NL2021031B1 - Operating a fan of an engine-generator - Google Patents

Operating a fan of an engine-generator Download PDF

Info

Publication number
NL2021031B1
NL2021031B1 NL2021031A NL2021031A NL2021031B1 NL 2021031 B1 NL2021031 B1 NL 2021031B1 NL 2021031 A NL2021031 A NL 2021031A NL 2021031 A NL2021031 A NL 2021031A NL 2021031 B1 NL2021031 B1 NL 2021031B1
Authority
NL
Netherlands
Prior art keywords
fan
engine
speed
temperature
sensor
Prior art date
Application number
NL2021031A
Other languages
Dutch (nl)
Inventor
Elbertus De Graaf Dirkjan
Louis Van Rijs Adriaan
Original Assignee
Bredenoord Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bredenoord Holding B V filed Critical Bredenoord Holding B V
Priority to NL2021031A priority Critical patent/NL2021031B1/en
Priority to EP19177243.3A priority patent/EP3575569A1/en
Application granted granted Critical
Publication of NL2021031B1 publication Critical patent/NL2021031B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/40Oil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/42Intake manifold temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

An engine-generator comprises an internal combustion engine, a generator for providing electrical energy, a radiator and a fan for providing an air flow over the radiator. The fan is driven by an electromotor having a controllable angular speed. The generator further comprises a fan controller arranged to receive sensor data from sensors comprised by the generator unit for sensing at least one of engine status parameters and ambient parameters, the fan controller being further arranged to control the speed of the electromotor in response to the received sensor data at a controlled annular speed between a minimum speed and a maximum speed. An electromotor for powering a fan switching on and off has appeared to consume more power than a fan providing an air flow just enough for proper cooling. By controlling the angular speed of the fan, such more efficient use of available energy is provided.

Description

TECHNICAL FIELD
The various aspects and implementations thereof relate to a fan system for an engine-generator comprising an internal combustion engine, an electrical generator and a fan.
BACKGROUND
Combustion engines need to be cooled. They are usually either liquid cooled or air cooled. In both cases, an air flow is provided by means of a fan, which flows along a radiator or the engine, respectively. The fan is connected to the crankshaft of the engine or powered by a separate electromotor that switches on or off, triggered by a thermostat that senses the temperature of the engine.
SUMMARY
The fan consumes a significant amount of energy generated by the generator, up to 10%. Therefore, it is preferred to provide an efficient way of operating the fan system.
A first aspect provides an engine-generator comprising an internal combustion engine, an generator connected to the engine for converting mechanical energy to electrical energy, a radiator connected to the combustion engine via a coolant circuit and a fan for providing an air flow over the radiator. The fan comprises a rotor having blades and an electromotor having a controllable annular speed connected to the rotor. The generator further comprises a fan controller arranged to receive sensor data from sensors comprised by the generator unit for sensing at least one of engine status parameters and ambient parameters, the fan controller being further arranged to control the speed of the electromotor in response to the received sensor data at a controlled annular speed between a minimum speed and a maximum speed.
An electromotor for powering a fan switching on and off has appeared to consume more power than a fan providing an air flow just enough for proper cooling. By controlling the angular speed of the fan, such more efficient use of available energy is provided.
In an embodiment, the engine comprises at least one of a coolant temperature sensor for sensing coolant temperature and an inlet air temperature sensor for sensing inlet air temperature and the wherein engine is provided with an engine control unit for collecting data from the sensors and providing the collected data to the fan controller.
These parameters provide relevant input for controlling the fan.
An embodiment further comprises at least one of an ambient temperature sensor for sensing ambient temperature and an ambient humidity sensor for sensing humidity sensor, wherein the fan controller is arranged to receive collected data.
These parameters determine whether and how the engine may require any further cooling. If the outside temperature - or air temperature within a housing of the engine-generator - is relatively high, more air flow may be required as with lower ambient temperatures, with the same engine coolant temperature.
A second aspect provides a method of operating an electromotor of a for driving a fan comprising a rotor having blades comprised by an enginegenerator unit comprising an internal combustion engine, an generator connected to the engine for converting mechanical energy to electrical energy, a radiator connected to the combustion engine via a coolant circuit, a fan for providing an air flow over the radiator and sensors for sensing at least one of engine status parameters and ambient parameters. The method comprises receiving sensor data and controlling annular speed of the electromotor at a controlled annular speed between a minimum speed and a maximum speed.
BRIEF DESCRIPTION OF THE DRAWINGS
The various aspects and embodiments thereof will now be described in further detail in conjunction with drawings. In the drawings:
Figure 1: shows a schematic representation of an enginegenerator; and
Figure 2: shows a flowchart of a procedure executed by the engine-generator.
DETAILED DESCRIPTION
Figure 1 shows a schematic view of an engine generator 100. The engine generator comprises an internal combustion engine 120, an electrical generator 110, a fan module 130 and a radiator 140 connected to the engine 120 via a coolant circuit 142. The coolant circuit 142 is shown comprising a single duct to enhance clarity of the figure; in practice, the coolant circuit 142 comprises a duct for transfer of coolant to the radiator 140 and a duct for transfer of coolant to the engine 120. The coolant circuit 142 may to that purpose comprise a pump. The coolant is preferably liquid.
The electrical generator 110 is provided with a power supply line 190 for providing high power electricity generated by the electrical generator 110. the power supply line 190 preferably provides three phase alternating current and may further comprise at least one of a ground line or a zero line.
The engine generator 100 further comprises a central processing unit 162 for controlling operation of the engine generator 100. The central processing unit 162 is connected to a storage module 164, a communication unit 166 and a screen 168. The storage module 164 is arranged for storing code for programming the central processing unit 162 to operate the engine generator 100 in accordance with the various aspects and examples discussed in this document. Furthermore, the storage module 164 may store data to be displayed on the screen 168 for informing user about the engine generator 100 and various components thereof. The communication unit 166 is arranged to send out data and receive data, for example for monitoring of the engine-generator 100 and/or for controlling the engine-generator 100.
The central processing unit 162 is connected to an engine control unit 122 comprised by the engine 120, to a fan control unit 138, a fan drive unit 136 and an environmental sensor module 180 via a bus system 150. The bus system 150 comprises a communication line and a bus controller and is preferably implemented as a CAN bus, though other bus systems may be used as well. The bus system 150 is preferably compatible with common automotive standards over which, among others, the engine control unit 122 is arranged to communicate as well. The fan control unit 138 is in Figure 1 shown as a separate component; in another implementation, functionality of the fan control unit may be comprised by the central processing unit 162. Alternatively, the various components are connected by means other than a bus system.
The fan module 130 comprises a hub 132 to which two, three, four, five, six, or more blades 134 are connected in equiangular positions. In another embodiment, the blades are connected at their outmost edges to an annular hub that is driven at the outer perimeter of the fan. The hub 132 is connected to the fan drive unit 136. The fan drive unit 136 is arranged to receive operating instructions via the bus system 150. The fan drive unit 136 is arranged to operate at multiple angular velocities between zero and a maximum speed. The multiple angular velocities may be discrete level or, alternatively, be set at any position between zero and maximum on a continuous scale.
The fan drive unit 136 comprises a bus communication unit 172, an instruction interpreter 174 and an electromotor 176. The bus communication unit 172 receives instructions, the instruction interpreter 174 translates the instructions to power to be provided to the electromotor 176 and the electromotor 176 drives the hub 132, thus rotating the blades 134. Rotation of the blades provides an air flow along the radiator 140, taking up thermal energy from the radiator 140. The coolant releases thermal energy, after which is may take up thermal energy from the engine 120, thus cooling the engine 120.
Figure 2 shows a first flowchart 200 depicting a procedure for operation of a fan system comprising the fan control unit 138 and the fan drive unit 136. The various parts of the first flowchart 200 are briefly summarised below and will subsequently be discussed in further detail. The procedure may be carried out by the fan control unit 138, the central processing unit 162, by another circuit or a combination thereof.
202 start procedure
204 start engine
206 run engine
208 obtain engine temperature
210 temperature at or above set point?
212 obtain engine data
214 obtain ambient data
216 temperature above set point?
218 determine first fan speed
220 run fan at first fan speed
222 temperature at of below set point?
224 determine second fan speed
226 run fan at second fan speed
228 switch off fan
The procedure starts in a terminator 202 and proceeds to step 204 at which the engine 120 is started; the engine is run in step 206. Subsequently, engine temperature is obtained at step 208. The engine temperature is preferably obtained by means of the engine control unit 122. Alternatively, the temperature and other parameters may be collected by means of separate sensors connected to any of the other controllers comprised by the engine-generator 100. The engine temperature may be obtained as temperature of the coolant in the engine or leaving the engine, but it ma also be obtained through other sensing means inside or outside the engine 120.
At step 210, it is determined whether the engine temperature is at or above a predetermined threshold. If this is not the case, the fan is switched off in step 228 - in case the fan would be running - and the procedure loops back to step 206.
If the engine temperature is at or above a predetermined threshold, the procedure continues to step 212, at which engine data other than engine temperature may be obtained. Engine parameters may include at least one of oil temperature, crank shaft torque, engine power, intercooler temperature, crank shaft angular speed, engine power, other parameters, or a combination thereof.
In step 214, data on environmental parameters are obtained via the environmental sensor module 180. Such environmental parameters may include at least one of inlet air temperature, outside temperature, temperature within a housing of the engine-generator 100, air humidity either inside or outside the housing, or a combination thereof.
In step 216, it is determined whether the engine temperature is at a set point. Such set point may be a specific temperature, but is may also be a temperature range preferred for the engine 120 is preferred to operate in. Such temperature or temperature range may be pre-det. Alternatively, it may depend on certain engine operating conditions like engine load between minimum and maximum - or environmental conditions.
If the engine temperature is at the pre-determined set point, the procedure continues to step 224. If the temperature of the engine 120 is found to be higher than the set point, the procedure continues to step 218, at which a first fan speed is determined. The first fan speed is a speed at which sufficient air is provided to the radiator 140 for sufficiently cooling coolant to lower temperature of the engine 120, within an acceptable, optionally preset, amount of time. The first fan speed may be calculated using at least one of the parameters obtained, including outside air temperature and outside air humidity, as well as engine parameters.
At step 220, the electromotor 176 is driven to have the fan running at the first fan speed, by providing the appropriate instruction to the fan driving unit 136 over the bus system 150. The procedure proceeds to step 220, at which the temperature of the engine is checked to the set point. If the temperature is still above the set point, the process branches back to step 220. If the temperature is at or below the set point, the procedure continues to step 224.
In step 224, a second fan speed is calculated for driving the fan module 130 at a speed that is sufficient for providing an air flow for maintaining temperature of the engine 120 at the pre set temperature (point or range). This fan speed is determined using engine parameters and ambient parameters obtained earlier. Alternatively or additionally, parameters may be refreshed at this point. It is noted that the fan speed to maintain the temperature of the engine 120 depends on the load of the engine 120; while engine load increases while executing the depicted procedure, the required angular speed of the fan for providing a proper air flow to maintain temperature may change.
In step 226, the fan is run at the second speed by providing the bus communication unit 172, over the bus system 150, an instruction for running the electromotor 176 at the determined second fan speed. Subsequently, the procedure branches back to step 206. At the fan 130 module, data may be collected like fan temperature, fan angular speed, fan power, fan status, ambient temperature, other or a combination thereof. Values of such parameters may be sent back to the fan controller 138 and/or the central processing unit over the bus system 150 for further use, like optionally setting a desired fan speed or generating a warning message.
During the procedure, outside carrying out of the procedure, safety measures are applied. As one safety measure, temperatures may measured, including at least one of engine oil temperature, coolant temperature (leaving the engine or entering the engine) ambient, temperature, fan temperature or engine temperature. If the temperature is too high or too low - beyond safety limits -, a warning message may be displayed on the screen 168. Such warning message is preferably pre-stored in the memory module 164. .
In summary, the various aspects and implementations thereof relate to an engine-generator comprises an internal combustion engine, a generator for providing electrical energy, a radiator and a fan for providing an air flow over the radiator. The fan is driven by an electromotor having a controllable angular speed. The generator further comprises a fan controller arranged to receive sensor data from sensors comprised by the generator unit for sensing at least one of engine status parameters and ambient parameters, the fan controller being further arranged to control the speed of the electromotor in response to the received sensor data at a controlled annular speed between a minimum speed and a maximum speed. An electromotor for powering a fan switching on and off has appeared to consume more power than a fan providing an air flow just enough for proper cooling. By controlling the angular speed of the fan, such more efficient use of available energy is provided.
In the description above, it will be understood that when an element such as layer, region or substrate is referred to as being “on” or “onto” another element, the element is either directly on the other element, or intervening elements may also be present. Also, it will be understood that the values given in the description above, are given by way of example and that other values may be possible and/or may be strived for.
Furthermore, the invention may also be embodied with less components than provided in the embodiments described here, wherein one component carries out multiple functions. Just as well may the invention be embodied using more elements than depicted in the Figures, wherein functions carried out by one component in the embodiment provided are distributed over multiple components.
It is to be noted that the figures are only schematic representations of embodiments of the invention that are given by way of non-limiting examples. For the purpose of clarity and a concise description, features are described herein as part of the same or separate embodiments, however, it will be appreciated that the scope of the invention may include embodiments having combinations of all or some of the features described. The word ‘comprising’ does not exclude the presence of other features or steps than those listed in a claim. Furthermore, the words 'a' and 'an' shall not be construed as limited to 'only one', but instead are used to mean 'at least one', and do not exclude a plurality.
A person skilled in the art will readily appreciate that various parameters and values thereof disclosed in the description may be modified and that various embodiments disclosed and/or claimed may be combined without departing from the scope of the invention.
It is stipulated that the reference signs in the claims do not limit the scope of the claims, but are merely inserted to enhance the legibility of the claims.

Claims (7)

ConclusiesConclusions 1. Aggregaat omvattende een verbrandingsmotor, een generator verbonden aan de motor voor omzetten van mechanische energie naar elektrische energie, een radiator verbonden met de verbrandingsmotor via een koelcircuit en een ventilator voor voorzien van een luchtstroom over de radiator;An aggregate comprising a combustion engine, a generator connected to the engine for converting mechanical energy into electrical energy, a radiator connected to the combustion engine via a cooling circuit and a fan for providing an air flow over the radiator; de ventilator omvattende een rotor met bladen en een elektromotor met een regelbare rotatiesnelheid verbonden met de rotor;the fan comprising a rotor with blades and an electric motor with an adjustable rotation speed connected to the rotor; de generator verder omvattende een ventilatorregelaar ingericht om sensordata te ontvangen van sensoren omvat door de generatoreenheid voor meten van ten minste een van motorstatusparameters en omgevingsparameters, de ventilatorregelaar zijnde verder ingericht om de snelheid van de elektromotor te regelen met een geregelde rotatiesnelheid tussen een minimale snelheid en een maximale snelheid als reactie op de ontvangen sensordata.the generator further comprising a fan controller adapted to receive sensor data from sensors included by the generator unit for measuring at least one of engine status parameters and environmental parameters, the fan controller being further adapted to control the speed of the electric motor with a controlled rotation speed between a minimum speed and a maximum speed in response to the sensor data received. 2. Aggregaat volgens conclusie 1, waarin de motor ten minste een van een koelmiddeltemperatuursensor voor meten van koelmiddeltemperatuur en een inlaatluchttemperatuursensor voor meten van inlaatluchttemperatuur omvat en waarin de motor is voorzien van een motorregeleenheid voor verzamelen van data van de sensoren en voorzien van de verzamelde data aan de ventilatorregelaar.2. Aggregate according to claim 1, wherein the engine comprises at least one of a coolant temperature sensor for measuring coolant temperature and an inlet air temperature sensor for measuring inlet air temperature and wherein the engine is provided with a motor control unit for collecting data from the sensors and provided with the collected data on the fan controller. 3. Aggregaat volgens een van de voorgaande conclusies, waarin de motor een intercooler omvat en verder omvattende ten minste een van een olietemperatuursensor voor meten van olietemperatuur en een intercoolertemperatuursensor voor meten van een intercoolertemp er atuur en waarin de motor is voorzien van een motorregeleenheid voor verzamelen van data van de sensoren en voorzien van de verzamelde data aan de ventilatorregelaar.3. An aggregate according to any one of the preceding claims, wherein the engine comprises an intercooler and further comprising at least one of an oil temperature sensor for measuring an oil temperature and an intercooler temperature sensor for measuring an intercooler temperature and wherein the engine is provided with an engine control unit for collecting of data from the sensors and provided with the collected data at the fan controller. 4. Aggregaat volgens een van de voorgaande conclusies, verder omvattende ten minste een van een motorbelastingssensor voor meten van motorbelasting en een motorhoeksnelheidsensor voor meten van een motorhoeksnelheid, waarin de motor is voorzien van een motorregeleenheid voor verzamelen van data van de sensoren en voorzien van de verzamelde data aan de ventilatorregelaar.4. An aggregate according to any one of the preceding claims, further comprising at least one of an engine load sensor for measuring engine load and an engine angle speed sensor for measuring an engine angular velocity, wherein the engine is provided with an engine control unit for collecting data from the sensors and provided with the collected data at the fan controller. 5. Aggregaat volgens een van de voorgaande conclusies, verder omvattende ten minste een van een omgevingstemperatuursensor voor meten van omgevingstemperatuur en een omgevingsvochtigheidsensor voor meten van omgevingsvochtigheid, waarin de ventilatorregelaar is ingericht de verzamelde data te ontvangen.The aggregate of any preceding claim, further comprising at least one of an ambient temperature sensor for measuring ambient temperature and an ambient humidity sensor for measuring ambient humidity, wherein the fan controller is adapted to receive the collected data. 6. Aggregaat volgens een van de voorgaande conclusies, waarin de ventilatorregelaar is ingericht om, gebaseerd op ontvangen sensordata, een hoeksnelheid van de elektromotor te bepalen gebaseerd op ten minste een van bereiken of behouden van een setpuntkoelmiddeltemperatuur.An aggregate according to any one of the preceding claims, wherein the fan controller is adapted to determine, based on received sensor data, an angular speed of the electric motor based on at least one of reaching or maintaining a set point coolant temperature. 7. Aggregaat volgens een van de voorgaande conclusies, waarin de ventilator ten minste een van een ventilatorhoeksnelheidsensor omvat voor meten van ventilatorhoeksnelheid, een ventilatorvermogenssensor voor meten van ventilatorvermogen, een ventilatortemp er atuursensor voor meten van ventilatorteinperatuur, en een omgevingstemperatuursensor voor meten vanAn aggregate according to any one of the preceding claims, wherein the fan comprises at least one of a fan angle speed sensor for measuring fan angle speed, a fan power sensor for measuring fan power, a fan temperature sensor for measuring fan temperature, and an ambient temperature sensor for measuring omgevingstemperatuur, de sensor zijnde ingericht om sensordata aan de ventilatorregelaar te voorzien. ambient temperature, the sensor being arranged to provide sensor data to the fan controller. 8. 8. Aggregaat volgens een van de voorgaande conclusies, verder omvattende een bussysteein ingericht om sensordata te communiceren aan de ventilatorregelaar en om ventilatorvermogendata te communiceren omvattende instructies aan de ventilator welke de ventilator in staat stelt om op een geïnstrueerde hoeksnelheid te opereren. Aggregate according to any of the preceding claims, further comprising a bus stone arranged to communicate sensor data to the fan controller and to communicate fan power data including instructions to the fan which enables the fan to operate at an instructed angular velocity. 9. 9. Aggregaat volgens een van de conclusies 2-8, waarin de motorregeleenheid verbonden is aan het bussysteein. An aggregate according to any one of claims 2-8, wherein the engine control unit is connected to the bus stone. 10. 10. Aggregaat volgens conclusie 8 of 9, waarin het bussysteein een CANbus is. Aggregate according to claim 8 or 9, wherein the bussteein is a CAN bus. 11. 11. Aggregaat volgens een van de voorgaande conclusies, waarin de ventilatorregelaar verder is ingericht om, gebaseerd op de ontvangen sensordata, te bepalen of de ventilator voldoende lucht kan leveren voor koelen van de radiator voor behalen van een setpunttemperatuur en om een eerste signaal af te geven als de ventilator niet voldoende lucht kan leveren voor koelen van de radiator om de setpunttemperatuur te behalen. An aggregate according to any one of the preceding claims, wherein the fan controller is further adapted to determine, based on the received sensor data, whether the fan can supply sufficient air to cool the radiator to achieve a set point temperature and to output a first signal as the fan cannot supply sufficient air for cooling the radiator to reach the set point temperature. 12. 12. Aggregaat volgens een van de voorgaande conclusies, verder omvattende een beeldscherm en een centrale regeleenheid verbonden aan de ventilatorregeleenheid voor ontvangen van data van de ventilatorregeleenheid en ingericht om beeldschermdata te voorzien aan het beeldscherm gerelateerd aan ten minste een van de sensordata en de ventilatorstatus. An aggregate according to any of the preceding claims, further comprising a display and a central control unit connected to the fan control unit for receiving data from the fan control unit and adapted to provide display data to the display related to at least one of the sensor data and the fan status.
13. Aggregaat volgens conclusie 12, verder omvattende een communicatie-eenheid verbonden aan de centrale regeleenheid, de communicatie-eenheid ingericht om ten minste een van sensordata en statusdata aan een eenheid te voorzien buiten de generatoreenheid.The aggregate of claim 12, further comprising a communication unit connected to the central control unit, the communication unit adapted to provide at least one of sensor data and status data to a unit outside the generator unit. 14. Werkwijze voor bedienen van een elektromotor voor aandrijven van een ventilator omvattende een rotor met bladen omvat door een aggregaat omvattende een verbrandingsmotor, een generator verbonden aan de motor voor omzetten van mechanische energie naar elektrische energie, een radiator verbonden met de verbrandingsmotor via een koelcircuit, een ventilator voor voorzien van een luchtstroom over de radiator en sensoren voor meten van ten minste een van motorstatusparameters en om ge vin gsp ar am eters;14. Method for operating an electric motor for driving a fan comprising a rotor with blades comprising an aggregate comprising a combustion engine, a generator connected to the engine for converting mechanical energy into electrical energy, a radiator connected to the combustion engine via a cooling circuit , a fan for providing an air flow over the radiator and sensors for measuring at least one of engine status parameters and surrounding parameters; de werkwijze omvattende ontvangen van sensordata en regelen van hoeksnelheid van de elektromotor op een geregelde hoeksnelheid tussen een minimale snelheid en een maximale snelheid.the method comprising receiving sensor data and controlling angular speed of the electric motor at a controlled angular speed between a minimum speed and a maximum speed. 15. Werkwijze volgens conclusie 14, verder omvattende, gebaseerd op ontvangen sensordata, bepalen van een hoeksnelheid van de elektromotor nodig voor ten minste een van bereiken en behouden van een setpuntkoelmiddeltemperatuur.The method of claim 14, further comprising, based on received sensor data, determining an angular velocity of the electric motor necessary for at least one of achieving and maintaining a set point coolant temperature. 1/21/2 176176
NL2021031A 2018-05-31 2018-05-31 Operating a fan of an engine-generator NL2021031B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2021031A NL2021031B1 (en) 2018-05-31 2018-05-31 Operating a fan of an engine-generator
EP19177243.3A EP3575569A1 (en) 2018-05-31 2019-05-29 Engine-generator with an electrical cooling fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2021031A NL2021031B1 (en) 2018-05-31 2018-05-31 Operating a fan of an engine-generator

Publications (1)

Publication Number Publication Date
NL2021031B1 true NL2021031B1 (en) 2019-12-11

Family

ID=63684385

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2021031A NL2021031B1 (en) 2018-05-31 2018-05-31 Operating a fan of an engine-generator

Country Status (2)

Country Link
EP (1) EP3575569A1 (en)
NL (1) NL2021031B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369345B (en) * 2023-11-28 2024-06-14 北京东华博泰科技有限公司 Unified processing system and method for data acquisition of Internet of things in industrial environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088348A1 (en) * 2000-05-12 2001-11-22 Atlas Copco Airpower, Naamloze Vennootschap Power supply unit
US20050284423A1 (en) * 2004-06-29 2005-12-29 Katsuyuki Fujie Engine cooling apparatus
US20110042964A1 (en) * 2009-08-20 2011-02-24 Advanced Dynamo Industries Reliability and serviceability enhanced engine driven electrical generating system
WO2013142391A1 (en) * 2012-03-23 2013-09-26 Concentric Power, Inc. Systems and methods for power cogeneration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088348A1 (en) * 2000-05-12 2001-11-22 Atlas Copco Airpower, Naamloze Vennootschap Power supply unit
US20050284423A1 (en) * 2004-06-29 2005-12-29 Katsuyuki Fujie Engine cooling apparatus
US20110042964A1 (en) * 2009-08-20 2011-02-24 Advanced Dynamo Industries Reliability and serviceability enhanced engine driven electrical generating system
WO2013142391A1 (en) * 2012-03-23 2013-09-26 Concentric Power, Inc. Systems and methods for power cogeneration

Also Published As

Publication number Publication date
EP3575569A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
CN104104303B (en) Electric motor frequency modulation system
CN106080173A (en) The control method of electric automobile cooling system, device and electric automobile
US20100039055A1 (en) Temperature control of motor
US9337769B2 (en) Method of diagnosing a malfunctioning DC fan motor
US9476945B2 (en) Monitoring motor condition
CN109477326B (en) Control system for air blowing device of construction machine
NL2021031B1 (en) Operating a fan of an engine-generator
US20080164989A1 (en) Cooling system monitoring system
CN107819162B (en) High-voltage battery temperature adjusting system and method and vehicle
US9383414B2 (en) Method of diagnosing a blocked heat exchanger
US20120035783A1 (en) Monitor and control system and method for server model
CN105317521B (en) A kind of electric engine cooling fan multilevel control system
US20230015020A1 (en) Two degrees of control through pulse width modulation interface
RU2006101530A (en) MULTI-FUNCTIONAL PROGRAMMABLE HAIR DRYER FOR MANUAL HAIR
US20140021902A1 (en) Motor controller
CN105352118B (en) A kind of quick configuration method of central air-conditioning based on automatic identification and device
JP7372018B2 (en) Cooling fan control device, cooling device, and cooling fan control method
US9567893B2 (en) System and method for controlling an engine cooling fan
US9385644B2 (en) Sensorless DC fan speed controller
RU2256996C1 (en) Computer-aided winding temperature control system for traction electrical machines with ac motor driven fan
JP2005282556A (en) Fan module
KR20200072917A (en) System for monitoring fan using remote control and method therefor
TWI677447B (en) Vehicle cooling control system and method thereof
JP2003143887A (en) Dc fan motor for controlling air quantity to constant value
CN115168160B (en) VPX server intelligent case monitoring system