NL2021441B1 - Mechanical multiplexing of optical sensor - Google Patents

Mechanical multiplexing of optical sensor Download PDF

Info

Publication number
NL2021441B1
NL2021441B1 NL2021441A NL2021441A NL2021441B1 NL 2021441 B1 NL2021441 B1 NL 2021441B1 NL 2021441 A NL2021441 A NL 2021441A NL 2021441 A NL2021441 A NL 2021441A NL 2021441 B1 NL2021441 B1 NL 2021441B1
Authority
NL
Netherlands
Prior art keywords
optical sensor
light
light communication
sensor system
optical
Prior art date
Application number
NL2021441A
Other languages
Dutch (nl)
Inventor
Van Duijn Albert
Johan Oppedijk Bernard
Pius Van Horssen Frederik
Original Assignee
Fytagoras B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fytagoras B V filed Critical Fytagoras B V
Priority to NL2021441A priority Critical patent/NL2021441B1/en
Priority to PCT/NL2019/050522 priority patent/WO2020032798A1/en
Application granted granted Critical
Publication of NL2021441B1 publication Critical patent/NL2021441B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6434Optrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/772Tip coated light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8528Immerged light conductor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0853Movable fibre optical member, e.g. for scanning or selecting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

An optical sensor system is provided which is arranged to read information from a plurality of light emitting or reflecting surfaces with a single optical sensor unit. The system receives thus receives a plurality of signals which are mechanically multiplexed towards the sensor by having the sensor movable relative to where the signals enter the system. The sensor may thus be moved and aligned with one of the signals and read out the signal. After having read out the first signal, the sensor is moved towards a second signal which may then be read out. With this system, with a single optical sensor a plurality of signals may be read out which may provide a smaller and less complex system.

Description

TECHNICAL FIELD
The various aspects and implementations thereof relate to an optical sensor system.
BACKGROUND
Fluorescent and/or reflective coatings of which optical properties change due to changing parameters in the surroundings of the coating are known. Light reflected or emitted from such a coating may be received by an optical sensor, which may be used for determining information on the parameter in the surrounding of the coating.
More information on such coatings and use thereof may be found in EP1134583, EP1860931, EP1529213 and EP1257810.
SUMMARY
It is preferred to provide an improved optical sensor system.
A first aspect provides an optical sensor system, comprising an optical sensor module comprising an optical sensor and an optical sensor input, the optical sensor being arranged for generating a data signal in response to receiving light received by the optical sensor input, the data signal carrying information related to information carried by the received light. The optical sensor system further comprises a plurality of light communication ports for providing an emitted or reflected light signal, the light communication ports being spaced apart along a first axis. The optical sensor system also comprises a driving module, arranged to drive a first of the optical sensor input and the plurality light communication ports along the first axis relative to a second of the optical sensor input and the plurality of light communication ports such that the optical sensor may be aligned with at least a first light communication port and a second light communication port for receiving light from the light communication ports.
An optical sensor system is thus provided capable of receiving an emitted or reflected light signal from a plurality of light communication ports with a single optical sensor input.
An aim of the optical sensor system is to determine at the location of the optical sensor system parameters at a plurality of remote locations or multiple parameters at one or more locations. Remote locations are locations at which the optical sensor system would be unable to measure directly because for example they are too far away or there are obstacles present between the remote location and the optical sensor system which block light travelling directly in a straight line from the remote location to the optical sensor system.
With the ability of the optical sensor system to align a single optical sensor module with a plurality of light communication ports, a simpler and cheaper system may be provided compared to having a single optical sensor module per light communication port. The optical sensor modules are often more expensive and complex than the light communication ports and it is therefore preferred to have one optical sensor module and a plurality of light communication ports. As an option, an embodiment of the optical sensor system comprising a plurality of optical sensor modules and a single light communication port may be envisioned as well. The light communication ports may be two-way ports, that is they may be arranged to send light and receive light.
In an embodiment of the optical sensor system, the optical sensor module further comprises a light source for providing light to the light communication ports. With the light source provided with the optical sensor system, no external light source is required, and the optical sensor system may be operated in a dark or low light environment.
The light source may optionally be a tunable light source having a narrow band emission spectrum that may be tuned. With light having a narrow band emission spectrum, light is meant which comprises a single wavelength, or which acts substantially as if it consist only a single wavelength, for example because it has a very narrow bandwidth, of a few nanometres, for example a maximum bandwidth of 20 nanometres, preferably 10 nanometres and even more preferred 5 nanometres. Such light has the advantage that noise from unwanted wavelengths can be prevented.
An embodiment of the optical sensor system comprises a processing unit arranged to control a wavelength of light emitted by the (tunable) light source. The processing unit may further be arranged for receiving the data signal generated by the optical sensor in response to receiving light from the light communication port with which the optical sensor is aligned. With tunable light source, a light source is implied of which the wavelength or ranges of wavelengths emitted can be controlled.
In a preferred embodiment, the optical sensor system comprises a first data storage module for storing expected sensor response data. In such an embodiment, the processing unit is further arranged to control the driving module to align the optical sensor with the first light communication port, control the light source to vary the wavelength over a pre-determined interval, receive the data signal from the optical sensor, retrieve at least part of the expected sensor response data, and determine, based on an outcome of a comparison between the received data signal and the retrieved data, an entity of which a magnitude is represented by the received signal.
An embodiment of the optical sensor system further comprises a second data storage module for storing address information. In such an embodiment, the processing unit may be arranged to store and retrieve data in and from the second data storage module, which data comprises a record comprising a location of a light communication port and a wavelength or range of wavelengths.
In embodiments of the optical sensor system, the driving module is further arranged to drive the first of the optical sensor input and the plurality of light communication ports along a second axis relative to the second of the optical sensor input and the plurality of light communication ports. In such an embodiment, the plurality of light communication ports are spaced apart along the first axis and the second axis. Spacing the plurality of light communication ports along the first axis and the second axis allows for a more compact optical sensor system.
In an embodiment of the optical sensor system, the first axis is perpendicular to the second axis. In such an embodiment, both axes are linear axes along which the first of the optical sensor input and the plurality of light communication ports may be translated by the driving module.
Embodiments of the optical sensor system may also be envisioned wherein the first axis is a rotating or curved axis. Such a rotating or curved axis allows for a more compact optical sensor system as the light communication ports may be provided at different angles relative to the optical sensor input.
Preferably, the optical sensor input is mounted on the (hiving module such that the driving module is arranged for driving the position of the optical sensor input relative to the plurality of light communication ports. In such an embodiment, the optical sensor input is the first of the optical sensor input and the plurality of light communication ports.
In another embodiment of the optical sensor system, the optical sensor input comprises an optical fibre which is at a proximal end connected to the optical sensor. The optical fibre allows communication of light between the optical sensor and the optical sensor input.
In yet another embodiment of the optical sensor system, the plurality of light communication ports are arranged for receiving an optical fibre. Such an optical fibre allows communication of fight between the light communication port and a remote location.
Another embodiment of the optical sensor system comprises a fibre driving module for driving an optical probing fibre, in particular for inserting or withdrawing a distal end of the optical probing fibre in or from a medium.
Such an embodiment of the optical sensor system comprising the fibre driving module may further comprise a fibre driving controller arranged to control operation of the fibre driving module and connected to the optical sensor, wherein the fibre driving controller is further arranged to withdraw or bring in the optical probe fibre if the data signal from the fibre or a nearby fibre satisfies a pre-determined criterion.
BRIEF DESCRIPTION OF THE DRAWINGS
The various aspects and embodiments thereof will now be discussed in conjunction with drawings. In the drawings:
Fig. 1A shows an embodiment of an optical sensor system;
Fig. IB shows another embodiment of the optical sensor system;
Fig. 2A shows yet another embodiment of the optical sensor system; and
Fig. 2B shows the optical sensor system with a withdraw optical probing fibre; and
Fig. 3 shows another embodiment of an optical sensor system and a device for inserting fibres in and withdrawing fibres from a medium.
DETAILED DESCRIPTION
Fig. 1A shows an embodiment of an optical sensor system 100, comprising an optical sensor module 102. The optical sensor module 102 comprises an optical sensor 104 and an optical sensor input 106, wherein the optical sensor 104 is arranged for generating a data signal in response to light received via the optical sensor input 106. The data signal carries information related to information carried by the received light. The received light may be communicated from the optical sensor input 106 to the optical sensor 104 through a flexible optical fibre 107. In another embodiment, the optical sensor input 106 is directly coupled to the optical sensor 104, for example by means of a rigid connection and optionally in a single housing.
Information carried by the received light may relate to properties of the light, such as a light intensity, a range of wavelengths comprised by the light, any other property or a combination thereof. The range of wavelengths may comprise one of more distinct ranges of wavelengths, or may comprise one or more single wavelengths. With light, electromagnetic radiation is meant and light is not restricted to light visible by the human eye (380 nm to 800 nm) and may extend from far infrared (1 millimetre) to far ultraviolet (10 nm). Optionally, a more narrow range may be covered, from approximately 100 nm to 1 pm or from 200 nm to 2 pm.
The optical sensor system 100 may further comprise a housing 101 in which the optical sensor module and driving module are provided. A plurality of light communication ports comprising a first light communication port 108 and a second light communication port 110 may be provided in one or more sides of the housing. The plurality of light communication ports is provided such that light may be communicated from and/or to the plurality of light communication ports from outside and inside the housing 101. The housing 101 may be arranged such that light from outside the housing is prevented from reaching the optical sensor input 106, preventing noise in the data signal generated by the optical sensor 104.
The optical sensor system 100 as shown in Fig. 1A comprises the first light communication port 108 and the second light communication port 110 spaced apart along a first axis 150. The optical sensor system 100 may comprise more ports. The light communication ports are arranged for passing through an emitted or reflected light signal. In a preferred embodiment, a light communication port is arranged for receiving a proximal end of a fibre, which fibre comprises a fluorescent or reflective coating at a distal end. The light optical properties of the fluorescent or reflective coating change according to ambient parameters of the coating. Such reflecting properties may relate to a fluorescence wavelength, life-time or yield or the reflection coefficient or absorption coefficient changing under the influence of a varying entity at the distal end. Light reflected may have the same wavelength as received by the distal end or one or more different wavelengths.
Alternatively, the fibre received by a communication port is at the distal end connected to a proximal end of a further fibre which carries the fluorescent or reflective coating at its distal end. Ambient parameters represent particular entities, for example be a temperature, pressure, pH level, oxygen level, levels of other substances and gases in particular, any other parameter or any combination thereof. The ambient environment is preferably a fluid containing environment and more in particular a liquid containing environment like water. In the latter case, the level of gas may be the level of gas dissolved in the water or other liquid.
A light communication port allows a transmission of light between the optical sensor input 106 and a remote location 128 outside of the optical sensor system 100 at which the distal end of the fibre with the fluorescent or reflective coating is provided. Light may be transported by an optical fibre 126 from the remote location to a light communication port, or may be emitted from the remote location to the light communication port.
In an example of a reflecting coating arranged to have changing reflective properties under the influence of a varying temperature, a first wavelength or range of wavelengths is reflected at the distal end at a first temperature, and a second wavelength or range of wavelengths is reflected at the distal end at a second temperature.
From the difference between the first wavelength of range of wavelengths and the second wavelength of range of wavelengths, a difference in temperature or an absolute temperature may be determined. Alternatively or additionally, a look-up table may be provided by which the ambient parameter may be related to the reflective properties. This will be elaborated on further below.
The optical sensor system 100 additionally comprises a sensor driving module 116, in the embodiment as shown in Fig. 1A arranged to drive the optical sensor input 106 over a guiding rail 114. In an alternative embodiment, the communication ports are driven along the first axis along the stationary optical sensor input 106. If the optical sensor input 106 is comprised by the optical sensor module 102, the whole optical sensor module 102 may be driven by the sensor driving module 116.
This allows the optical sensor input 106 to be aligned with the first light communication port 108 and the second light communication port 110 for receiving light from the light communication port with which it is aligned, which in Fig. 1A is the first light communication port 108. Fig. IB shows an embodiment of the optical sensor system 100 wherein the optical sensor input 106 is aligned with the second light communication port 110.
The sensor driving module 116 may be arranged as a linear actuator, comprising for example a piston, a linear motor, a spindle or a toothed rack driven by a rotating motor, any other actuator or any combination thereof in case the first axis 150 is a linear axis.
Alternatively, the first axis 150 may be a rotational axis. In such a case, the sensor driving module 116 may be arranged as a stepper motor, brushed or brushless DC motor, servomotor, any other rotary actuator, or a any combination thereof.
In an embodiment of the optical sensor system 100, the sensor driving module 116 is further arranged to drive the first of the optical sensor input 106 and the plurality of light communication ports along a second axis (not shown in Figs. 1A and IB). In such an embodiment, the light communication ports are next to being spaced along the first axis also spaced along the second axis.
A sensor driving module 116 arranged to drive the first of the optical sensor input and the plurality of light communication ports along the first and the second axes may comprise two driving modules, wherein a first driving module is arranged to drive the second driving module along the first axis.
The first of the optical sensor input and the plurality of light communication ports may be connected to the second driving module and driveable along the second axis by the second driving module such that the second driving unit and the first of the optical sensor input and the plurality of light communication ports are driven simultaneously by the first driving module along the first axis.
Alternatively, one or both of the first axis 150 and the second axis may be a rotational axes. Considering a three-dimensional space spanned by three orthogonal axes, a first of the first axis 150 and the second axis may be a first of the three orthogonal axes, and a second of the first axis 150 and the second axis may be a rotational axis around the first of the three orthogonal axes. The addition of driveability over the second axis allows an even more compact optical sensor system to be constructed. An embodiment of the optical sensor system 100 wherein both the first axis 150 and the second axis are rotational axes may also be envisioned.
Preferably, the optical sensor system 100 comprises a light source 118 for providing light to the light communication ports, more specifically to the light communication port with which the optical sensor 104 is aligned. The emitted light may in this way be coupled into the optical fibre 126.
The light source 118 is preferably arranged to be drivable by the sensor driving module 116 relative to the plurality of light communication ports, such that it may be driven along with the optical sensor input 106 and may thus be aligned with a light communication port together with the optical sensor input 106. As such, the light source 118 may be comprised by the optical sensor module 102. Alternatively, it is provided in a separate module.
The light provided by the light source 118 may be transported from the light communication port with which the light source 118 is aligned to a remote location 128, for example through an optical fibre 126. The distal end with the reflective coating is provided at the remote location 128.
In an embodiment, the light source 118 is a (tunable) light source having a narrow band emission spectrum. The light source 118 may be arranged as a laser, one or more LEDs, any other light source or any combination thereof.
The embodiment of the optical sensor system 100 as shown in Fig. 1A further comprises a processing unit 120. The processing unit 120 is arranged to at least one of controlling a wavelength of light emitted by the light source 118 and receiving the data signal generated by the optical sensor 104 in response to receiving light from the light communications port.
The embodiment of the optical sensor system 100 as shown in Fig. 1A further comprises a first data storage module 122 for storing expected sensor response data. The expected sensor response data may comprise information on expected intensity of certain wavelengths in the reflected light or of particular wavelengths or ranges of wavelengths therein, which may correspond to a certain entity or a magnitude thereof.
The expected sensor response data may be used for identifying the reflective properties of the fluorescent or reflective coating provided at the distal end of a fibred connected to a light communication port. Fluorescent or reflective coatings may provide their sensitivity to values of specific entities only at particular wavelengths.
By sweeping wavelength - varying the wavelength over a particular interval - and monitoring reflected light, a specific response may be detected at a particular wavelength. Such response at the particular wavelength, the responsive wavelength or response wavelength interval, is for example significantly different from a reflective response at other wavelengths. For example, the fluorescence or reflection may be significantly lower or higher, at the wavelength provided by the light source 118 or at one or more other specific wavelengths or wavelength intervals.
The wavelength or wavelength interval(s) at which the specific response is detected is provided to the processing unit 120 which looks up what entities provide a specific response at the determined wavelength at which the specific response is detected. This information is stored in a second data storage module 124, in a field assigned to the light communication port to which the optical sensor input 106 is coupled. The first data storage module 122 and the second data storage module 124 may be the implemented in one and the same physical memory module.
This field may comprise at least one record for storing at least one of the wavelength or wavelength interval at which the specific response is detected, an entity of which the reflected light provides an indication of magnitude and a location of the applicable light communication port allowing the processing unit 120 to control the sensor driving module 116 to position the sensor module 102 to the applicable light communication port.
To control the sensor driving module 116 to align the optical sensor 104 with the first light communication port 111, the processing unit 120 may be provided with location data comprising alignment data corresponding to whereto the sensor driving module 116 should be controlled in order to align with a specific light communication port.
The alignment data may comprise a location on the guiding rail 114, and optionally when the (hiving module is further arranged to drive along a second axis, as will be elaborated on below, a location on second axis. When one or both of the first axis 150 and the second axis are rotational axes, the location may relate to an angle.
The light source 118 may be controlled to provide a different wavelength or range of wavelengths for each of the light communication ports. The wavelength or range of wavelengths associated with a light communication port may be comprised by the location data.
Fig. 2A shows an embodiment of the optical sensor system 100 further comprising a fibre driving module 202 for inserting or withdrawing a distal end 205 of an optical probing fibre 204 in or from a medium 206. Such a medium is for example a water body in for example an aquarium or a breeding pond, soil or another plant breeding substrate, or any other medium in which an optical probing fibre 204 may be inserted or withdrawn. At a proximal end, the optical probing fibre 204 is connected to a light communication port of the optical sensor system 100, such that light may travel between the optical sensor system 100 and the distal end of the optical probing fibre 205.
By being able to insert and withdraw the distal end of the optical probing fibre 205, the distal end of the optical probing fibre 205 need not always be inside the medium, but only when wanting to perform a measurement. This may prevent a build-up of light blocking matter on the distal end of the optical probing fibre 205 such as algae, dirt, faeces, or any other light blocking matter which may reduce accuracy of the measurement.
Fig. 2A shows the distal end of the optical probing fibre 205 in an inserted state, inserted into the medium 206. Fig. 2B shows the distal end of the optical probing fibre 205 in a withdrawn state, that is not inserted into the medium 206.
To control operation of the fibre driving module 202, a fibre driving controller 208 may be provided. The fibre driving controller 208 may be connected to the optical sensor 104 or the processing unit 120. The fibre driving controller 208 may also be incorporated in the processing unit 120.
The fibre driving controller 208 may further be arranged to withdraw the optical probing fibre 204 if the data signal satisfies a pre-determined criterion. Such a pre-determined criterion may be a successful measurement, after which an inserted optical probing fibre 204 in the medium 206 is not required any more at that time.
In an alternative embodiment, as depicted by Figure 3, the fibre driving module 202 is provided with a multitude of optical probing fibres 205. To the fibre driving module 202, a further sensor driving module 116' is provided. Rather than being provided in the housing 101, the further sensor driving module 116' may be provided outside the housing 101.
The further sensor driving module 116' may be coupled to the processing unit 120. This implementation does not exclude availability of the sensor driving module 116 within the housing 110 as discussed above. Each of the light communication ports in the housing 110 may be connected to a further sensor driving module like the sensor driving module 116' depicted by Figure 3.
In this embodiment, the fibre driving module 202 is arranged for driving each of the multitude of the probing fibres 204 in and out of the medium 206. The further driving unit 116' is arranged to drive a distal end of a further flexible optical fibre 107' such that the distal end of the further flexible optical fibre 107' is coupled to a proximal end of the optical probing fibre 205 that has been driven or is to be driven in the medium 206. The further flexible fibre 107' is at a proximal end coupled to an optical communication port of the optical sensor system 100 or directly to the optical sensor 104 and/or the light source 118.
The processing unit 120 is arranged to control the fibre driving module to drive probing fibres 204 in and out of the medium and the further sensor driving module 116' to drive the further flexible optical fibre 107' to a probing fibre 204 that is to be used to acquire information on a parameter of the medium 206 - the probing fibre 204 having a distal end in the medium 206.
The controlling of the further sensor driving module 116' to drive the further flexible optical fibre 107 to change the probing fibre 204 may be done at fixed intervals, for example on a per-day or per-week interval. Additionally or additionally, operation of the further sensor driving module 116' to drive the further flexible optical fibre 107 may be controlled based on a signal received from the optical sensor 106.
The processing unit 120 may be in this implementation be arranged to determine, based on a signal received from the optical sensor 106, whether a change in a signal received from the optical sensor 106, the change is related to deterioration or soiling of the reflective coating at the distal end of the probing fibre 204 or due to a change of a value of the parameter monitored. The time the operational probing fibre 204 is in use may be taken into account as well at this point.
Alternatively or additionally, a trend in the received signal may be determined, filtering out temporal fluctuations over short intervals. Worded differently, a low pass filter having a low cut off frequency, for example at once per hour or once per day , is applied. If the processing unit determines 120 that the signal thus filtered satisfies a particular condition, the proving fibre 204 used is changed, from the one currently in use to a new and clean one. The condition may be that the filtered signal is above or below a particular threshold.
It is noted that the embodiments as discussed above in conjunction with Figure 3 may be implemented without the functionality of driving the fibres in and out of the medium 206. In yet another embodiment, the fibre driving module 202 does not comprise the further driving unit 116'. In the latter embodiment, one or more fibres connected to one or more light communication ports of the optical sensor system 100 are connected to the fibre driving module 202. The fibre driving module 202 is arranged for driving the fibres in and out of the medium 206.
Hence, multiplexing and mechanical multiplexing in particular may take place at the fibre driving module 202, the housing 110 or both.
Additionally or alternatively to the filtering, other conditions may be applied, for example if the value of the signal received is above or below a particular threshold for a pre-determined amount of time, it is determined that that probing fibre 204 should be changed as discussed above.
The various aspects and implementations thereof described above have been discussed in conjunction with optical signals, optical sensors and optical actuators. It is noted that the various aspects and implementations thereof may also be used in implementations with electrical signals as data carriers. In such implementations, optical fibres may replaced by conductors like conductive wires. Optical communication ports may provide for conductive, capacitive or inductive coupling between conductive wires. The reflective or fluorescent coatings may be replaced by sensors, the laser by a current or a voltage source and the optical sensor by an input to an electrical detection circuit.
In summary, the various aspects and implementations relate to an optical sensor system is provided which is arranged to read information from a plurality of light reflecting surfaces with a single optical sensor unit. The system receives thus a plurality of signals which are mechanically multiplexed towards the sensor by having the sensor movable relative to where the signals enter the system. The sensor may thus be moved and aligned with one of the signals and read out the signal. After having read out the first signal, the sensor is moved towards a second signal which may then be read out. With this system, with a single optical sensor a plurality of signals may be read out which may provide a smaller and less complex system.
In the description above, it will be understood that when an element such as layer, region or substrate is referred to as being “on” or “onto” another element, the element is either directly on the other element, or intervening elements may also be present. Also, it will be understood that the values given in the description above, are given by way of example and that other values may be possible and/or may be strived for.
Furthermore, the invention may also be embodied with less components than provided in the embodiments described here, wherein one component carries out multiple functions. Just as well may the invention be embodied using more elements than depicted in the Figures, wherein functions carried out by one component in the embodiment provided are distributed over multiple components.
It is to be noted that the figures are only schematic representations of embodiments of the invention that are given by way of non-limiting examples. For the purpose of clarity and a concise description, features are described herein as part of the same or separate embodiments, however, it will be appreciated that the scope of the invention may include embodiments having combinations of all or some of the features described. The word ‘comprising’ does not exclude the presence of other features or steps than those listed in a claim. Furthermore, the words 'a' and 'an' shall not be construed as limited to 'only one', but instead are used to mean 'at least one', and do not exclude a plurality.
A person skilled in the art will readily appreciate that various parameters and values thereof disclosed in the description may be modified and that various embodiments disclosed and/or claimed may be combined without departing from the scope of the invention.
It is stipulated that the reference signs in the claims do not limit the scope of the claims, but are merely inserted to enhance the legibility of the claims.

Claims (15)

CONCLUSIESCONCLUSIONS 1. Optisch sensorsysteem, omvattende:Optical sensor system, comprising: Een optische sensormodule omvattende een optische sensor en een optische sensorinvoer, de optische sensor zijnde ingericht voor genereren van een datasignaal als reactie op een via de optische sensorinvoer ontvangen licht, het datasignaal dragende informatie gerelateerd aan informatie gedragen door het ontvangen licht;An optical sensor module comprising an optical sensor and an optical sensor input, the optical sensor being arranged to generate a data signal in response to a light received via the optical sensor input, the data signal carrying information related to information carried by the received light; een veelvoud aan lichtcommunicatiepoorten voor doorgeven van een uitgestraald of gereflecteerd lichtsignaal, de lichtcommunicatiepoorten op een afstand van elkaar langs een eerste as geplaatst;a plurality of light communication ports for transmitting an emitted or reflected light signal, the light communication ports spaced along a first axis; een aandrijfmodule, ingericht om een eerste van de optische sensorinvoer en het veelvoud aan lichtcommunicatiepoorten aan te drijven langs de eerste as ten opzichte van een tweede van de optische sensorinvoer en het veelvoud aan lichtcommunicatiepoorten zodanig dat de optische sensor opgelijnd kan worden met ten minste een eerste hchtcommunicatiepoort en een tweede lichtcommunicatiepoort voor ontvangen van licht van de lichtcommunicatiepoorten.a drive module, arranged to drive a first of the optical sensor input and the plurality of light communication ports along the first axis relative to a second of the optical sensor input and the plurality of light communication ports such that the optical sensor can be aligned with at least a first corner communication port and a second light communication port for receiving light from the light communication ports. 2. Optisch sensorsysteem volgens conclusie 1, waarin de optische sensormodule verder een lichtbron omvat voor voorzien van licht aan de lichtcommunicatiepoorten.The optical sensor system of claim 1, wherein the optical sensor module further comprises a light source for providing light to the light communication ports. 3. Optisch sensorsysteem volgens conclusie 2, waarin de lichtbron een instelbare lichtbron is met een smalle band emissiespectrum welke ingesteld kan worden.The optical sensor system of claim 2, wherein the light source is an adjustable light source with a narrow band emission spectrum that can be adjusted. 4. Optisch sensorsysteem volgens conclusie 3, verder omvattende een verwerkingseenheid ingericht om een golflengte te regelen van licht uitgestraald door de instelbare hchtbron en voor ontvangen van het datasignaal gegenereerd door de optische sensor als reactie op ontvangen van licht van de lichtcommunicatiepoort.The optical sensor system of claim 3, further comprising a processing unit adapted to control a wavelength of light emitted from the adjustable hook source and for receiving the data signal generated by the optical sensor in response to receiving light from the light communication port. 5. Optisch sensorsysteem volgens conclusie 4, verder omvattende een eerste dataopslagmodule voor opslaan van verwachte sensorresponsdata, waarin de verwerkingseenheid verder is ingericht om:The optical sensor system of claim 4, further comprising a first data storage module for storing expected sensor response data, wherein the processing unit is further arranged to: de aandrijfmodule aan te sturen om de optische sensorinvoer op te lijnen met de eerste lichtcommunicatiepoort;drive the drive module to align the optical sensor input with the first light communication port; de lichtbron aan te sturen om de golflengte te variëren over een vooraf bepaalde interval;controlling the light source to vary the wavelength over a predetermined interval; het datasignaal te ontvangen van de optische sensor;receive the data signal from the optical sensor; ten minste een deel van de verwachte sensorresponsdata op te halen;retrieve at least part of the expected sensor response data; gebaseerd op een uitkomst van een vergelijking tussen het ontvangen datasignaal en de opgehaalde data, een entiteit te bepalen waarvan een grootte wordt voorgesteld door het ontvangen signaal.based on a result of a comparison between the received data signal and the retrieved data, determine an entity whose size is represented by the received signal. 6. Optisch sensorsysteem volgens conclusie 4 of conclusie 5, verder omvattende een tweede dataopslagmodule voor opslaan van adresinformatie, waarin de verwerkingseenheid is ingericht data op te slaan en op te halen van de tweede dataopslagmodule, welke data ten minste een dataset omvat omvattende ten minste een van een locatie van een lichtcommunicatiepoort, een entiteit en een golflengte of golflengte-interval.The optical sensor system of claim 4 or claim 5, further comprising a second data storage module for storing address information, wherein the processing unit is arranged to store and retrieve data from the second data storage module, said data comprising at least one data set from a location of a light communication port, an entity, and a wavelength or wavelength interval. 7. Optisch sensorsysteem volgens conclusie 6, waarin de dataset verder een entiteit omvat.The optical sensor system of claim 6, wherein the data set further comprises an entity. 8. Optisch sensorsysteem volgens een van de voorgaande conclusies, waarin de aandrijfmodule verder is ingericht om de eerste van de optische sensorinvoer en het veelvoud aan lichtcommunicatiepoorten langs een tweede as aan te drijven ten opzichte van de tweede van de optische sensorinvoer en het veelvoud aan lichtcommunicatiepoorten en het veelvoud aan communicatiepoorten langs de tweede as op een afstand van elkaar geplaatst zijn.The optical sensor system of any preceding claim, wherein the drive module is further adapted to drive the first of the optical sensor input and the plurality of light communication ports along a second axis relative to the second of the optical sensor input and the plurality of light communication ports and the plurality of communication ports are spaced along the second axis. 9. Optisch sensorsysteem volgens conclusie 8, waarin de tweede as loodrecht op de eerste as staat.The optical sensor system of claim 8, wherein the second axis is perpendicular to the first axis. 10. Optisch sensorsysteem volgens een van de voorgaande conclusies, waarin de eerste as een roterende of gekromde as is.Optical sensor system according to any of the preceding claims, wherein the first axis is a rotating or curved axis. 11. Optisch sensorsysteem volgens een van de conclusie 8-10, waarin de optische sensorinvoer bevestigd is op de aandrijfmodule zodanig dat de aandrijfmodule is ingericht om de positie van de optische sensorinvoer ten opzicht van het veelvoud aan lichtcommunicatiepoorten aan te drijven.The optical sensor system according to any of claims 8-10, wherein the optical sensor input is mounted on the drive module such that the drive module is arranged to drive the position of the optical sensor input relative to the plurality of light communication ports. 12. Optisch sensorsysteem volgens een van de voorgaande conclusies, waarin de optische sensorinvoer een optische fiber omvat welke aan een proximaal uiteinde verbonden is met de optische sensor.An optical sensor system according to any of the preceding claims, wherein the optical sensor input comprises an optical fiber connected at a proximal end to the optical sensor. 13. Optisch sensorsysteem volgens een van de voorgaande conclusies, waarin het veelvoud aan lichtcommunicatiepoorten is ingericht voor ontvangen van een optische fiber.An optical sensor system according to any preceding claim, wherein the plurality of light communication ports are arranged to receive an optical fiber. 14. Optisch sensorsysteem volgens conclusie 13, verder omvattende een fiberaandrijfmodule voor aandrijven van een optische sondefiber, in het bijzonder voor insteken of uittrekken van een distaai uiteinde van de optische sondefiber in of uit een medium.The optical sensor system of claim 13, further comprising a fiber driver module for driving an optical probe fiber, in particular for inserting or pulling a distal end of the optical probe fiber into or out of a medium. 15. Optisch sensorsysteem volgens conclusie 13, verder omvattende een fiberaandrijfregelaar ingericht om werking van de fiberaandrijfmodule te regelen en verbonden met de optische sensor, waarin de fiberaandrijfregelaar verder is ingericht om de optische sondefiber terug te trekken wanneer het datasignaal aan een vooraf bepaalde conditie voldoet.The optical sensor system of claim 13, further comprising a fiber driver controller arranged to control operation of the fiber driver module and connected to the optical sensor, wherein the fiber driver controller is further arranged to retract the optical probe fiber when the data signal satisfies a predetermined condition.
NL2021441A 2018-08-08 2018-08-08 Mechanical multiplexing of optical sensor NL2021441B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2021441A NL2021441B1 (en) 2018-08-08 2018-08-08 Mechanical multiplexing of optical sensor
PCT/NL2019/050522 WO2020032798A1 (en) 2018-08-08 2019-08-08 Mechanical multiplexing of optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2021441A NL2021441B1 (en) 2018-08-08 2018-08-08 Mechanical multiplexing of optical sensor

Publications (1)

Publication Number Publication Date
NL2021441B1 true NL2021441B1 (en) 2020-02-20

Family

ID=63834605

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2021441A NL2021441B1 (en) 2018-08-08 2018-08-08 Mechanical multiplexing of optical sensor

Country Status (2)

Country Link
NL (1) NL2021441B1 (en)
WO (1) WO2020032798A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830503A (en) * 1986-04-16 1989-05-16 Fuji Photo Film Co., Ltd. Reflection density measuring system
US5589351A (en) * 1994-12-06 1996-12-31 Nps Pharmaceuticals, Inc. Fluorescence detection apparatus
US20050272046A1 (en) * 2003-06-09 2005-12-08 Schermer Mack J Methods, apparatus and compositions for improved measurements with optical biosensors
US20070098594A1 (en) * 2005-11-03 2007-05-03 Roche Molecular Systems, Inc. Analytical multi-spectral optical detection system
US20070259441A1 (en) * 2001-02-02 2007-11-08 Saaski Elric W Enhanced waveguide and method
US20180031476A1 (en) * 2015-02-27 2018-02-01 Ldip, Llc Waveguide-based detection system with scanning light source

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014464C2 (en) 2000-02-22 2001-08-24 Tno Optical sensor for measuring oxygen.
EP1134583A1 (en) 2000-03-17 2001-09-19 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Measuring metabolic rate changes
NL1021258C2 (en) 2002-08-12 2004-02-17 Tno Method and device for determining the number of living cells in a test fluid and the use thereof.
EP1700520A1 (en) 2005-03-09 2006-09-13 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Multifold oxygen measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830503A (en) * 1986-04-16 1989-05-16 Fuji Photo Film Co., Ltd. Reflection density measuring system
US5589351A (en) * 1994-12-06 1996-12-31 Nps Pharmaceuticals, Inc. Fluorescence detection apparatus
US20070259441A1 (en) * 2001-02-02 2007-11-08 Saaski Elric W Enhanced waveguide and method
US20050272046A1 (en) * 2003-06-09 2005-12-08 Schermer Mack J Methods, apparatus and compositions for improved measurements with optical biosensors
US20070098594A1 (en) * 2005-11-03 2007-05-03 Roche Molecular Systems, Inc. Analytical multi-spectral optical detection system
US20180031476A1 (en) * 2015-02-27 2018-02-01 Ldip, Llc Waveguide-based detection system with scanning light source

Also Published As

Publication number Publication date
WO2020032798A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP5396043B2 (en) Self-sterilization equipment
US4803992A (en) Electro-optical instruments and methods for producing same
CN108351301B (en) System and method for color imaging
CN105263415B (en) Tunable laser array system
US5984861A (en) Endofluorescence imaging module for an endoscope
CN1777802B (en) Fluirescence observation equipment
TW201348753A (en) Angle of incidence selective band pass filter for implantable chemical sensor
US20090076329A1 (en) Disposable Stereoscopic Endoscope System
CN113318324A (en) Catheter with optical shape sensing capability
US20020115918A1 (en) Miniature spectrometer
DE102004029810A1 (en) Method and device which uses reflection measurement of optical polarized waves in the time domain for safety applications
EP0650601A1 (en) Apparatus for sensing and locating radioactive biological tracers.
JP2007143624A (en) Fluorescence observation apparatus
KR20020063576A (en) Turbidimeter array system
NL2021441B1 (en) Mechanical multiplexing of optical sensor
CA2564282C (en) Endoscopic light source safety and control system with optical sensor
US8717654B2 (en) Optical probe with feedback correction
AU2021204316B2 (en) A magneto-encephalography device
US20140001348A1 (en) Automated shutter for dark acclimating samples
JP2006122195A (en) Endoscope optical system
WO2019118582A2 (en) Multi-z confocal imaging system
US20200103346A1 (en) Scalable, Large-Area Optical Sensing Platform with Compact Light Delivery and Imaging System
KR20240072130A (en) Therapeutic diagnostic laser system
JP4459724B2 (en) Endoscope light source device
DE102008020201A1 (en) Measuring device for determining distance between object and light wave guide, has receiver formed as multi-pixel photon counter, where light waves transmitted from light wave guide are emitted directly to counter and absorbed by counter

Legal Events

Date Code Title Description
RE Seizure

Free format text: SEIZURE, PRE-JUDGEMENT ATTACHEMENT

Effective date: 20210521

RF Pledge or confiscation terminated

Free format text: SEIZURE REMOVAL, PRE-JUDGEMENT ATTACHEMENT

Effective date: 20230518