NL2024016B1 - A low-power system, transmitter, receiver for signal acquisition and transmission. - Google Patents

A low-power system, transmitter, receiver for signal acquisition and transmission. Download PDF

Info

Publication number
NL2024016B1
NL2024016B1 NL2024016A NL2024016A NL2024016B1 NL 2024016 B1 NL2024016 B1 NL 2024016B1 NL 2024016 A NL2024016 A NL 2024016A NL 2024016 A NL2024016 A NL 2024016A NL 2024016 B1 NL2024016 B1 NL 2024016B1
Authority
NL
Netherlands
Prior art keywords
pulse
signal
atcs
input
output signal
Prior art date
Application number
NL2024016A
Other languages
Dutch (nl)
Inventor
Can Akgün Ömer
Gancedo Reguilon Alberto
Anton Serdijn Wouter
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2024016A priority Critical patent/NL2024016B1/en
Priority to PCT/NL2020/050632 priority patent/WO2021075961A1/en
Application granted granted Critical
Publication of NL2024016B1 publication Critical patent/NL2024016B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The present invention relates generally to a low-power system, transmitter, receiver for signal acquisition for remote biosensing. In a first aspect, there is provided, low-power signal acquisition system for remote biosensing, said system comprising: a converter unit, comprising a plurality of analog-to-time converters, ATCs, said ATCs being connected in cascade as a chain of ATCs, wherein said chain of ATCs is arranged for sampling and converting an input signal such as an input signal obtained from an electrode in and/or on a body of a mammal, and wherein the voltage of the input signal is converted into an output signal of pulses with varying pulsewidths; a communication unit, arranged for short range inductive link communication, wherein the output signal is modulated by a modulation scheme for wireless transmission over said inductive communication link to a remote receiver unit for further processing of said output signal; a control unit, arranged for receiving said output signal from said chain of ATCs and for control of said communication unit to transmit said output signal; wherein said communication module comprises a pulse harmonic modulation unit arranged for driving said inductive link with a sharp impulse for generating an oscillation pulse with a rapid rise and slow decay, and wherein said unit is further arranged to generate a further oscillation pulse with a predetermined delay for suppression of said oscillation pulse for forming a bitstream between said oscillation pulse and said further oscillation pulse to transmit said digital signal to said remote receiver; and wherein said pulse harmonic modulation unit further comprises a damping switch a drive switch and an impulse generator, wherein said impulse generator is connected to the input of said pulse harmonic modulation unit for generating said narrow pulse on the basis of said input for driving said drive switch to generate said oscillation pulse, and wherein said damping switch is connected to the input of said pulse harmonic modulation unit fortriggering said further oscillation pulse with said predetermined delay for suppression of said oscillation pulse; and wherein said chain of ATC’s is arranged for generating said output signal wherein the input voltage of said input signal of said electrode is modulated by a varying pulse-width of said pulses of said output signal

Description

Title: A low-power system, transmitter, receiver for signal acquisition and transmission. Description The present invention relates generally to a low-power system, transmitter, receiver for signal acquisition for remote biosensing.
BACKGROUND OF THE INVENTION Implantable devices are a type of medical implants which consist of electronics and suitable for partly but mostly total introduction in the human body with the intention to remain there for a certain period of time and at least beyond the procedure of implanting the device. Implantable devices may be classified as active and/or passive device of which the active devices contain electronics which are powered by some power source.
One of the major challenges in active implantable devices is the search far extremely low-energy signal acquisition systems which can drastically lower battery use and thus increase battery life. As a result, smaller batteries may be used. Since batteries are often one of the components of implantable devices which have a large impact on the dimensions, lower battery usage, and thus smaller batteries, will result in smaller devices.
Wireless transmission has emerged as a popular and essential feature of the active implantable devices in order to transfer the data and possibly also power to and from the device. Communication with a coupling link is one of the most popular and effective means for realizing the communication of data and/or power to and from the device. Since the communication of the data and the power is one of the most power consuming elements of the device, the goal to lower battery usage is most likely to be achieved through improvements in the communication chain.
Conventional methods for lowering power consumption of the wireless transmission typically result in shorter transmission paths/ranges and lower throughput. There is however a limit to lowering throughput since some applications require high bandwidth, and decreasing the transmission path will also limit the devices’ applications.
In view of the above, there is a need for an improved system of signal acquisition for remote biosensing with reduced power consumption.
SUMMARY It is an object of the present invention, to provide an improved system and method of signal acquisition for remote biosensing with reduced power consumption.
In a first aspect, there is provided, a low-power signal acquisition system for remote biosensing, said system comprising: - a converter unit, comprising a plurality of analog-to-time converters, ATCs, said ATCs being connected in cascade as a chain of ATCs, wherein said chain of ATCs is arranged for sampling and converting an input signal such as an input signal obtained from an electrode in, or on a biological tissue and wherein the voltage of the input signal is converted into an output signal of pulses with varying pulse-widths; - a communication unit, arranged for communication over a short range coupling link, wherein the output signal is modulated by a modulation scheme for wireless transmission over said coupling link to a remote receiver unit for further processing of said output signal; - a control unit, arranged for receiving said output signal from said chain of ATCs and for control of said communication unit to transmit said output signal; wherein said communication module comprises a pulse harmonic modulation unit arranged for driving said coupling link with a sharp impulse for generating an oscillation pulse with a rapid rise and slow decay, and wherein said unit is further arranged to generate a further oscillation pulse with a predetermined delay for suppression of said oscillation pulse for forming a bitstream between said oscillation pulse and said further oscillation pulse to transmit said digital signal to said remote receiver; and wherein said pulse harmonic modulation unit further comprises a damping switch a drive switch and an impulse generator, wherein said impulse generator is connected to the input of said pulse harmonic modulation unit for generating said narrow pulse on the basis of said input for driving said drive switch to generate said oscillation pulse, and wherein said damping switch is connected to the input of said pulse harmonic modulation unit for triggering said further oscillation pulse with said predetermined delay for suppression of said oscillation pulse; and wherein said chain of ATC’s is arranged for generating said output signal wherein the input voltage of said input signal of said electrode is modulated by a varying pulse-width of said pulses of said output signal.
In signal acquisition systems for remote biosensing there is a tendency towards lowering the supply voltage to achieve a lower power consumption and safe battery life. Lower power consumption and longer battery life enables the use of smaller batteries which is one of the key challenges in the design of active implantable medical devices.
Lowering the supply voltage will reduce the voltage headroom for the transistors to operate in saturation. Without operating in the saturation it is very hard to realize signal processing and amplification function in the analog domain. Time- mode signal processing may solve these issues since the time-mode operation modulates the information in the time difference between two subsequent switching events. The modulation expresses an N bit signal.
By lowering the number of switching events, the power consumption may be lowered. As such, by use of time-mode signal processing, the device benefits from the lower power consumption such that smaller batteries may be used.
Time-mode signal processing has a relative low throughput, however, for applications in which no high throughput is required, this is not a drawback.
In a first aspect of the low-power signal acquisition system for remote Dbiosensing a converter unit is presented. The system comprises at least three main components, a converter unit, a communication unit and a control unit. The converter is connected to the electrode and the communication comprises a coupling link which may be an inductive or a magnetic coupling link to communicate the data towards a remote receiver, which in case of an implantable medical device, is outside the biological body.
The converter consists of a plurality of analog-to-time converters, also referred to as ATCs. These ATCs are connected in series to form a chain of converters. The ATCs of the chain are connected to the electrode and thus arranged to obtain an input signal from the electrode which may either be placed inside or outside the body of a mammal. The ATC converts an input voltage at the electrode to an output signal preferably with a fixed output voltage or amplitude. The information obtained or sampled at the electrode is modulated into the output signal by variation of the pulse- width.
The ATCs comprise multivibrators. Multivibrators in general are used to implement a two-state device such as a flip-flop. It consists of two amplifiers which are cross coupled by resistors or capacitors. The ATCs of the system according to the first aspect comprises monostable multivibrators, which preferably have tunable pulse- widths, which are circuits in which one of the states is stable, but the other state is unstable or transient for a tunable period. The monostable multivibrators generate output pulses. When they are triggered, a pulse of a variable and tunable duration is generated. The output state, e.g. high, is kept stable for the mentioned variable and tunable duration, independent of the input state of the ATC. Once the variable duration has lapsed, a next pulse of a varying duration may be generated upon the next trigger.
The ATC is thus particularly useful for generating single output pulse of adjustable time duration in response to a triggering signal. The ATCs of the first aspect modulate the input signal by a pulse-width variation.
The signal, once converted by the ATCs is communicated to a remote receiver unit for further processing. The communication is performed by a communication unit of the system which transmits the output signal over a short-range inductive or magnetic coupling link. The coupling link consists of a transmitter and a receiver which use a modulation scheme based on single-pulse harmonic modulation. To this end, the communication unit comprises a pulse harmonic modulation unit. The pulse harmonic modulation unit is arranged to drive the coupling link to transmit the output signal with a narrow or sharp impulse. The sharp impulse will generate an oscillation pulse with an approximately similar rise and decay times. The communication unit is further arranged to generate a second or further oscillation pulse. The second or further oscillation pulse has a predetermined delay in respect of the (first) oscillation pulse and suppresses this (first) oscillation pulse. In time frame generated between the oscillation pulse and the suppression thereof by the second or further oscillation pulse will form a bitstream in which the output signal, i.e. the input signal which is modulated by a variation in pulse-width by the ATCs can be transmitted to the remote receiver over the coupling link.
5 The communication unit further also comprises a damping switch, a drive switch as well as an impulse generator. The impulse generator is connected to the input of said pulse harmonic modulation unit and generates a narrow pulse on the basis of the input which drives the drive switch, which in turn will generate the oscillation pulse. The damping switch is connected to the input of the pulse harmonic modulation unit and triggers the further oscillation pulse with the predetermined delay for suppression of the oscillation pulse. As a result, the communication unit will generate a pulse, to mark either the beginning or ending of the transmitted data, effectively increasing the throughput. The width of the damping pulse is less critical, which allows a complete damping of the oscillating signal between the two transmissions per sample. With the communication module according to the first aspect of the invention use is made of a single-pulse harmonic modulation which inherently makes use of the time-mode signals from the ATC chain. The inventor found out that this resulted in an extremely low power consumption. Moreover, the communication module can be implemented in a simplistic manner making the communication module less complex, lower in power consumption and more robust. By employing time-mode signal processing throughout all components of the system, both the converter unit and the communication unit are based on time-mode signal processing, the power efficiency of the system is dramatically improved as compared to conventional signal acquisition and transmission systems for remote biosensing. As indicated, the invention is particularly suitable for remote biosensing. However, the skilled person will appreciate that this is merely an example for the signal sensing and transmission system, and that the invention, according to any aspect or example, may be useful and applicable for other applications of signal sensing and transmission as well.
In an example, the converter unit comprises a chain of ATCs which are arranged to generate a pulse independent from the input signal of the electrode.
In an example, the converter unit is arranged to generate a trigger signal in between each of said ATCs.
In an example, the trigger signal in between each of said ATCs uses a fixed-width pulse generator which is activated by the falling edge of the ATC output pulse.
In an example, the system further comprises an interface unit arranged between said converter unit and said communication unit which is arranged to trigger signal from the chain of ATCs is captured by use of a positive-edge triggered flip-flop and wherein the end of the summation of the output signal of the chain of ATCs is captured by use of a negative-edge triggered flip-flop, for generating a start and finish marker of the conversion of the input signal.
In an example, the payload of the output signal being transmitted is comprised solely from the alternating start and finish markers of the conversion of the input signal of the converter unit.
In an example, the system further comprises two either-edge pulse generators for generating control signals to control the driving switch for driving said coupling link.
In an example, the pulse-width of the ATCs are configurable for compensation of variation in the conversion of said input signal.
In an example, the converter unit is comprised of a chain of at least 1 ATC, and preferably, between 2 and 1024 ATCs, more preferably between 4 and 512 ATCs, even more preferably in between 8 and 256 ATCs. These are examples. The ATCs used are at least 1, and may be up to an unlimited number of ATCs. In a more practical embodiment, 2, 4, 6, 8, 16, 32, 64, 128, 256, 512 or 1024 ATCs may be used.
In an example, each of said ATCs is comprised of a single PMOS transistor for tunability and variation of the generated pulse-widths, a NOR logic gate and logic inverters.
In an example, each of the transistors of the chain of ATCs operate in near threshold region. The ATCs can work in any regime from subthreshold to above-threshold, but in an example they work subthreshold, near threshold, or above- threshold, of which the near threshold is preferred.
In an example, the system is comprised in a wearable EEG system, preferably comprising an active electrodes for obtaining said input signal.
In a second aspect there is provided a bio-implantable device, comprising a signal acquisition and transmission system according to any of the previous claims descriptions.
In a third aspect there is provided a transmission module for a low- power signal acquisition system for remote biosensing according to any of the previous descriptions, comprising a communication unit, arranged for communication over a short range coupling link, wherein the output signal is modulated by a modulation scheme for wireless transmission over said coupling link to a remote receiver unit for further processing of said output signal; wherein said communication unit comprises a pulse harmonic modulation unit arranged for driving said coupling link with a sharp impulse for generating an oscillation pulse with a rapid rise and slow decay, and arranged to generate a further oscillation pulse with a predetermined delay for suppression of said oscillation pulse for forming a bitstream between said oscillation pulse and said further oscillation pulse to transmit said digital signal to said remote receiver; and wherein said pulse harmonic modulation unit further comprises a damping switch a drive switch and an impulse generator, wherein said impulse generator is connected to the input of said pulse harmonic modulation unit for generating said narrow pulse on the basis of said input for driving said drive switch to generate said oscillation pulse, and wherein said damping switch is connected to the input of said pulse harmonic modulation unit for triggering said further oscillation pulse with said predetermined delay for suppression of said oscillation pulse.
In a fourth aspect there is provided a receiver module for a low-power signal acquisition system for remote biosensing according to any of the previous descriptions wherein said receiver module comprising a communication unit, arranged for communication over a short range inductive coupling link, arranged to communicate with a transmission module according to the previous description.
The invention will hereinafter be further clarified with reference to the drawing of exemplary embodiments of a filter network according to the invention that is not limiting as to the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawing: figure 1 shows the system according to an aspect of the present invention; figure 2 shows the converter unit according to an aspect of the present invention; figure 3a and 3b show an oversampling chain and trigger generating unit according to an aspect of the present invention; figure 4 shows an interface between the converter unit and the communication unit according to an aspect of the present invention; figure 5 shows the transmitter and the receiver according to an aspect of the present invention; figure 6 shows a signal response of the system according to an aspect of the present invention.
Whenever in the figures the same reference numerals are applied, these numerals refer to the same parts.
DETAILED DESCRIPTION Fig. 1 shows an embodiment 100 of the low-power signal acquisition system according to the present description. The embodiment is particularly suitable for signal acquisition and transmission for biosensors, however, the skilled person will appreciate that the system may also be used for other low power applications in which signals for example from an electrode may be sensed and transmitted to a receiver.
The system 100 shown in fig. 1 is comprised of several components, the electrode 104 is on the input side and is the component that will for example be placed in the tissue of a mammal in order to record biosignals. The electrode 104 is connected to a low-power signal acquisition system 103. The low-power signal acquisition system 103 is connected to a receiver 102 which may for example be located on the surface of the mammal. The receiver 102 communicates with the communication module in the system 103, which may be located under the tissue of the mammal, through an inductive link 101. The inductive link may however also be a magnetic link or any other electromagnetic communication link.
An example of a suitable application for a low-power signal acquisition system 100 is the use in EEG sensing. EEG sensing systems sensors require low power consumption and have noise constraints.
The low-power signal acquisition system 100 of fig. 1 comprises at least three main components; a converter unit (ATC chain), a control unit (Comm. Control) and a communication unit (transmitter).
The converter is formed by a chain of analog-to-time converters connected in series. These ATCs receive the input signal or biosignal from the electrode 104. The control unit interfaces the ATC chain with the transmitter and the communication unit drives the inductive link 101 to use a single-pulse harmonic modulation scheme to transmit the data obtained from the electrode 104.
The ATC chain converts the input voltage at the electrode to an output pulse or output signal, of which the pulse width is modulated by the electrode’s signal voltage. The output of the ATC chain and the trigger signal are then fed to the control unit to create the control signals for the communication module. When the signal is transmitted through the inductive link, the receiver circuit generates two events per conversion {one for the rising edge and one for the falling edge of the converter’s total output pulse) that represent a sampled EEG value. The time between those pulses can be converted into digital by directly interfacing the receiver to an asynchronous TDC.
Fig. 2 shows the converter unit as shown as ATC chain in Fig. 1. The converter unit uses a monostable multivibrator to convert the signal voltage from the electrode to a time-mode signal by modulating the current generated by pMOS transistor M1 in a similar fashion.
The operation of the circuit is as follows: At the instance that a trigger pulse is applied, Node n1 is pulled low by the NOR gate followed by Node n2, and the current supplied by M1 starts to charge n2. Once n2 is charged to the threshold voltage of the inverter, Node n1 goes low again, making the output high and successfully creating a pulse, that represents the sampled and converted value.
The system remains in steady state (Nodes n1 and n2 are logic high) until the next trigger pulse arrives.
As the current supplied by Transistor M1 is modulated by the input signal, the output pulse-width will be proportional to the input signal's amplitude.
The communication module has an inherent time- out feature and will always generate a pulse event at Node n1, regardless of the input signal value at Vin, avoiding stalling of the chain.
Due to the extremely low amplitude of the signals coming from the input electrode, oversampling and/or sharp filtering are preferred to reduce the noise levels.
Due to the oversampling all sources of error and/or noise appear with a Gaussian distribution on top of the signal, which preferably will be reduced in power by a factor of 2, i.e. 3dB, per doubling of the oversampling ratio (OSR) while keeping the signal power constant.
Fig. 3a shows an example of an oversampling chain of ATCs.
Addition of the time pulses is performed by chaining ATCs (301a, 300b,... , 300n) and creating a trigger signal between the ATCs using a fixed- width pulse generator as shown in Fig. 3b that activates with the falling edge of the ATC output pulse.
With the addition operation of the same converted signal in the time domain (oversampling), the noise contribution is significantly reduced as a result of the noise averaging.
The output of the ATC chain shown in Fig. 3a is preferably monitored, since only the last ATC 300n output pulse can be seen.
Therefore, a signal representing the time addition of all the ATC pulses is preferably generated.
For this purpose, the simple circuit shown in Fig. 4 may be used. First, the trigger input to the ATC chain is captured using a positive-edge triggered flip-flop (FF). Likewise, the end of the summation operation is captured by using a negative- edge triggered FF, generating the start and finish markers of the conversion, which are then fed to an XOR gate to generate the resulting pulse, Total ATC output. The FFs are reset after every conversion to allow multiple samples to be transmitted. In order for the system to be extremely low in power consumption, the communication should be extremely power efficient as well. To this end, a communication scheme is proposed which is based in single-pulse harmonic modulation, which can inherently make use of time-mode signals from the ATC chain. This communication unit 510 of the system 500, together with the corresponding receiver 520 thereof is shown in Fig. 5. The transmitter circuit 510 shown in fig. 5 uses one narrow pulse (fed to the gate of MTx) to create a wideband excitation that will get filtered by the high-Q LC-tank, creating a tone at the resonant frequency of the tank. Once the oscillation has built up, the pMOS switch (MTxd) can be turned on to drastically lower the Q of the transmitter tank, damping the oscillation and allowing for another pulse to be sent. The receiver implementation 520 fol lows a similar approach and can be seen as an envelope detector and a thresholder circuit, reusing the output bit pulses as damping signals on transistor MRxd. A maximum voltage swing may occur for a driving pulse width of exactly one half cycle (or an odd multiple of half cycles) of the tank’s resonant frequency. Therefore, the pulse width converters described above were made configurable or tunable so that process variations could be compensated.
As a result of the increased pulse width with the use of oversampling in the ATC chain, the time elapsed between the two pulses transmitted per sample increases, making the width of the damping pulse on MTxd less critical, thus allowing for complete damping of the tank’s oscillating signal between the two transmissions per sample. The resolution achieved from the chain, when considering a noiseless scenario, will depend on the receiver's timing accuracy. Fig. 6 shows the operation of the system for a chain of four analog- to-time converters. The chain of ATCs generates the oversampled time-mode signal at the rising edge of the trigger signal and the interface circuit generates the Total ATC Output signal. From this signal, the driving signals for the transmitter that produce the necessary oscillation at 10MHz are generated. In this simulation, a coupling factor of k=0.005 was used to model a small coupling between the coils, and an envelope detector and a limiter with a threshold of 7.5mV was used to receive the transmitted signal and convert the received signal into a marker pulse. The pulse-width of the Total ATC Output pulse and the time difference between the marker pulses differ due to the differences in the driving strengths in the designed interface circuitry appearing in the reconstructed signal as a DC offset.
Expressions such as “comprise”, “include”, “incorporate”, “contain”, “Is” and “have” are to be construed in a non-exclusive manner when interpreting the description and its associated claims, namely construed to allow for other items or components which are not explicitly defined also to be present. Reference to the singular is also to be construed in be a reference to the plural and vice versa. In the description above, it will be understood that when an element such as layer, region or substrate or components of a system are referred to as being “on”, “onto” or “connected to” another element, the element is either directly on or connected to the other element, or intervening elements may also be present. Furthermore, the invention may also be embodied with less components than provided in the embodiments described here, wherein one component carries out multiple functions. Just as well may the invention be embodied using more elements than depicted in the Figures, wherein functions carried out by one component in the embodiment provided are distributed over multiple components. A person skilled in the art will readily appreciate that various parameters disclosed in the description may be modified and that various embodiments disclosed and/or claimed may be combined without departing from the scope of the invention. It is stipulated that reference signs in the claims do not limit the scope of the claims, but are merely inserted to enhance the legibility of the claims.

Claims (15)

CONCLUSIESCONCLUSIONS 1. Een laagvermogensignaalverwervingssysteem voor biosensing op afstand, het systeem omvattende: - een converteereenheid, omvattende een aantal analoog-tot-tijd- omzetters, ATCs, waarbij de ATCs verbonden zijn in cascade als een keten van ATCs, waarbij de keten van ATCs is ingericht voor het bemonsteren en omzetten van een ingangssignaal zoals een verkregen ingangssignaal van een elektrode in of op een biologisch weefsel en waarbij de spanning van het ingangssignaal wordt omgezet in een uitgangssignaal van pulsen met variërende pulsbreedten; - een communicatie-eenheid, ingericht voor communicatie over een korteafstandskoppeling, waarbij het uitgangssignaal wordt gemoduleerd door een modulatieschema voor draadloze overdracht via een koppelingsverbinding naar een ontvanger op afstand voor verdere verwerking van het uitgangssignaal; - een besturingseenheid, welke ingericht is voor het ontvangen van het uitgangssignaal van de keten van ACTs en voor de besturing van de communicatie-eenheid om het uitgangssignaal te verzenden, waarbij de communicatemodule een pulsharmonische modulatie-eenheid omvat die ingericht is voor het aansturen van de koppelingsverbinding met een scherpe impuls voor het genereren van een oscillatiepuls met een snelle stijging en een langzaam verval, waarbij de eenheid verder ingericht is om een verdere oscillatiepulsen te genereren met een vooraf vastgestelde vertraging voor het onderdrukken van de oscillatiepuls en voor het vormen van een bitstroom tussen de oscillatiepuls en de verdere oscillatiepuls om een digitaal signaal met ontvanger op afstand te verzenden; en waarbij de pulsharmonische modulatie-eenheid verder een dempingsschakelaar omvat, een aandrijfschakelaar en een impulsgenerator, waarbij de impulsgenerator verbonden is met de ingang van de pulsharmonische modulatie-eenheid voor het genereren van de smalle puls op basis van de ingang voor het aandrijven van de aandrijfschakelaar om de oscillatiepuls te genereren, en waarbij de dempingsschakelaar verbonden is met de ingang van de pulsharmonische modulatie-eenheid voor het triggeren van de verdere oscillatiepuls met de vooraf bepaalde vertraging voor onderdrukking van de oscillatiepuls; en waarbij de keten van ATCs ingericht is voor het genereren van een uitgangssignaal, waarbij de ingangsspanning van het ingangssignaal van de elektrode wordt gemoduleerd door een variërende pulsbreedte van de pulsen van het uitgangssignaal.A low power signal acquisition system for remote biosensing, the system comprising: a converter comprising a plurality of analog-to-time converters, ATCs, the ATCs connected in cascade as a chain of ATCs, the chain of ATCs being arranged for sampling and converting an input signal such as an acquired input signal from an electrode in or on a biological tissue and converting the voltage of the input signal into an output signal of pulses of varying pulse widths; - a communication unit arranged for communication over a short-range link, wherein the output signal is modulated by a modulation scheme for wireless transmission over a link link to a remote receiver for further processing of the output signal; - a control unit adapted to receive the output signal from the chain of ACTs and to control the communication unit to transmit the output signal, the communication module comprising a pulse harmonic modulation unit adapted to control the coupling connection with a sharp pulse for generating an oscillating pulse with a fast rise and a slow decay, the unit being further arranged to generate a further oscillating pulse with a predetermined delay for suppressing the oscillating pulse and forming a bit stream between the oscillating pulse and the further oscillating pulse to transmit a digital signal with remote receiver; and wherein the pulse harmonic modulation unit further comprises a muting switch, a driving switch and a pulse generator, the pulse generator being connected to the input of the pulse harmonic modulation unit for generating the narrow pulse based on the input for driving the driving switch to generate the oscillating pulse, and wherein the muting switch is connected to the input of the pulse harmonic modulation unit for triggering the further oscillating pulse with the predetermined delay for suppressing the oscillating pulse; and wherein the circuit of ATCs is arranged to generate an output signal, wherein the input voltage of the input signal from the electrode is modulated by a varying pulse width of the pulses of the output signal. 2. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij de converteereenheid een keten van ATCs omvat die ingericht zijn om een puls te genereren die afwijkend is van het ingangssignaal van de elektrode.The low power remote biosensing signal acquisition system according to any preceding claim, wherein the converter comprises a chain of ATCs arranged to generate a pulse different from the input signal from the electrode. 3. Het laagvermogenssignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij de convertereenheid ingericht is voor het genereren van een triggersignaal tussen elk van de ATCs.The low power remote biosensing signal acquisition system according to any preceding claim, wherein the converter unit is arranged to generate a trigger signal between each of the ATCs. 4. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand volgens een van de voorgaande conclusies, waarbij het triggersignaal tussen elk van de ATCs een vaste breedtepulsgenerator gebruikt welke geactiveerd wordt door de afvallende flank van de ATC uitgangspuls.The low power remote biosensing signal acquisition system of any preceding claim, wherein the trigger signal between each of the ATCs uses a fixed width pulse generator which is activated by the falling edge of the ATC output pulse. 5. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij het systeem verder een interface-eenheid omvat die ingericht is tussen de convertereenheid en de communicatie- eenheid welke ingericht is voor het triggeren van een signaal van de keten van ATCs die gevangen zijn door gebruik van een positieve flank getriggerde flip-flop en waarbij het eind van de opsomming van het uitgangssignaal van de keten van ATCs gevangen wordt door gebruik van een negatieve flank getriggerde flip-flop, voor het genereren van een start en een eindmarkering van de conversie van het ingangssignaal.The low-power remote biosensing signal acquisition system according to any preceding claim, wherein the system further comprises an interface unit arranged between the converter unit and the communication unit adapted to trigger a signal from the chain of ATCs captured using a positive edge triggered flip-flop and where the end of the enumeration of the output of the chain of ATCs is captured using a negative edge triggered flip-flop, to generate a start and end flag of the conversion of the input signal. 6. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij de payload van het uitgangssignaal dat is verzonden enkel omvat is uit de afwisselende start en eindmarkeringen van de conversie van het ingangssignaal van de converteereenheid.The low power remote biosensing signal acquisition system according to any one of the preceding claims, wherein the output signal payload that has been transmitted is comprised only of the alternating start and end markers of the conversion of the input signal from the converter. 7. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij het systeem verder twee beide flankpulsgeneratoren omvat voor het genereren van besturingssignalen voor het besturen van de besturingsschakelaar voor het aansturen van de koppelingsverbinding.The low power remote biosensing signal acquisition system according to any one of the preceding claims, wherein the system further comprises two both edge pulse generators for generating control signals for controlling the control switch for driving the coupling connection. 8. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij de pulsbreedte van de ATCs configureerbaar zijn voor het compenseren van variaties in de conversie van het ingangssignaal.The low power remote biosensing signal acquisition system according to any preceding claim, wherein the pulse width of the ATCs are configurable to compensate for variations in the conversion of the input signal. 9. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij de converteereenheid omvat is uit een keten van ten minste 1 ATC, en bij voorkeur, tussen de 2 en de 1024 ATCs, en meer bij voorkeur tussen de 4 en 512 ATCs, en nog meer bij voorkeur tussen de 8 en de 256 ATCs.The low power remote biosensing signal acquisition system according to any one of the preceding claims, wherein the converter is comprised of a chain of at least 1 ATC, and preferably, between 2 and 1024 ATCs, and more preferably between 4 and 512 ATCs, and more preferably between 8 and 256 ATCs. 10. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij elk van de ATCs omvat is uit één enkele PMOS transistor voor instelbaarheid en variatie van de gegenereerde pulsbreedtes, een NOR logische poort en logische inverters.The low power remote biosensing signal acquisition system according to any preceding claim, wherein each of the ATCs is comprised of a single PMOS transistor for adjustability and variation of the generated pulse widths, a NOR logic gate and logic inverters. 11. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij elk van de transistoren van de keten van ATCs opereren in het nabije drempelgebied.The low-power remote biosensing signal acquisition system according to any preceding claim, wherein each of the transistors of the chain of ATCs operate in the near threshold region. 12. Het laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de voorgaande conclusies, waarbij het systeem omvat is in een draagbaar EEG-systeem, bij voorkeur een elektrode omvattende voor het verkrijgen van het ingangssignaal.The low power remote biosensing signal acquisition system according to any one of the preceding claims, wherein the system is comprised in a portable EEG system, preferably including an electrode for obtaining the input signal. 13. Een signaalverwervings- en verwerkingschip voor een systeem volgens een van de voorgaande conclusies 1 tot en met 10, waarbij de chip bij voorkeur een bio- implanteerbare chip is.A signal acquisition and processing chip for a system according to any one of claims 1 to 10, wherein the chip is preferably a bio-implantable chip. 14. Een zendmodule voor een laagvermogensignaalverwervingssyteem voor biosensing op afstand overeenkomstig een van de conclusies 1 tot en met 12, omvattende een communicatie-eenheid, ingericht voor communicatie over een korteafstandkoppelingslinkcommunicatie, waarbij het uitgangssignaal gemoduleerd wordt door een modulatieschema voor draadloze overdracht via de koppelingsverbinding naar een ontvanger op afstand voor verdere verwerking van het uitgangssignaal; waarbij de communicatie-eenheid een pulsharmonische modulatie-eenheid omvat die ingericht is voor het aansturen van de koppelingsverbinding met een scherpe impuls voor het genereren van een oscillatiepuls met een snelle stijging en een langzaam verval, en ingericht om een verdere oscillatiepuls te genereren met een vooraf bepaalde vertraging voor onderdrukking van de oscillatiepuls voor het vormen van een bitstroom tussen de oscillatiepuls en de verdere oscillatiepuls om het digitale signaal naar de ontvanger op afstand te verzenden; en waarbij de pulsharmonische modulatie-eenheid verder een dempingsschakelaar, een aandrijfschakelaar en een impulsschakelaar omvat, waarbij de impulsschakelaar verbonden is met de ingang van de pulsharmonische modulatie-eenheid voor het genereren van de smalle puls op basis van de ingang voor het aandrijven van de aandrijfschakelaar om de oscillatiepuls te genereren, en waarbij de dempingsschakelaar verbonden is met de ingang van de pulsharmonische modulatie-eenheid om de verdere oscillatiepuls te triggeren met de vooraf bepaalde vertraging ter onderdrukking van de oscillatiepuls.A transmitter module for a low-power remote biosensing signal acquisition system according to any one of claims 1 to 12, comprising a communication unit adapted for communication over a short-range link link communication, the output signal being modulated by a modulation scheme for wireless transmission over the link link to a remote receiver for further processing of the output signal; the communication unit comprising a pulse harmonic modulation unit adapted to drive the coupling link with a sharp pulse to generate an oscillating pulse with a fast rise and a slow decay, and arranged to generate a further oscillating pulse with a predefined determined delay for suppression of the oscillation pulse to form a bit stream between the oscillation pulse and the further oscillation pulse to transmit the digital signal to the remote receiver; and wherein the pulse harmonic modulation unit further comprises a mute switch, a drive switch and a pulse switch, the pulse switch being connected to the input of the pulse harmonic modulation unit for generating the narrow pulse based on the input for driving the drive switch to generate the oscillating pulse, and wherein the muting switch is connected to the input of the pulse harmonic modulation unit to trigger the further oscillating pulse with the predetermined delay to suppress the oscillating pulse. 15. Een ontvangermodule voor een laagvermogensignaalverwervingssysteem voor biosensing op afstand overeenkomstig een van de conclusies 1 tot en met 13, waarbij de ontvangermodule een communicatieverbinding omvat, ingericht voor communicatie over een korte afstandskoppeling, ingericht om met een zendmodule overeenkomstig conclusie 14 te communiceren.A receiver module for a low power remote biosensing signal acquisition system according to any one of claims 1 to 13, wherein the receiver module comprises a communication link adapted for communication over a short range link adapted to communicate with a transmitter module according to claim 14.
NL2024016A 2019-10-14 2019-10-14 A low-power system, transmitter, receiver for signal acquisition and transmission. NL2024016B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2024016A NL2024016B1 (en) 2019-10-14 2019-10-14 A low-power system, transmitter, receiver for signal acquisition and transmission.
PCT/NL2020/050632 WO2021075961A1 (en) 2019-10-14 2020-10-14 A low-power system, transmitter, receiver for signal acquisition and transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2024016A NL2024016B1 (en) 2019-10-14 2019-10-14 A low-power system, transmitter, receiver for signal acquisition and transmission.

Publications (1)

Publication Number Publication Date
NL2024016B1 true NL2024016B1 (en) 2021-06-17

Family

ID=69375937

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024016A NL2024016B1 (en) 2019-10-14 2019-10-14 A low-power system, transmitter, receiver for signal acquisition and transmission.

Country Status (2)

Country Link
NL (1) NL2024016B1 (en)
WO (1) WO2021075961A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100106041A1 (en) * 2008-10-28 2010-04-29 Georgia Tech Research Corporation Systems and methods for multichannel wireless implantable neural recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100106041A1 (en) * 2008-10-28 2010-04-29 Georgia Tech Research Corporation Systems and methods for multichannel wireless implantable neural recording

Also Published As

Publication number Publication date
WO2021075961A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US6847257B2 (en) Efficient minimum pulse spread spectrum modulation for filterless class D amplifiers
US8023586B2 (en) Inductive power and data transmission system based on class D and amplitude shift keying
US7612608B2 (en) Sigma-delta based Class D audio or servo amplifier with load noise shaping
CN100559686C (en) Produce the method and apparatus and the application thereof of pulse width modulating signal
US20040232978A1 (en) Filterless class D amplifiers using spread spectrum PWM modulation
CN101425784B (en) Non-filter D type audio amplifier based on chaotic spread-spectrum modulation technique
CN104426506B (en) Across the analog signal transmission of isolation barrier
EP2621099B1 (en) Communication device
Kiani et al. A 20-Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission
US20080042745A1 (en) Sigma-delta based class d audio power amplifier with high power efficiency
CN108572276B (en) Wireless resonant power transmitter and method of peak-to-peak voltage detection therein
CN101350601A (en) Power amplifier and signal processing method thereof
NL2024016B1 (en) A low-power system, transmitter, receiver for signal acquisition and transmission.
EP1184973A1 (en) Power amplification equipment
JP2010098481A (en) Transmission device
US20090219064A1 (en) Pulse generator circuit and communication apparatus
US5097229A (en) Modulator - demodulator transformer coupled d.c. to one mhz information channel
CN103326585A (en) Sampling circuit for measuring reflected voltage of transformer for power converter operated in DCM and CCM
JP2008099362A (en) DeltaSigma MODULATION CIRCUIT AND SWITCHING POWER SUPPLY EQUIPPED WITH THE DeltaSigma MODULATION CIRCUIT
JPH0563457A (en) Delta/sigma modulation amplifier
JP2007174028A (en) Pulse generator, and impulse wireless transmitter using same
US7321608B2 (en) Process and device for generating pulses for the transmission of a pulsed signal of the ultra wideband type
KR102265642B1 (en) High output transmitter electrode driver and human body communication transmitter comprising the same
Gancedo et al. 11nW signal acquisition platform for remote biosensing
JPH0775291B2 (en) Class D amplifier

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20221101