based on binocular vision and road edge finding technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324543B (en) * 2021-01-28 2023-07-14 山东硅步机器人技术有限公司 Visual navigation inspection and obstacle avoidance method for inspection robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103386975A (en) * 2013-08-02 2013-11-13 重庆市科学技术研究院 Vehicle obstacle avoidance method and system based on machine vision

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976079B (en) * 2010-08-27 2013-06-19 中国农业大学 Intelligent navigation control system and method
CN104090575A (en) * 2014-07-11 2014-10-08 大连理工大学 Control system of automatic line patrol robot and automatic line patrol robot
CN105651286B (en) * 2016-02-26 2019-06-18 中国科学院宁波材料技术与工程研究所 A kind of vision navigation method of mobile robot and system and warehouse system
CN109947093A (en) * 2019-01-24 2019-06-28 广东工业大学 A kind of intelligent barrier avoiding algorithm based on binocular vision
CN110134123A (en) * 2019-04-25 2019-08-16 滨州学院 A kind of control method of smart grid inspection robot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103386975A (en) * 2013-08-02 2013-11-13 重庆市科学技术研究院 Vehicle obstacle avoidance method and system based on machine vision

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALVES DE LIMA DANILO ET AL: "A Hybrid Controller for Vision-Based Navigation of Autonomous Vehicles in Urban Environments", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE, PISCATAWAY, NJ, USA, vol. 17, no. 8, 1 August 2016 (2016-08-01), pages 2310 - 2323, XP011618111, ISSN: 1524-9050, [retrieved on 20160729], DOI: 10.1109/TITS.2016.2519329 *
DE LIMA DANILO ALVES ET AL: "A Visual Servoing approach for road lane following with obstacle avoidance", 17TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), IEEE, 8 October 2014 (2014-10-08), pages 412 - 417, XP032685630, DOI: 10.1109/ITSC.2014.6957725 *
KUN FAN ET AL: "On the design of AGV obstacle avoidance system based on fuzzy-PID dual-mode controller", CONTROL, SYSTEMS&INDUSTRIAL INFORMATICS (ICCSII), 2012 IEEE CONFERENCE ON, IEEE, 23 September 2012 (2012-09-23), pages 54 - 58, XP032335909, ISBN: 978-1-4673-1022-2, DOI: 10.1109/CCSII.2012.6470473 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237488A (en) * 2021-05-14 2021-08-10 徕兄健康科技(威海)有限责任公司 Navigation system and navigation method based on binocular vision and road edge finding technology

Also Published As

Publication number Publication date
CN110825094A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
US9971943B2 (en) Vehicle trailer angle detection system and method
US10875530B2 (en) Travel control method and travel control device for drive-assisted vehicle
NL2024662B1 (en) Machine vision-based robot line-tracking navigation system
JP4351261B2 (en) Leader following vehicle
US20210129844A1 (en) Vision-based follow the leader lateral controller
Stahn et al. Laser scanner-based navigation for commercial vehicles
CN108536149A (en) A kind of automatic driving vehicle avoidance obstacle device and control method based on the paths Dubins
CN102910168B (en) Image processing apparatus
JP2018151287A (en) Vehicle running control device
CN104571128B (en) Underwater robot barrier-avoiding method based on distance with parallax information
US11604469B2 (en) Route determining device, robot, and route determining method
JPS63314618A (en) Controller for self-traveling vehicle
KR20140112824A (en) Leader-Follower Formation Device, Method and Mobile robot using Backstepping Method
CN110536828B (en) Vehicle control method and vehicle control device
Yoneda et al. Convolutional neural network based vehicle turn signal recognition
Ghandour et al. A hybrid collision avoidance system for indoor mobile robots based on human-robot interaction
Aref et al. A multistage controller with smooth switching for autonomous pallet picking
JP3674316B2 (en) Travel position determination device
Guan et al. Formation tracking of mobile robots under obstacles using only an active RGB-D camera
Zheng et al. Vision-based autonomous vehicle control using the two-point visual driver control model
KR20210037955A (en) Apparatus and method for tracking moving objects
EP3498557A1 (en) Method and system for road safety in detecting nearby vehicles swerving to avoid accidents
WO2019176278A1 (en) Information processing device, information processing method, program, and mobile body
Deng et al. A vision-based ground target tracking system for a small-scale autonomous helicopter
JP3246109B2 (en) Car travel control device

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230201