NL2023404B1 - System and method for rearing invertebrates - Google Patents

System and method for rearing invertebrates Download PDF

Info

Publication number
NL2023404B1
NL2023404B1 NL2023404A NL2023404A NL2023404B1 NL 2023404 B1 NL2023404 B1 NL 2023404B1 NL 2023404 A NL2023404 A NL 2023404A NL 2023404 A NL2023404 A NL 2023404A NL 2023404 B1 NL2023404 B1 NL 2023404B1
Authority
NL
Netherlands
Prior art keywords
crates
air
crate
stack
row
Prior art date
Application number
NL2023404A
Other languages
Dutch (nl)
Inventor
De Gelder Vincent
Petrus Maria Jansen Maurits
Holland Schmitt Eric
Wilhelmus Petrus Aarts Kees
Bazelmans Stefan
Original Assignee
Protix Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protix Bv filed Critical Protix Bv
Priority to CA3142689A priority Critical patent/CA3142689A1/en
Priority to US17/615,594 priority patent/US11882817B2/en
Priority to SG11202113175VA priority patent/SG11202113175VA/en
Priority to DK20732333.8T priority patent/DK3979794T3/en
Priority to PL20732333.8T priority patent/PL3979794T3/en
Priority to AU2020287588A priority patent/AU2020287588A1/en
Priority to CN202080055584.6A priority patent/CN114340387A/en
Priority to KR1020227000371A priority patent/KR20220045139A/en
Priority to JP2021571986A priority patent/JP2022535428A/en
Priority to PCT/NL2020/050355 priority patent/WO2020246878A1/en
Priority to EP20732333.8A priority patent/EP3979794B1/en
Application granted granted Critical
Publication of NL2023404B1 publication Critical patent/NL2023404B1/en

Links

Landscapes

  • Catching Or Destruction (AREA)

Abstract

Systems and methods are provided for rearing invertebrates by utilizing a plurality of crates arranged into at least one stack, each crate in the stack defining an airflow path there through from an in|et opening in a first wall to an outlet opening in a second wall opposite the first wall of each crate. The plurality of crates are arranged in a climate controlled chamber.

Description

SYSTEM AND METHOD FOR REARING INVERTEBRATES Technical Field The invention relates to a method and system for rearing invertebrates, more specifically insects, in a climate controlled environment. The present invention also relates to a crate for use in the method and system. Background to the invention Insects and their larvae can be used as an animal protein feeds, and for this purpose it may be desirable to farm insects on a large scale. Systems for producing and/or breeding insects on a large scale are known in the art. For example, United States Patent 5,158,497 discloses an illuminated dome for the controlled mixing of flying insects. International Patent Publication No. WO 2014/171829 describes a method and system for breeding insects in a climate controlled environment. The system and method comprises a plurality of stacked crates configured to contain insects and/or larvae, and a system for controlling airflow through the crates.
Problems associated with known systems may include inadequate or inconsistent climate control, insect containment issues, limited capacity for observation, and disruptive insect or larvae ‘crawl out’ (where larvae and/or insects escape from a designated area).
Summary of the invention The present invention seeks to solve one or more of the above problems by providing an improved system, method, and crate for insect rearing.
Accordingly, in a first aspect of the invention, there is provided a system for rearing invertebrates, the system comprises a plurality of crates arranged into at least one stack, each crate in the stack defining an airflow path there through from an inlet opening in a first wall to an outlet opening in a second wall opposite the first wall; a climate chamber comprising: an internal volume enclosed by walls, a floor, and a ceiling; a first row of air outlets extending in a first direction within the internal volume; a second row of air outlets extending parallel to the first row of air outlets within the internal volume; a row of airinlets located between the first and second rows of air outlets, and extending parallel thereto, and spaced apart from the first and second rows of air outlets in a second direction, perpendicular to the first direction; at least one first stack of crates arranged in a space between the first row of air outlets and the row of air inlets;
at least one second stack of crates arranged in a space between the second row of air outlets and the row of air inlets; a conduit extending from each of the plurality of air inlets between the first and second stack of crates, said conduit comprising a plurality of conduit openings configured to align with inlet openings of the plurality of crates in each stack; wherein the crates are arranged with the airflow path oriented perpendicular to the first direction.
The system of the present invention allows for a tightly controlled, automated environment for growing insects, e.g. such as living insect larvae, e.g. black soldier fly (BSF) larvae. In particular, the system provides accurate control of environmental conditions in each crate, thereby ensuring an even, consistent, and predictable growth of insects within each crate and thus consistent and predictable growth of insects in each stack of crates.
In a second aspect of the invention, there is provided a method for rearing invertebrates, the method comprising the steps of: (i) providing a plurality of crates, each crate having a first opening in a first wall and a second opening in a second wall opposite the first opening to define a first air flow path between the first and second openings; (ii) filling at least a portion of each crate of the plurality of crates with a substrate and a plurality of invertebrates at a first developmental stage; (iii) stacking the plurality of crates; (iii) providing a climate chamber comprising: an internal volume; a climate chamber comprising: an internal volume enclosed by walls, a floor, and a ceiling; a first row of air outlets extending in a first direction within the internal volume; a second row of air outlets extending parallel to the first row of air outlets within the internal volume; a row of air inlets located between the first and second rows of air outlets, and extending parallel thereto, and spaced apart from the first and second rows of air outlets in a second direction, perpendicular to the first direction; at least one first stack of crates arranged in a space between the first row of air outlets and the row of air inlets; at least one second stack of crates arranged in a space between the second row of air outlets and the row of air inlets; a conduit extending from each of the plurality of air inlets between the first and second stack of crates, said conduit comprising a plurality of conduit openings configured to align with inlet openings of the plurality of crates in each stack; (iv) positioning at least one stack of crates wherein the crates are arranged with the airflow path oriented perpendicular to the first direction; 40 (v) applying a pressure differential between the air inlet and the air outlet.
The method of the present invention provides the same advantages as the aforementioned system, i.e. allowing for tight control and automation of growing insects, e.g. such as living insect larvae, for example BSF larvae, such as BSF larvae 0 — 5 days of age or BSF larvae 4 — 20 days of age, e.g. 5 — 16 days of age. The method provides accurate control of environmental conditions in each crate, thereby ensuring even, consistent and predictable growth of insects within each crate and thus consistent and predictable growth of insects in each stack of crates.
So given the system and method of the present invention, problems often encountered in the prior art may be dealt with and resolved in that adequate and consistent climate control is provided, containment issues are eliminated or significantly reduced, sufficient or improved capacity for observation is achieved, and insect/larvae ‘crawl out’ is prevented or mitigated.
In a third aspect of the invention, there is provided an invertebrate rearing crate configured for use in the aforementioned system and/or in the aforementioned method, wherein the crate comprises a base, upstanding side walls and upstanding end walls defining a perimeter around the base, and at least one sensor mounting region in the base of the crate.
The invertebrate rearing crate of the present invention allows for more accurate monitoring of environmental conditions in a crate and as such the crate is ideally suited for use in the system and/or method above for achieving adequate and consistent climate control. Moreover, the crate is ideally suited for use in the system and/or the method above for prevention of insect/larvae ‘crawl out’ and for prevention of contamination of the system by larvae crawled out of the crate.
Brief description of the Figures The present invention will now be described with reference to a number of non-limiting, illustrative examples, as shown in the following drawings, in which: Figure 1 shows a climate chamber in accordance with an embodiment of the invention, the climate chamber containing a plurality of crates; Figure 2 shows a perspective view of a stack of crates from Figure 1; Figure 3A shows a perspective view of an individual crate; Figure 3B shows a side view of the crate from Figure 3A; and Figure 4 shows a climate chamber according to an embodiment of the invention.
Detailed description of the drawings An exemplary system 1 according to the invention is shown in Figure 1, which shows a front view of a climate chamber 2 configured to contain a plurality of crates 4. The crates 4 are arranged in stacks 6. In the illustrated embodiment, each stack of crates rests on a pallet 8. Each pallet 8 receives four stacks of crates 4, in a 2 x 2 arrangement. However, it will be appreciated that a pallet 8 can comprise more than four stacks of crates or fewer than four stacks of crates.
Each pallet 8 rests on a track 10 that comprises a pair of upstanding walls 12 separated from each other by a channel 14. The upstanding walls 12 are configured to support the pallets 8 above the channel 14. The track 10 is configured to receive multiple pallets 8, e.g. by arranging the pallets 8 40 arranged in rows.
Each track 10 is separated from an adjacent track 10 by a gutter 16. Each gutter 16 is separated from an adjacent channel 14 by an upstanding wall 12 that forms one of a pair of upstanding walls 12. In this manner, a series of parallel tracks 10 can be formed, each separated from each other by the gutter 16, with a channel 14 formed under each row of pallets 8.
It will be appreciated that the system 1 can be configured such that the pallets 8 are omitted, and the stacks of crates 4 rest directly on the tracks 10, e.g. on the upstanding walls 12. However, in such an embodiment the dimension of the crates should be sufficient to span the width of the channel, to rest on the upstanding walls 12 that form the track 10. Alternatively, the crates 4 can be secured to each other along adjacent edges to span the channel 10 and support the stack of crates above.
As shown in Figure 1, the climate chamber 2 comprises a generally closed volume. Access to the chamber 2 is possible through openings, for example, windows, doors, access shafts. However, the chamber 2 is preferably a substantially closed volume when all access points (e.g. doors, windows, hatches) are closed. The chamber 2 can be an internal space in a fixed building, or it can be an internal volume of a portable structure, for example, a shipping container, a reefer, a truck trailer, a freight plane.
Each chamber 2 can comprise a plurality of multiple rows of stacked crates 4. The climate chamber 2 is configured with a ventilation or climate control system configured to manage the climate conditions within the crates 4. To ensure that the larvae and/or insects stored within the crates develop at the same or similar rates, the climate conditions within the crates 4 (e.g. temperature, humidity) are closely controlled.
The climate control system 1 preferably comprises at least one air inlet 18 configured to introduce climate controlled air to the chamber 2, and at least one air outlet 20 configured to extract air from the chamber 2.
The air inlet(s) 18 are preferably provided on a first side of the crates and the air outlet(s) 20 are preferably provided on a second side of the crates 4. By providing (an) air inlet(s) 18 on a first side of a stack of crates 4, and an air outlet 20 on an opposing side of the stack of crates 4, a flow of climate controlled air through or across the crates 4 can be achieved.
Moreover, and as described in more detail below, in a stack comprising a plurality of crates 4 stacked on top of one another, the openings in the side walls of the crates create a plurality of air flow passage ways extending through the stack and equally spaced intervals.
In the embodiment shown in Figure 1, a plurality of air inlets 18 and air outlets 20 are provided through a ceiling 22 of the chamber 2. The chamber 2 is sub-divided into a plurality of sub-chambers 2a, 2b, each comprising two tracks 6. The sub-division of the chambers 2a, 2b can be achieved by providing dividers 24, such as walls, separators, or curtains and the like between tracks 10, e.g. between every two tracks. Preferably, the dividers 24 are spaced from the tracks 10 by a gutter 16. Accordingly, each chamber 2a, 2b comprises a first wall 26, a first gutter 28, a first track 30, a second gutter 32, a second track 34, a third gutter 36, and a second wall 24, e.g. the dividers 24.
As shown in Figure 1, the crates 4 are arranged such that the air inlets 18 are provided above the second gutter 32, between the first and second tracks 30, 34. In other words, the air inlets open into the space between the first wall and the track. The air outlets 18 are e.g. provided above the first and 40 third gutters 28, 36 between the stacks of crates 4 and the dividers 24. Accordingly, the air outlets open into the space between the track and the second wall. By arranging the air inlets 18 and air outlets 20 in this manner, climate controlled air can be introduced between the rows of stacked crates 4 and subsequently drawn through each stack of crates 4 towards the air outlets 20, which are positioned on opposing sides of the stacks of crates 4. The air flow through the crates will be described in more detail 5 with reference to Figure 2.
As shown in Figure 1 and 2, climate controlled air can be delivered from the air inlets 18 to the crates 4 via a conduit 38 extending from the air inlets 18 towards the gutter 16. The conduit 38 preferably comprises a series of openings 40, aligned with openings of the crates (described in more detail below). The conduit 38 may comprise a rigid conduit or a flexible conduit such as a hose or an air sock.
To ensure a steady flow of air through the crates, from an air inlet side to an air outlet side thereof, a pressure differential is preferably created between air inlet side of the crates and the air outlet side, with a lower pressure at the outlet side. In an exemplary embodiment, the airinlet side of the crates 4 is located proximal to the conduit 38. The pressure differential can be created by applying a pressure differential between air inlets 18 and the air outlets 20.
The climate chamber shown in Figure 1 preferably further comprises a control system, configured to measure the conditions within each chamber 2 or each sub-chamber 2a, 2b and control the pressure differential between the air inlet(s) 18 and the air outlet(s) 20 accordingly. The chamber 2 and/or each sub-chamber 2a, 2b can also comprise sensors configured to detect the temperature and humidity within the crates and/or the chamber or sub-chamber and control the temperature and/or humidity of the air delivered through the air inlets accordingly.
Further details of the system will now be described with reference to Figure 2, which shows a three dimensional view of a stack of crates 4, e.g. in a 2 x 2 arrangement.
As shown in Figure 2 and 3A, each pallet 8 supports four stacks of crates 4, in a 2x2 arrangement. Each crate 4 comprises a base 42 and four upstanding walls: two opposing side walls 44, and two opposing end walls 46.
One pair of opposing end walls 46 comprises openings or cut-outs 48. The path between the opposing openings or cut-outs 48 defines an air flow path over or through the crate 4.
The crates 4 are arranged with respect in the 2 x 2 arrangement in the same orientation such that two airflow paths spanning two crates 4 are created. For example, a first 4a and a second 4b crate are arranged with their respective openings/cut-outs 48 aligned to define a first flow path, whilst third 4c and fourth 4d crates are arranged with their respective openings 48 aligned to define a second flow path. The first and second crates 4a, 4b are placed adjacent to the third and fourth crates 4c, 4d such that two parallel flow paths are created.
The crates are arranged such that the flow paths extend perpendicular to the tracks 10. As shown in Figure 1 and 2, this allows the crates 4 to be oriented with aligned openings 48 providing a flow path between an inlet side of the stack 6, i.e. where the air inlets 18 are located, and an outlet side of the stack 6, i.e. where the air outlets 20 are located. It will be appreciated that although the arrangement shown in Figure 1 shows air inlet(s) 18 disposed between two tracks 10, and outlets 20 disposed on either side of the arrangement of two tracks 10, the skilled person will appreciate that the reverse arrangement is possible (with the air outlets 20 disposed above the second gutter 32 shown in Figure 1 and the air inlets 18 disposed above the first gutter 28 and third gutter 36.
However, the arrangement shown in Figure 1 is preferred in the illustrated example because the pressure differential from pressure to low pressure is inverse to the volume between the crates, e.g. the volume between the crates 4 shown in Figure 1 is smaller than the volume on either side of the crates 4 and thus the pressure differential may be easier to control, and require less energy to maintain.
As shown in Figure 2 and 3A, the crates 4 are configured to stack such that the openings 48 at opposing end walls 46 are aligned. In the embodiment illustrated in Figure 3A, the crates 4 have an elongate cross-section, the opposing side walls 44 having a length L, and opposing end walls 46 having a length W, wherein W is less than L. The openings 48 are formed in the opposing end walls 46 of the crate 4, where the crates are arranged end to end to form the flow path mentioned earlier.
The opposing side walls 44 of the crate 4 not comprising the openings 48 are preferably configured such that they mate/cooperate with a crate above to provide a combined opposing side wall to the stack of crates 4 without openings. Such a configuration ensures that the flow of air through or over the crates 4 is restricted to the flow path defined between the openings/cut-outs 48.
To further restrict air flow solely through the crates 4, the upstanding walls 12 of the track 10 on which the pallets 8 and/or crates 4 rest preferably comprise solid walls 12. Although an air tight seal between the pallets 8 and the upstanding wall 12 is not required, by providing solid walls, substantially free of openings, the volume of a flow path beneath the crates 4 between the air inlet side and the air outlet side that does not contribute to climate control within the crates 4 can be reduced or even eliminated.
As shown in Figure 2, the upstanding walls 12 on which the stacks of crates 4 rest result in a channel 14 that extends under the crates 4. The channel 14 under the crates 4 may advantageously allow access to the volume beneath the crates 4 for various reasons. For example, an automated or remote controlled robotic device (not shown) can travel through the channel 14 beneath the crates 4. The robotic device can be configured to monitor conditions along the length of the channel 14. Alternatively, the robotic device can be configured to retrieve stacks of crates 4. It will be appreciated that the channel 14 also allows a manned lifting device to be manoeuvred along the channels 14.
The tracks 14 can further comprise a ledge 14a on an internal surface of the upstanding wall 12, i.e. internal with respect to the channel 14, which provides runners along which the robot device or manned lifting device can run. Such runners can allow a robotic device to run along the channel 14 above the floor F of the chamber 2, or they can confine a robot to a predetermined path.
The solid upstanding walls 12 that form the tracks 10 can provide a further advantage that they prevent escaped larvae or insects from entering the channel 14 under the crate stacks 6. Since the crates 4 are oriented with the airflow path perpendicular to the channels 14, insects and/or larvae escaping from the crates 4 through the openings 48 fall into the gutters 18, and not into the channels 14 between the upstanding walls 12. Since the gutters 16 are separated from the channels 14 by solid walls, escaped insects and/or larvae are confined to the gutters 15, from which they can easily be cleaned.
The upstanding walls 12 may, in some embodiments, form a water tight seal between the channel 14 and the gutters 16. This can allow the gutters 16 to be washed without washing liquid running between the gutter 16 and the channels 14 under the upstanding walls 12 of the tracks 12. This can further help to keep the channels 14 beneath the crates 4 free of detritus.
It will be appreciated that the channels 14 and the gutters 16 can be open at their respective ends, or that they can be formed with closed ends. In many embodiments, open ended channels 14 and/or gutters 16 are preferred since they facilitate access from the floor F of the climate chamber 2, e.g. for sweeping/cleaning or for robot and/or lifting device access.
In at least one exemplary embodiment, the climate chamber 2 may further comprise one or more rails 52 running perpendicular to the channels 14, and configured to allow a robotic device to move between channels 14. For example, the climate chamber 2 can further comprise a rail or pair of rails 52 extending perpendicular to the channels 14 having an open end. The rails can be configured to convey a robotic device in a perpendicular direction, in front of the open end of the channels 14. The robotic device can comprise a frame or carrier configured to travel along the rail(s), and a unit configured to travel along the runners in the channel 14 formed by the ledges 14a.
In an advantageous embodiment it is conceivable that the system 1 of the present invention comprises a robotic device which is configured to move freely and place one or more crates 4 into the stacks of crates 4, or take one or more crates 4 from stacks of crates 4. This robotic device may be seen as a freely moveably warehouse-like robot that moves a crate/crates around, e.g. horizontally and/or vertically, in the chamber 2 and along any desirable (programmable) route. In an exemplary embodiment, such a robotic device may move on steerable wheels for maximum degrees of freedom.
As shown in Figure 2, a plurality of conduits 38 may be configured to deliver climate controlled air from the air inlet 18 directly to the openings 48 in the crates 4, the 2 x 2 arrangements thereof. Each conduits 38 can comprise a sock comprising a flexible wall, e.g. a polymer wall, having a plurality of openings 40. A conduit 38 preferably extends from the air inlet 18 provided in the ceiling of the climate chamber 2 towards the floor/bottom of the gutter 16. The conduits 38 are arranged such that they are preferably provided adjacent each stack of openings 48 of the stack of crates 4. Advantageously, the openings 48 in the conduit 38 are preferably spaced to align with individual openings 48 of the crates 4. In this manner, climate controlled air can be supplied from the conduits 38 to the openings 48 of the crates 4.
As shown in Figure 1, each stack of crates 4 is preferably configured such that an upper edge of a top crate is positioned adjacent to the ceiling 22 of the climate chamber 2. The upper edge of the top crate is preferably positioned within 50 mm of the ceiling 22 of the climate chamber 2, more preferably within 30 mm of the ceiling 22, and more preferably within 20 mm of the ceiling of the climate chamber 2. This can allow a dead volume within the climate chamber 2 to be reduced, thus further improving the climate control within the chamber 2. Moreover, by minimising the space between the ceiling 22 and the top of each stack of crates, the space through which air can flow past the crates (without passing through the crates) is minimised. This may improve the efficiency of the system since it can help to maintain the pressure and/or temperature difference on either side of the stacks of crates 40 4.
The crate 4 of the present invention will now be described in more detail with reference to Figure 3A-3B. Figure 3A shows a perspective view of a single crate 4 according to an exemplary embodiment of the invention. As shown in Figure 3A, the crate 4 comprises a base 42 providing a closed bottom to the crate 4. Upstanding walls 44, 46 extend from edges of the base 42 to provide the opposing side walls 44 and end walls 46 of the crate 4. The top of the crate 4 is open, although the skilled person will appreciate that the top of the crate 4 can also be provided with a lid for closing/covering the top. In an exemplary embodiment, the crate 4 has a generally rectangular cross-section.
The openings 48 are formed in the opposing end walls 46, wherein the openings 48 may be formed as through holes, i.e. surrounded on all sides by the material of the end wall 46. Alternatively, and as shown in Figure 3A, the openings 48 may be formed as recesses or cut-outs in an upper edge of the end walls 46 extending towards the base 42 of the crate 4.
The openings 48 preferably extend across at least 50% of the width of the end wall 46, more preferably at least 80% of the width of the end wall 46. Further, the openings 48 preferably comprise between 25 mm and 100 mm of the height of the crate 4, more preferably between 50 mm and 100 mm.
The base 42 of the crate is preferably smooth or substantially smooth, without ridges or recesses. By smooth it is meant that the base does not comprise planar surfaces that meet at a vertex having an angle of less than 130 degrees, more preferably 150 degrees, and more preferably 160 or 170 degrees. Preferably angled vertices are eliminated in the base 42 (except where the base 42 joins the walls 44, 46); and, in an embodiment in which the base 42 does not extend in a single plane, any transition between surfaces extending in different planes is curved. Such an arrangement may facilitate cleaning and hygiene of the crates.
The base 42 may further comprise one or more mounting points 50 for sensors 52 configured to measure various conditions, such as temperature, humidity, oxygen concentration, dry matter content etc. within the crates 4. In the example shown in Figure 2 and 3A, eight sensor mounting points 50 for each crate 4 are shown, however the skilled person will appreciate that fewer than eight sensor mounting points 50 can be provided.
Embodiments with more than eight sensor mounts 50 are also possible. The mounting points 50 for sensors 52 can comprise openings in the lower surface of the base 42 into which sensors 52 can be placed. In an advantageous embodiment, the sensors 52 may be configured to measure the conditions in the crate 4 below and/or in the crate 4 in which they are mounted.
In at least one embodiment, the sensor mounts 50 comprise a cavity extending into the interior volume of the crate 4 from the base 42. By providing a cavity that extends into the interior volume of the crate 4 in which a sensor 52 can be mounted, the sensor 52 can more accurately measure the conditions within the biomass contained in the crate. Multiple sensors 52 can be arranged within the base 42 of the crate 4, equally spaced and arranged across the base 42 such that conditions throughout the biomass distributed in the crate 4 can be measured.
The openings in base 42 can be in direct communication with the interior volume of the crates 4, or a cover layer can be disposed between the sensors and the interior volume of the crates 4. The sensor(s) 52 can be in wired or wireless communication with control system described above with 40 reference to Figure 1. Conditions detected by the sensors 52 can be used to adjust the flow rate of the air through the crates 4, the temperatures, and/or humidity of the air supplied through the air inlets 18, etc. Crates 4 according to the invention can be configured with integrated sensors or removable sensors
52. Alternatively, the control system can be configured to operate according to set values, independent of the input of the sensors 52. Instead, the sensors 52 can be used to monitor conditions within the climate chamber 2 without providing a direct feedback loop to the control unit.
As further depicted in Figure 3A and 3B, each crate 4 may comprise a generally planar or flat upper edge 54. Each of the opposing side walls 44 may further comprise at least one (and preferably two) upstanding projections 56 extending from the upper edge 54 of the side walls 44.
A lower edge 58 of the side walls 44 preferably comprise a recess 60 configured to receive an upstanding projection 56 formed on an upper edge 54 of the crate 4 below when the crates 4 are stacked in alignment. This arrangement ensures alignment of the crates 4, and thus alignment of the crate openings 48 with each other, and with the openings 40 in the conduits 38.
Referring to Figure 3B, a crate 4 may further comprise a receiving portion 62 for an identification tag, for example a radio frequency identification (RFID) tag. The RFID tag can be removably mounted in the receiving portion 62. The receiving portion 62 can take any form capable of receiving and retaining an identification tag. The tag can be slid, push fit, or magnetically retained in the receiving portion 62.
The projections 56 are preferably arranged on the opposing side walls 44 of the crate 4 such that the crate 4 has at least two-fold rotational symmetry about a vertical axis (with reference to projections 56). In other words, at least two projections 56 can be located on the crate 4 such that crates stack together as long as the side walls 44 are aligned with each other.
Similarly, the receiving portions 62 are preferably arranged on the side walls 44 of the crate 4 such that the crate has at least two fold-rotational symmetry about a vertical axis (with respect to receiving portions 62). In other words, at least two receiving portions 62 are provided, one on each side wall 44, i.e. lower edge 58, the receiving portions 60 being positioned such that they are in the relative position on the crate 4 as long as the side walls 44 are aligned. In the example shown in Figure 3B, a receiving portions 62 is provided on the right hand side of the side wall 44, from the perspective of an observer facing the side wall 44 as depicted. On the opposing side wall 44, the receiving portion 62 is also provided on the right hand side of the side wall 44, from the perspective of an observer facing the opposing side wall 44. This can ensure that an identification tag is always visible in a stack of crates 4, and in a consistent location in a stack of crates 4.
The crate 4 can comprise a dual layer construction, having a structural exterior layer, which provides rigidity and structural stability, and an interior skin or layer, configured to provide a smooth interior surface. The smooth interior surface may also reduce the risk of larvae and/or insects escaping from the crate 4 or becoming lodged in crevices and recesses within the crate 4.
The dimensions of the crate 4 can be chosen according to the requirements of the climate chamber, the configuration of the tracks, and the developmental stage of the larvae and/or insects to be reared. For example, crates configured for the rearing of neonate black soldier fly larvae, typically 0-5 days of age or 0-4 days of age can have: 400 mm length, 300 mm width, and 100 mm height. The skilled 40 person will appreciate that other dimensions are also possible. For example, crates configured for the rearing of black soldier fly larvae, typically 3-25 days of age or 5-16 days of age can have: 800 mm length, 550 mm width, and 180 mm height.
Referring now to Figure 4, and exemplary embodiment of a climate chamber 2 without crates 4 is shown.
As shown in Figure 4, the chamber 2 comprises a plurality of elongate sub-chambers, 2a, 2b each comprising parallel sets of tracks 10. The plurality of elongate sub-chambers 2a, 2b are provided adjacent to each other. Each track 10 extends from a closed end 64, to an open end 66. A rail 52 may be arranged adjacent the open ends 66. The rails 52 may be configured to carry an electronic device between tracks.
The air inlets 18 and air outlets 20 are provided in the ceiling of each sub-chamber 2a, 2b, i.e. ceilings 22a, 22b. As shown in Figure 4, the air inlets 18 are supplied with climate controlled air via a duct 68 along which the plurality of air inlets 18 are arranged. The duct 68 is supplied by a master inlet 70 in fluid communication with the duct 68.
The duct 68 has a length P and extends along the length of the tracks 10. One duct 68 is provided per pair of tracks 10. The master inlet 70 may be provided approximately half way along the length of the duct 68. The duct 68 has a height that is greatest at the junction with the master inlet 70, and decreases as the duct extends away from the master inlet 70 towards its opposing ends. Such a tapering height of the duct 68 reduces the volume of the duct 68 as the duct 68 extends away from the master inlet 70. This reduction in volume can reduce the pressure drop along the length of the duct 68, thereby improving the consistency with which airflow is distributed across the plurality of air inlets 18 arranged along the length of the duct 68.
It will be appreciated that a similar system can be employed with multiple ducts 68 provided along the length of the track 10. Each duct 68 may be provided with its own master inlet 70, and can comprise a maximum height at the junction with the master inlet 70, with the height reducing as the duct 68 extends away from the inlet towards closed ends. It will be appreciated that a similar volume reduction can be achieved by varying other dimensions of the duct 68 as it extends away from the master inlet. Such configurations also fall within the scope of the present invention.
The plurality of air outlets 20 is also shown in Figure 4, wherein the air outlets 20 are arranged in the ceiling 22a, 22b of each sub-chamber 2a, 2b at either side of the pairs of tracks 10 (see also Figure 1). The air outlets 20 are in communication with a void 72, which is in turn in communication with a master outlet 74.
It will be appreciated that flow of air through the crates 4 may be controlled in different manners. For example, the only controlled parameter may be the flow of air through the crates 4. This can be controlled by generating a pressure difference between the air inlets 18 and the air outlets 20. Such a pressure differential can be applied by applying a positive pressure (e.g. above atmospheric pressure) to the air inlet(s) 18 and/or a negative pressure (e.g. below atmospheric pressure) to the air outlet(s) 20.
Alternatively, one of the inlets 18 or the outlets 20 may be in fluid communication with a region of atmospheric pressure, whilst the other of the inlets 18 or the outlets 20 are controlled (either above or below atmospheric pressure) to provide the required pressure differential.
The climate can be further controlled by controlling the temperature and/or humidity of the air entering the climate chamber 2, e.g. sub chambers 2a, 2b, through the air inlets 18. The air flow through the crates 4 and/or the temperature and/or humidity can be maintained at constant levels, or they can be varied cyclically, independently, or individually. The precise parameters desired for each climate chamber or sub-chamber depend on the insect species, developmental stage of the insects, and current production rate requirements, and can be chosen by the skilled person accordingly. Typically, the insect species reared in the crates stacked in the chamber 2, 2a, 2b is the BSF, and typically, the developmental stage of said BSF is the neonate larvae stage for example between 0 and 5 days post hatching or between 0 and 4 days post hatching, or is the larvae stage for example between 4 and 20 days post hatching.
The airflow (and/or the temperature and/or humidity of delivered air) can be further controlled based on environmental conditions measured by the sensors 52. The control unit can be configured to adjust the supplied air in real time, or at predetermined intervals based on conditions detected by the sensors 52. The controller can be configured to maintain the conditions within all sub-chambers 2a, 2b within a predetermined range, according to a set level. Alternatively, the control unit can be configured to control the air supply to the sub-chambers 2a, 2b without sensor information. Instead, the sensors 52 can be used to issue an alert if the conditions deviate from a predefined set level.
Conditions within the sub-chambers 2a, 2b can be controlled individually. This arrangement can improve the consistency with which the larvae and/or insects are reared through each developmental stage. In many cases, it is preferably for large numbers of insects and/or larvae to develop at the same rate. According, the conditions in each sub-chamber 2a, 2b can be measured independently, and the airflow and climate control adjusted accordingly to harmonise, as far as possible, the rate of development of larvae and/or insects in each sub-chamber 2a, 2b.
A chamber 2 may house multiple sub-chambers 2a, 2b, each optimised for a different developmental stage or different species. In such embodiments, the crates 4 used in each such chamber 2a, 2b may comprise a different colour, indexed to indicate the developmental stage and/or species of larvae and/or insects. The colour coding of crates 4 can allow automatic detection of species and/or development stage, e.g. by a robotic device comprising an optical sensor, which can provide feedback to the climate control system and/or stock management information.
The present invention also provides a method of rearing invertebrates, the method including the steps of: providing a plurality of crates 4; filling at least a portion of each crate 4 with a substrate and a plurality of invertebrates in a first developmental stage, and arranging said crates in a climate chamber 2 as described above to form a plurality of parallel air flow paths through the crates 4.
The method further comprises passing a flow of air, preferably having controlled temperature and humidity, through said air flow paths formed by said crates 4, by providing a plurality of air inlets 18 on a first side of said stack of crates 4, and an air outlet 20 on an opposing side of said stack of crates
4.
Optionally, the method further comprises measuring, with at least one sensor 52 disposed within the stack of crates 4, an environmental condition within the stack 6. Advantageously, the airflow through 40 the stack 6 can be modified based on the conditions detected by the sensor(s) 52.
The method further comprises the step providing a channel 14 extending in a first direction below a plurality of crate stacks 6, and arranging said stacks 6 with said airflow path perpendicular to the first direction. Further optional and advantageous steps of a method according to the invention will be apparent from the above description of the exemplary system.
Like the system as described above, the method of the present invention may further comprise the step of operating a robotic device to freely move and place one or more crates 4 into stacks of crates 4 or take one or more crates 4 from the stacks of crates 4. Such a robotic device is operated like a freely movable warehouse robot which is able to move and manipulate one or more crates 4 along any desirable (programmable) route within the climate chamber 2. In an embodiment, the robotic device may have steerable wheels for achieving maximum degrees of freedom.
It will be understood that the disclosed embodiments described above are exemplary configurations of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting. Rather, the examples described herein are intended to illustrate exemplary ways in which the invention may be put into effect.
The skilled person will understand that modifications can be made without departing from the scope of invention, which is defined by the appended claims.
Moreover, terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the invention.
The terms ‘a’ and ‘an’, as used in the present disclosure, are intended to mean one, or more than one. The term ‘plurality’, as used herein, is defined as two, or more than two.
The terms comprising, including and/or having, as used herein, are intended to mean ‘including but not limited to’, and a system, device or method comprising certain features and/or steps may include additional features and/or steps. Any reference signs in the claims should not be construed as limiting the scope of the claims or the invention.
The embodiments of the invention described herein can operate in combination and cooperation, unless specified otherwise.

Claims (1)

CONCLUSIES (gewijzigd — 3 november 2020 — schone kopie)CONCLUSIONS (modified - November 3, 2020 - clean copy) 1. Een systeem voor het kweken van ongewervelden, het systeem omvattende: meerdere kratten opgesteld als ten minste één stapel, waarbij elke krat in de stapel een pad van een luchtstroom door de stapel definieert vanaf een ingangsopening in een eerste wand naar een uitlaatopening in een tweede wand tegenover de eerste wand; een klimaatkamer omvattende: een inwendig volume omsloten door wanden, een vloer, en een plafond; een eerste rij luchtuitlaten die zich uitstrekken in een eerste richting binnen het inwendige volume; een tweede rij luchtuitlaten die zich parallel aan de eerste rij luchtuitlaten binnen het inwendige volume uitstrekken; een rij luchtinlaten gelegen tussen de eerste en tweede rijen luchtuitlaten, en zich parallel aan de eerste en tweede rijen luchtuitlaten uitstrekt, en op afstand geplaatst van de eerste en tweede rijen luchtuitlaten in een tweede richting, loodrecht op de eerste richting; ten minste één eerste stapel kratten geplaatst in een ruimte tussen de eerste rij luchtuitlaten en de rij luchtinlaten; ten minste één tweede stapel kratten geplaatst in een ruimte tussen de tweede rij luchtuitlaten en de rij luchtinlaten; een leiding die zich uitstrekt vanaf elk van de meerdere luchtinlaten tussen de eerste en tweede stapel kratten, waarbij de leiding meerdere leidingopeningen omvat die zijn geconfigureerd om uitgelijnd te zijn met inlaatopeningen van de meerdere kratten in elke stapel; waarbij de kratten zijn geplaatst met het pad van de luchtstroom loodrecht op de eerste richting georiënteerd, waarbij de klimaatkamer is verdeeld in meerdere deelkamers, waarbij elke deelkamer een eerste zijwand en een tweede zijwand en een eerste en een tweede baan heeft, waarbij de eerste baan van de eerste wand is gescheiden door een eerste goot, waarbij de eerste baan van de tweede baan is gescheiden door een tweede goot, en waarbij de tweede baan van de tweede wand is gescheiden door een derde goot.A system for breeding invertebrates, the system comprising: a plurality of crates arranged as at least one stack, each crate in the stack defining a path of air flow through the stack from an entrance opening in a first wall to an exit opening in a stack. second wall opposite the first wall; a climate chamber comprising: an interior volume enclosed by walls, a floor, and a ceiling; a first row of air outlets extending in a first direction within the interior volume; a second row of air outlets extending parallel to the first row of air outlets within the interior volume; a row of air inlets located between the first and second rows of air outlets, and extending parallel to the first and second rows of air outlets, and spaced from the first and second rows of air outlets in a second direction, perpendicular to the first direction; at least one first stack of crates located in a space between the first row of air outlets and the row of air inlets; at least one second stack of crates located in a space between the second row of air outlets and the row of air inlets; a conduit extending from each of the plurality of air inlets between the first and second stack of crates, the conduit including a plurality of conduit openings configured to align with inlet openings of the plurality of crates in each stack; wherein the crates are placed with the path of the air flow oriented perpendicular to the first direction, the climatic chamber being divided into a plurality of sub-chambers, each sub-chamber having a first side wall and a second side wall and a first and a second path, the first path is separated from the first wall by a first trough, the first track being separated from the second track by a second trough, and the second track being separated from the second wall by a third trough. 2. Systeem volgens conclusie 1, waarbij de klimaatkamer verder ten minste één baan omvat die zich uitstrekt in de eerste richting met de klimaatkamer, waarbij genoemde baan een eerste wand en een tweede wand omvat, en een kanaal die daar tussen gedefinieerd is.The system of claim 1, wherein the climate chamber further comprises at least one path extending in the first direction with the climate chamber, said path comprising a first wall and a second wall, and a channel defined therebetween. 3. Systeem volgens conclusie 2, waarbij de baan zich tussen de eerste rij luchtuitlaten en de rij luchtinlaten bevindt, en waarbij het systeem bij voorkeur een tweede baan omvat die zich tussen de rij luchtinlaten en de tweede rij van luchtuitlaten bevindt.The system of claim 2, wherein the path is located between the first row of air outlets and the row of air inlets, and wherein the system preferably includes a second path located between the row of air inlets and the second row of air outlets. 4. Systeem volgens conclusie 2 of 3, waarbij de ten minste één baan een paar wanden omvat die van elkaar gescheiden zijn door een kanaal, waarbij het kanaal zich uitstrekt in een tweede richting, die loodrecht staat op de eerste richting; en eventueel, waarbij de ten minste één stapel kratten zodanig op de banen is aangebracht dat het pad van de luchtstroom zich in de eerste richting uitstrekt.The system of claim 2 or 3, wherein the at least one path comprises a pair of walls separated from each other by a channel, the channel extending in a second direction, which is perpendicular to the first direction; and optionally, wherein the at least one stack of crates is disposed on the webs such that the path of the air flow extends in the first direction. 5. Systeem volgens conclusie 2, 3 of 4, waarbij elke baan geconfigureerd is om een rij kratstapels boven het kanaal te ondersteunen.The system of claim 2, 3 or 4, wherein each track is configured to support a row of crate stacks above the channel. 6. Het systeem volgens één van de conclusies 2-5, waarbij elke baan geconfigureerd is om een pallet te ondersteunen die vier stapels kratten omvat die in een 2x2 opstelling zijn gerangschikt.The system of any of claims 2-5, wherein each track is configured to support a pallet comprising four stacks of crates arranged in a 2x2 arrangement. 7. Systeem volgens conclusie 4 of één van de conclusies 5 en 6 wanneer afhankelijk van conclusie 4, waarbij het paar wanden massieve, tegenover elkaar gelegen wanden omvat, parallel aan elkaar gerangschikt.The system of claim 4 or any of claims 5 and 6 when dependent on claim 4, wherein the pair of walls comprises solid opposed walls arranged parallel to each other. 8. Systeem volgens conclusie 4 of 7, waarbij elk van de wanden een massieve wand is en die het kanaal scheidt van een aangrenzende goot.The system of claim 4 or 7, wherein each of the walls is a solid wall separating the channel from an adjacent gutter. 9. Systeem volgens één van de voorgaande conclusies, waarbij de klimaatkamer verder meerdere luchtinlaten en meerdere luchtuitlaten omvat.System according to any of the preceding claims, wherein the climate chamber further comprises a plurality of air inlets and a plurality of air outlets. 10. Systeem volgens één van de voorgaande conclusies, waarbij de ten minste één luchtinlaat en/of de ten minste één luchtuitlaat zijn aangebracht in een plafond van de klimaatkamer.System according to any one of the preceding claims, wherein the at least one air inlet and / or the at least one air outlet are arranged in a ceiling of the climate chamber. 11. Systeem volgens conclusie 9, waarbij de meerdere luchtinlaten boven de tweede goot zijn aangebracht, en waarbij de meerdere luchtuitlaten boven de eerste en derde goten zijn aangebracht.System according to claim 9, wherein the plurality of air inlets are arranged above the second trough, and wherein the plurality of air outlets are disposed above the first and third troughs. 12. Systeem volgens één van de voorgaande conclusies, verder omvattende een regelsysteem ingericht voor het handhaven van een drukgradiënt tussen de inlaatopeningen en de uitlaatopeningen, waarbij een druk bij de inlaatopeningen hoger is dan een druk bij de uitlaatopeningen, zodanig dat lucht stroomt van de inlaatopeningen, door de klimaatkamer en uit de uitlaatopeningen.System according to any one of the preceding claims, further comprising a control system adapted to maintain a pressure gradient between the inlet ports and the outlet ports, wherein a pressure at the inlet ports is higher than a pressure at the outlet ports, such that air flows from the inlet ports. , through the climate chamber and out the exhaust vents. 13. Systeem volgens één van de voorgaande conclusies, verder omvattende ten minste één sensor die is ingericht om ten minste één omgevingsconditie binnen ten minste één van de meerdere kratten te meten.The system of any of the preceding claims, further comprising at least one sensor configured to measure at least one environmental condition within at least one of the plurality of crates. 14. Het systeem volgens conclusie 13, waarbij de ten minste één omgevingsconditie één of meer omvat van: temperatuur; luchtvochtigheid; zuurstofconcentratie; koolstofdioxide-concentratie; druk; en luchtstroom.The system of claim 13, wherein the at least one environmental condition includes one or more of: temperature; humidity; oxygen concentration; carbon dioxide concentration; pressure; and air flow. 15. Het systeem volgens conclusie 13, waarbij de ten minste één sensor aangebracht is in een bodem van de kratten.The system of claim 13, wherein the at least one sensor is disposed in a bottom of the crates. 18. Systeem volgens conclusie 9 of één van de voorgaande conclusies, afhankelijk van conclusie 9, waarbij de meerdere luchtinlaten langs een kanaal zijn aangebracht, waarbij het kanaal geconfigureerd is om te worden voorzien van klimaat-gereguleerde lucht via een hoofdinlaat.A system according to claim 9 or any one of the preceding claims when dependent on claim 9, wherein the plurality of air inlets are arranged along a channel, the channel being configured to be supplied with climate-controlled air through a main inlet. 17. Systeem volgens conclusie 16, waarbij het kanaal een variabele hoogte H heeft, en waarbij de hoogte van het kanaal afneemt naarmate de afstand vanaf de hoofdinlaat toeneemt.The system of claim 16, wherein the channel has a variable height H, and wherein the height of the channel decreases as the distance from the main inlet increases. 18. Systeem volgens conclusie 16 of conclusie 17, waarbij het systeem verder een leiding in fluidumverbinding met het kanaal omvat, en waarbij de leiding een flexibele leiding omvat die meerdere gaten langs tegenover elkaar gelegen zijden omvat.The system of claim 16 or claim 17, wherein the system further comprises a conduit in fluid communication with the channel, and wherein the conduit comprises a flexible conduit comprising a plurality of holes along opposite sides. 19. Systeem volgens één van de voorgaande conclusies, waarbij de klimaatkamer is aangebracht in een vaststaande structuur.19. System as claimed in any of the foregoing claims, wherein the climate chamber is arranged in a fixed structure. 20. Systeem volgens één van de voorgaande conclusies, waarbij de klimaatkamer is aangebracht in een draagbare houder, bijvoorbeeld een zeecontainer, een koelwagen, een vrachtwagenaanhanger.20. System as claimed in any of the foregoing claims, wherein the climate chamber is arranged in a portable holder, for instance a sea container, a refrigerator truck, a truck trailer. 21. Systeem volgens conclusie 12 of één van de voorgaande conclusies afhankelijk van conclusie 12, waarbij het regelsysteem is geconfigureerd om ten minste één van de volgende parameters aan te passen op basis van omgevingscondities die worden gedetecteerd door ten minste één sensor: temperatuur; luchtvochtigheid; zuurstofconcentratie; koolstofdioxide-concentratie; druk bij de inlaat en/of uitlaat; en 40 luchtstroom.The system of claim 12 or any of the preceding claims dependent on claim 12, wherein the control system is configured to adjust at least one of the following parameters based on environmental conditions detected by at least one sensor: temperature; humidity; oxygen concentration; carbon dioxide concentration; pressure at the inlet and / or outlet; and 40 air flow. 22. Systeem volgens één van de voorgaande conclusies, wanneer afhankelijk van conclusie 2, waarbij de klimaatkamer verder ten minste een spoor omvat dat zich uitstrekt in de eerste richting nabij open einden van de ten minste één baan.A system according to any preceding claim when dependent on claim 2, wherein the climate chamber further comprises at least one track extending in the first direction near open ends of the at least one track. 23. Systeem volgens één van de voorgaande conclusies, wanneer afhankelijk van conclusie 2, waarbij de klimaatkamer verder ten minste één robotinrichting omvat die is ingericht om langs de ten minste één baan te bewegen.The system of any of the preceding claims, when dependent on claim 2, wherein the climate chamber further comprises at least one robotic device configured to move along the at least one path. 24. Systeem volgens één van de conclusies 1-22, verder omvattende ten minste één robotinrichting ingericht om vrij te bewegen en één of meer kratten in de eerste en/of de tweede stapel kratten te plaatsen, of één of meer kratten uit de eerste en/of de tweede stapel kratten te pakken.24. System according to any one of claims 1-22, further comprising at least one robotic device adapted to move freely and place one or more crates in the first and / or the second stack of crates, or one or more crates from the first and / or take the second stack of crates. 25. Een werkwijze voor het kweken van ongewervelden, waarbij de werkwijze de volgende stappen omvat: iM het verschaffen van meerdere kratten, elk krat heeft een eerste opening in een eerste wand en een tweede opening in een tweede wand tegenover de eerste opening om een eerste luchtstroompad tussen de eerste en tweede openingen te definiëren; ii) het vullen van ten minste een deel van elk krat van de meerdere kratten met een substraat en meerdere ongewervelden in een eerste ontwikkelingsstadium; iii) het stapelen van de meerdere kratten; (iv) het verschaffen van een klimaatkamer omvattende: een inwendig volume; een klimaatkamer omvattende: een inwendig volume omsloten door wanden, een vloer en een plafond; een eerste rij luchtuitlaten die zich uitstrekken in een eerste richting binnen het inwendige volume; een tweede rij luchtuitlaten die zich parallel aan de eerste rij luchtuitlaten binnen het inwendige volume uitstrekken; een rij luchtinlaten gelegen tussen de eerste en tweede rijen luchtuitlaten, en die zich parallel aan de eerste en tweede rijen luchtuitlaten uitstrekt, en op afstand geplaatst van de eerste en tweede rijen luchtuitlaten in een tweede richting, loodrecht op de eerste richting; ten minste één eerste stapel kratten geplaatst in een ruimte tussen de eerste rij luchtuitlaten en de rij luchtinlaten; ten minste één tweede stapel kratten geplaatst in een ruimte tussen de tweede rij luchtuitlaten en de rij luchtinlaten; een leiding die zich uitstrekt vanaf elk van de meerdere luchtinlaten tussen de eerste en tweede stapel kratten, waarbij de leiding meerdere leidingopeningen omvat die zijn geconfigureerd om uitgelijnd te zijn met inlaatopeningen van de meerdere kratten in elke stapel, waarbij de klimaatkamer verder ten minste één baan omvat die zich uitstrekt in de eerste richting met de klimaatkamer, waarbij genoemde baan een eerste wand en een tweede wand omvat, en een kanaal dat daar tussen is gedefinieerd; (Vv) het positioneren van ten minste één stapel kratten waarin de kratten zijn geplaatst met het pad van de luchtstroom loodrecht op de eerste richting georiënteerd; (vi) het toepassen van een drukverschil tussen de luchtinlaat en de luchtuitlaat.25. A method of breeding invertebrates, the method comprising the steps of: providing a plurality of crates, each crate having a first opening in a first wall and a second opening in a second wall opposite the first opening around a first opening. define air flow path between the first and second openings; ii) filling at least a portion of each crate of the plurality of crates with a substrate and a plurality of invertebrates in a first stage of development; iii) stacking the plurality of crates; (iv) providing a climate chamber comprising: an interior volume; a climate chamber comprising: an internal volume enclosed by walls, a floor and a ceiling; a first row of air outlets extending in a first direction within the interior volume; a second row of air outlets extending parallel to the first row of air outlets within the interior volume; a row of air inlets located between the first and second rows of air outlets, and extending parallel to the first and second rows of air outlets, and spaced from the first and second rows of air outlets in a second direction, perpendicular to the first direction; at least one first stack of crates located in a space between the first row of air outlets and the row of air inlets; at least one second stack of crates located in a space between the second row of air outlets and the row of air inlets; a conduit extending from each of the plurality of air inlets between the first and second stack of crates, the conduit comprising a plurality of conduit openings configured to align with inlets of the plurality of crates in each stack, the climate chamber further at least one path extending in the first direction with the climatic chamber, said path including a first wall and a second wall, and a channel defined therebetween; (Vv) positioning at least one stack of crates in which the crates are placed with the path of the air flow oriented perpendicular to the first direction; (vi) applying a differential pressure between the air inlet and the air outlet. 26. De werkwijze volgens conclusie 25, waarbij de ten minste één baan is geplaatst tussen de eerste rij luchtuitlaten en de rij luchtinlaten, en waarbij het systeem bij voorkeur een tweede baan omvat dat is geplaatst tussen de rij luchtinlaten en de tweede rij luchtuitlaten.The method of claim 25, wherein the at least one path is disposed between the first row of air outlets and the row of air inlets, and wherein the system preferably comprises a second path disposed between the row of air inlets and the second row of air outlets. 27. De werkwijze volgens conclusie 25 of conclusie 26, waarbij de ten minste één baan een paar wanden omvat die van elkaar gescheiden zijn door een kanaal, het genoemde kanaal strekt zich uit in een tweede richting, die loodrecht staat op de eerste richting; en eventueel, waarbij de ten minste één stapel kratten zodanig op de banen is aangebracht dat het pad van de luchtstroom zich in de eerste richting uitstrekt.The method of claim 25 or claim 26, wherein the at least one path comprises a pair of walls separated from each other by a channel, said channel extending in a second direction, which is perpendicular to the first direction; and optionally, wherein the at least one stack of crates is disposed on the webs such that the path of the air flow extends in the first direction. 28. De werkwijze volgens conclusie 27, waarbij de werkwijze verder het verschaffen van meerdere luchtinlaten en meerdere luchtuitlaten omvat, en het plaatsen van ten minste één stapel tussen een luchtinlaat en een luchtuitlaat die in de eerste richting met elkaar uitgelijnd zijn.The method of claim 27, wherein the method further comprises providing a plurality of air inlets and a plurality of air outlets, and placing at least one stack between an air inlet and an air outlet that are aligned in the first direction. 29. De werkwijze volgens één van de conclusies 25-28, waarbij de werkwijze verder omvat: het waamemen, met gebruik van ten minste één sensor, van een omgevingsconditie binnen één of meer van de meerdere kratten, waarbij de waargenomen omgevingsconditie één of meer kan omvatten van: temperatuur; luchtvochtigheid; zuurstofconcentratie; koolstofdioxide-concentratie; druk; en luchtstroom.The method of any of claims 25-28, wherein the method further comprises: sensing, using at least one sensor, an environmental condition within one or more of the plurality of crates, wherein the sensed environmental condition may be one or more include of: temperature; humidity; oxygen concentration; carbon dioxide concentration; pressure; and air flow. 30. De werkwijze volgens conclusie 28, verder omvattende het reguleren van ten minste één van de volgende parameters op basis van de waargenomen omgevingscondities binnen de kratten: temperatuur; luchtvochtigheid; 40 zuurstofconcentratie;The method of claim 28, further comprising regulating at least one of the following parameters based on the observed environmental conditions within the crates: temperature; humidity; 40 oxygen concentration; koolstofdioxide-concentratie; druk bij de inlaat en/of uitlaat; en luchtstroom.carbon dioxide concentration; pressure at the inlet and / or outlet; and air flow. 31. De werkwijze volgens één van de conclusies 25-30, waarbij de werkwijze verder het aanbrengen van meerdere stapels kratten in rijen langs de banen omvat, waarbij elke stapel tegen een aangrenzende stapel aanligt in de tweede richting.The method of any of claims 25-30, the method further comprising arranging multiple stacks of crates in rows along the tracks, each stack abutting an adjacent stack in the second direction. 32. De werkwijze volgens één van de conclusies 25-31, waarbij de stapels gerangschikt zijn in een 2 x 2 opstelling.The method of any of claims 25-31, wherein the stacks are arranged in a 2 x 2 arrangement. 33. De werkwijze volgens één van de conclusies 25-32, verder omvattende, het bedienen van een robotinrichting om langs ten minste één baan te bewegen, waarbij de robotinrichting is geconfigureerd om: ten minste één stapel kratten langs de banen te verplaatsen; omgevingscondities in het kanaal te detecteren; informatie uit ten minste één krat die boven het kanaal is gestapeld te lezen.The method of any of claims 25-32, further comprising, operating a robotic device to move along at least one path, the robotic device being configured to: move at least one stack of crates along the paths; detect environmental conditions in the channel; read information from at least one crate stacked above the channel. 34. De werkwijze volgens één van de conclusies 25-32, verder omvattende, het bedienen van een robotinrichting om vrij te bewegen en: één of meer kratten in de eerste en/of de tweede stapel kratten te plaatsen, of één of meer kratten uit de eerste en/of de tweede stapel kratten te pakken.The method of any of claims 25-32, further comprising, operating a robotic device to move freely and: placing one or more crates in the first and / or second stack of crates, or one or more crates from take the first and / or second stack of crates. 35. Een ongewervelden-kweekkrat geconfigureerd voor gebruik in het systeem volgens conclusies 1-24 of in de werkwijze van conclusies 25-34, waarbij het krat een bodem, opstaande zijwanden en opstaande eindwanden die een omtrek rond de bodem vormen, en ten minste één sensorbevestigingsgebied aangebracht op de bodem van het krat omvat, en waarbij het krat een tweelaagse constructie omvat met een constructie buitenlaag welke stevigheid en constructie stabiliteit verschaft, en een binnen vel of laag, ingericht om een glad binnenoppervlak te verschaffen.An invertebrate breeding crate configured for use in the system of claims 1-24 or in the method of claims 25-34, wherein the crate has a bottom, upstanding side walls and upstanding end walls forming a perimeter around the bottom, and at least one sensor mounting region disposed on the bottom of the crate, and wherein the crate comprises a two-layer construction having a construction outer layer that provides strength and construction stability, and an inner sheet or layer arranged to provide a smooth inner surface. 36. Het ongewervelden-kweekkrat volgens conclusie 35, waarbij de bodem verder meerdere sensoren omvat die zijn aangebracht in de bodem van het krat.The invertebrate breeding crate of claim 35, wherein the bottom further comprises a plurality of sensors disposed in the bottom of the crate. 37. Het ongewervelden-kweekkrat volgens conclusie 35 of 36, waarbij het krat verder ten minste één uitsteeksel in een bovenste randoppervlak van het krat omvat en ten minste één corresponderende uitsparing in een onderste randoppervlak van het krat, waarbij de uitsparing is geconfigureerd om een uitsteeksel van een verder krat dat daarop gestapeld wordt te ontvangen.The invertebrate breeding crate of claim 35 or 36, wherein the crate further comprises at least one protrusion in an upper edge surface of the crate and at least one corresponding recess in a lower edge surface of the crate, the recess being configured around a protrusion. from a further crate stacked thereon. 4040 38. Het ongewervelden-kweekkrat volgens één van de conclusies 35 - 37, waarbij het krat verder een eerste ontvangend gedeelte omvat dat is geconfigureerd om een verwijderbaar identificatielabel te ontvangen, bijvoorbeeld een RFID-label.The invertebrate breeding crate of any of claims 35 to 37, wherein the crate further comprises a first receiving portion configured to receive a removable identification tag, e.g., an RFID tag. 39. Het ongewervelden-kweekkrat volgens conclusie 38, waarbij het krat verder een tweede ontvangend gedeelte omvat geplaatst op een tegenoverliggende zijde van het krat in een corresponderende positie, zodanig dat de positie van het tweede ontvangende gedeelte samenvalt met de positie van het eerste ontvangende gedeelte wanneer het krat 180 graden rond een verticale as wordt gedraaid.The invertebrate breeding crate of claim 38, wherein the crate further comprises a second receiving portion disposed on an opposite side of the crate in a corresponding position such that the position of the second receiving portion coincides with the position of the first receiving portion when the crate is rotated 180 degrees around a vertical axis. 40. Het ongewervelden-kweekkrat volgens conclusie 39, waarbij het tweede ontvangende gedeelte een identificatielabel omvat, bijvoorbeeld een RFID-label.The invertebrate breeding crate of claim 39, wherein the second receiving portion includes an identification tag, e.g., an RFID tag.
NL2023404A 2019-06-06 2019-06-28 System and method for rearing invertebrates NL2023404B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US17/615,594 US11882817B2 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
SG11202113175VA SG11202113175VA (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
DK20732333.8T DK3979794T3 (en) 2019-06-06 2020-06-03 SYSTEM AND PROCEDURE FOR BREEDING INVERTEBRATES
PL20732333.8T PL3979794T3 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
CA3142689A CA3142689A1 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
AU2020287588A AU2020287588A1 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
CN202080055584.6A CN114340387A (en) 2019-06-06 2020-06-03 System and method for feeding invertebrates
KR1020227000371A KR20220045139A (en) 2019-06-06 2020-06-03 Invertebrate breeding systems and methods
JP2021571986A JP2022535428A (en) 2019-06-06 2020-06-03 Systems and methods for rearing invertebrates
PCT/NL2020/050355 WO2020246878A1 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates
EP20732333.8A EP3979794B1 (en) 2019-06-06 2020-06-03 System and method for rearing invertebrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201962857885P 2019-06-06 2019-06-06

Publications (1)

Publication Number Publication Date
NL2023404B1 true NL2023404B1 (en) 2021-01-12

Family

ID=74343075

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2023404A NL2023404B1 (en) 2019-06-06 2019-06-28 System and method for rearing invertebrates

Country Status (1)

Country Link
NL (1) NL2023404B1 (en)

Similar Documents

Publication Publication Date Title
US11882817B2 (en) System and method for rearing invertebrates
US20240032517A1 (en) Climate system and method for rearing invertebrates
ES2860426T3 (en) Farm for breeding insects
US20170339846A1 (en) Apparatus and method for autonomous controlled environment agriculture
NL2014513B1 (en) Method and facility for breeding insects.
US7320294B2 (en) Cage and rack system for housing animals in cages having different widths
US10595517B2 (en) Insect spawning container, facility and method for breeding insects
NL2014515A (en) Method and facility for breeding insects.
CA3141506C (en) Climate system
EP3772276B1 (en) Insect rearing box
NL2023404B1 (en) System and method for rearing invertebrates
KR20190019522A (en) auto-breeding system for cricket
KR20230117578A (en) Insect breeding tray suitable for industrial-scale breeding
KR20220041819A (en) live insect transfer device
US11033008B2 (en) Vivarium systems
RU2781554C1 (en) Climate system
US20240130333A1 (en) Incubation tray for bees
RU2088079C1 (en) Method for cultivation of synanthropic fly larvae
RU2021139508A (en) SYSTEM AND METHOD FOR INVERTEBRATE BREEDING