NL2020987B1 - Lens system - Google Patents

Lens system Download PDF

Info

Publication number
NL2020987B1
NL2020987B1 NL2020987A NL2020987A NL2020987B1 NL 2020987 B1 NL2020987 B1 NL 2020987B1 NL 2020987 A NL2020987 A NL 2020987A NL 2020987 A NL2020987 A NL 2020987A NL 2020987 B1 NL2020987 B1 NL 2020987B1
Authority
NL
Netherlands
Prior art keywords
lens
lens group
optical unit
abbe
unit according
Prior art date
Application number
NL2020987A
Other languages
Dutch (nl)
Other versions
NL2020987A (en
Inventor
Maria Wolterink Edwin
Vladimirovna Shulepova Yelena
Original Assignee
Anteryon Int B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anteryon Int B V filed Critical Anteryon Int B V
Priority to NL2020987A priority Critical patent/NL2020987B1/en
Priority to US16/416,492 priority patent/US11048067B2/en
Priority to CN201910446102.9A priority patent/CN110596868B/en
Publication of NL2020987A publication Critical patent/NL2020987A/en
Application granted granted Critical
Publication of NL2020987B1 publication Critical patent/NL2020987B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements

Abstract

The present invention relates to an optical unit comprising three lens groups, Le. a first lens group, a second lens group and a third lens group, and an optical unit comprising four lens groups, Le. a first lens group, a second lens group a third lens group and a fourth lens group, which are arranged in order from an object side toward an image side surface side, wherein one or more of said lens groups comprise a substrate having a curved optical surface, wherein said curved optical surface is provided with a polymer layer.

Description

FIELD OF THE INVENTION
The present invention relates to a lens system, more in particular to optical unit comprising three lens groups, i.e. a first lens group, a second lens group and a third lens group, which are arranged in order from an object side toward an image side surface side. The present invention also relates to a lens system, more in particular to optical unit comprising four lens groups, i.e. a first lens group, a second lens group, a third lens group and a fourth lens group, which are arranged in order from an object side toward an image side surface side.
BACKGROUND OF THE INVENTION
Lens systems as such are known and widely used in, inter alia, mobile phones, tablets and compact cameras. The picture quality (resolution) of current cameras used in those handheld devices is relative poor, especially in the corners of images. Although the lens designs used in abovementioned cameras show that very high corner resolution should be possible to achieve in the nominal case, the actual measured resolution is usually significantly lower than the nominal design.
US 2011/124373 relates to an image pickup lens comprising four or more lens blocks, wherein each of the lens blocks is an optical element comprising a lens substrate being a parallel flat plate, and a lens portion or lens portions having positive or negative power and formed on at least one of an object-side surface and image-side surface of the lens substrate, the lens substrate is different in material from the lens portion or lens portions in each of the lens blocks, the lens blocks include, in order from an object side, a first lens block, a second lens block, a third lens block, and a fourth lens block, the first lens block has positive power, the second lens block has negative power, a lens block arranged at a closest position to an image side has a concave shape facing the image side in a paraxial region. All of the lens substrates are parallel flat plates having a same thickness and each of the lens substrates is formed of a glass material.
WO2013/157470 relates to a microscope objective lens wherein the maximum inclination (CRA) of a principal ray between a microscope objective lens and an imaging lens satisfies a conditional expression.
US2012/081595 relates to an image taking optical system comprising, in order from the object side: a first lens having a biconvex shape and having a positive refractive power; a second lens having a meniscus shape with a concave surface facing the object side and having a negative refractive power; a third lens having a negative refractive power; a fourth lens having a meniscus shape with a concave surface facing the object side and having a positive refractive power; and a fifth lens having a negative refractive power, wherein the first lens and the second lens are cemented together.
EP 2 113 800 relates to an image pickup lens, where a lens group is assumed to comprise a lens substrate being a parallel flat plate and a lens or lenses formed on at least one of an object side surface and image side surface of the lens substrate, the image pickup lens comprising: the lens group in which lenses are formed on both sides of the lens substrate.
EP 2 116 882 relates to an imaging lens comprising: at least one lens block including a lens substrate that is a plane-parallel plate, and a lens contiguous with at least one of object-side and image-side substrate surfaces of the lens substrate, the lens exerting a positive or negative optical power; and an aperture stop restricting light amount, wherein the lens included in the lens block is formed of a material different from a material of which the lens substrate is formed; wherein the lens block comprises a first lens block disposed at a most object-side position, the first lens block exerting a positive optical power, and wherein the lens block comprises at least one lens block in which the lens is contiguous only with one of the object-side and image-side substrate surface of the lens substrate, wherein the lens substrate is formed of glass and the lens is formed of resin.
EP 2 113 802 relates to an imaging lens comprising: at least one lens block including a lens substrate that is a plane-parallel plate, and a lens contiguous with at least one of object-side and image-side substrate surfaces of the lens substrate, the lens exerting a positive or negative optical power; and an aperture stop restricting light amount, wherein the lens included in the lens block is formed of a material different from a material out of which the lens substrate is formed; wherein the lens block comprises a first lens block disposed at a most object-side position, the first lens block including, as the lens substrate, a first lens substrate, and as the lens, a lens L[LS1o] contiguous with an object-side substrate surface of the first lens substrate, wherein the lens substrate is formed by cementing together two flat-plateshaped glass pieces, and wherein the aperture stop is located at a cemented surface between the flat-plate-shaped glass pieces.
EP 2 163 931 relates to an imaging lens, comprising: a first lens having a positive refracting power and facing an object; a second lens which is provided on an image side of the first lens and has a concave shape toward an object side; and at least one lens or more provided on the image side of the second lens, wherein lenses can be generated at one time by irradiating UV light after a lens element has been formed on a glass plate.
US2009/310232 relates to an imaging lens comprising: a first lens group that includes sequentially from an object side, a first lens formed of resin and having a positive refractive power and a second lens formed of resin and having a negative refractive power, the first lens and the second lens collectively forming a cemented lens having a positive refractive power; a second lens group that includes a negative lens; a third lens group that includes a positive lens, wherein the first lens group, the second lens group, and the third lens groups are sequentially arranged from the object side.
US2008/118241 relates to a camera system, comprising an optics stack including two substrates secured together in a vertical direction and an optical system on the two substrates, the two substrates having exposed sides; a detector on a detector substrate, and a stray light blocker directly on at least some sides of the optics stack.
US2005/259333 relates to a variable power optical system, that forms an optical image of an object on a light receiving surface of an image sensor for converting an optical image into an electric signal and changing gaps between lens groups in an optically axial direction so as to vary power, said optical system including from an object side: a first lens group having negative optical power, a second lens group having positive optical power; and a third lens group, wherein when the power is varied from a wide-angle end to a telephoto end, the gap between the first lens group and the second lens group is narrowed, the first lens group is composed of two or more lenses, at least three lens groups are composed only a single lens or a lens where countered lens surfaces in the lens group are in close contact with each other without providing a gap.
US2005/286138 relates to a variable magnification optical system which forms optical images of objects on the light-receptive surface of an image pickup device for converting optical images into electrical signals and performs magnification by varying the spacing of respective lens groups in the optical axis direction, said optical system comprising from the object side: a first lens group including plural lenses and at least one aspherical surface and having a negative optical power; and a second lens group having a positive optical power, wherein the spacing between the first lens group and the second lens group is reduced for magnification from the wide-angle end to the telephoto end.
US5978151 relates to an optical system comprising: a plurality of lens elements; and a lens block constituting one or more lens elements in the optical system, wherein an extent of curvature of field asymmetricity in two or more directions is detected by using an off-axial rays that have passed through the lens block and wherein a position of the lens block is adjusted such that the curvature of field asymmetricity is reduced to a minimum.
US2011/102660 relates to an image forming optical system comprising in order from an object side: a lens group B having a negative refracting power; a lens group C having a positive refracting power; and one or two more lens groups additionally, wherein the lens group C moves only toward the object side at the time of zooming from a wide angle end to a telephoto end, and a lens component which is used in the lens group B.
JP2009 251210 relates to a lens block that is a parallel flat plate and a lens that has a positive power or a negative power that is continuous with at least one of the object side substrate surface and the image side substrate surface of the lens substrate, the lens is made of a resin different from the material of the lens substrate.
US2013/265459 relates to a camera array, wherein the optics of each camera comprise a five-surface optical arrangement comprising: a first lens element having a first convex proximal surface and a first concave distal surface, wherein the diameter of the first convex surface is larger than the diameter of the first concave surface; a second lens element having a second concave proximal surface and a second convex distal surface, wherein the diameter of the second concave proximal surface is smaller than the diameter of the second convex surface; a third lens element having a third concave proximal surface and a third planar distal surface, wherein the diameter of the third concave proximal surface is larger than the diameters of any of the surfaces of the first and second lens elements; and wherein the first, second and thirds lens elements are arranged sequentially in optical alignment with an imager positioned at the distal end thereof. The optics of each camera are configured so that each camera has a field of view that is shifted with respect to the field-of-views of the other cameras so that each shift includes a subpixel shifted view of the scene.
US2006/066961 relates to an aspherical lens composed of a substrate member and a member having different composition formed on the substrate member, a boundary between the substrate member and the member having different composition being formed by a first aspherical surface, a surface of the member having different composition opposite to the boundary being formed by a second aspherical surface.
US2005/286138 relates to variable magnification optical system which forms optical images of objects on the light-receptive surface of an image pickup device for converting optical images into electrical signals and performs magnification by varying the spacing of respective lens groups in the optical axis direction, said optical system comprising from the object side, a first lens group including plural lenses and at least one aspherical surface and having a negative optical power; and a second lens group having a positive optical power, wherein the spacing between the first lens group and the second lens group is reduced for magnification from the wide-angle end to the telephoto end.
US2007/275505 relates to a wafer scale package comprising a base substrate having a plurality of image capturing elements, wherein the wafer scale package further comprises a lens substrate having a plurality of lens elements associated with respective image capturing elements, and a spacer means for maintaining a predetermined distance between the lens substrate and the base substrate, whereby the position of the lens substrate relative to the base substrate is fixated by means of an adhesive layer.
US2005/275954 relates to an optical scanning device for scanning an information layer of an optical record carrier, the information layer being covered by a transparent layer of thickness and refractive index, the device comprising a radiation source for generating a radiation beam and an objective system for converging the radiation beam on the information layer, the objective system comprises a lens comprising a synthetic resin on a substrate,
WO2015/080582 relates to an optical unit consisting of four lens groups, i.e. a first lens group, a second lens group, a third lens group and a forth lens group, which are arranged in order from an object side toward an image side surface side, wherein at least the first and second lens group comprise two lens elements, wherein said two lens elements within each lens group have different optical properties, wherein in both the first lens group and the second lens group no glass substrate is present.
The present inventors found that, on a large degree, the resolution degradation is caused by production tolerances in lens manufacturing resulting in decenter deviations up to 5 micrometers, and by tilt of the lens caused by the autofocus system. In addition, it is possible to make a design that is more robust to tolerances. So given production tolerances, by making a more robust design, production tolerances such as decenter will have a limited effect on resolution degradation.
One possible solution is that in current plastic molding lens technology, a more robust design would be possible by relocation the diaphragm from the front towards the middle of the lens system. However, this would result in very thin lenses (< 200-300 urn), which cannot be manufactured by injection molding. Another disadvantage of relocation of the diaphragm is that the nominal design performance gets lower.
Nowadays the trends in cameras for hand-held devices can be identified as follows: higher resolution, higher Mpix count, smaller pixels, lower zheight and higher field of views (from 55 deg to 70 deg).
The consequences of these trends are: optics in cameras require changes in designing the optics for the cameras: low F# and more lens elements are needed, low F# and more lens elements require tighter production tolerances. Lens systems will show an increased sensitivity to manufacturing tolerances such as lens decenter, lens shape deviations and lens tilt. This will be visible in - for example - a low corner resolution, and/or non-uniformity of the resolution in the pictures taken with these cameras. In addition lens performance is highly determined by manufacturing tolerances. The main production tolerances that lead to lower image quality and/or non-uniformity are lens decenter and lens tilt. Typical manufacturing tolerances for injection molding for decenter are typically 3-5 microns. In order to keep the performance degradation to an acceptable low level, typical maximum decenter of 1 micron would be required, which is beyond current manufacturing capability.
SUMMARY OF THE INVENTION
An object of the present invention is thus to develop lens designs that are more robust to tolerances, especially regarding to manufacturing tolerances.
Another object of the present invention is to develop such robust lens designs while maintaining nominal performance.
Another object of the present invention is to provide high performing lens designs showing high level of chromatic properties of the lens, especial aberration, especially chromatic aberration (CA), in a wide temperature range allowing new ways of choosing the lens configuration.
Another object of the present invention is to provide high performing lens designs providing a high level of image quality.
Another object of the present invention is to provide high performing lens designs having small dimensions while maintaining nominal performance.
The present invention relates thus to an optical unit comprising three lens groups, i.e. a first lens group, a second lens group and a third lens group, which are arranged in order from an object side toward an image side surface side, wherein one or more of said lens groups comprise a substrate having a curved optical surface, wherein said curved optical surface is provided with a polymer layer.
In an embodiment of the present optical unit the first lens group and the second lens group each comprise a curved substrate having a curved surface.
In an embodiment of the present optical unit the curved substrate is made of glass. The thermal expansion coefficient of glass is substantially lower than the thermal coefficient of a polymer, for example in a range of > 10 times.
In an embodiment of the present optical unit comprising three lens groups the polymer layer has been manufactured according replication technology. The present the first lens group and the second lens group are preferably groups of contiguous lens elements cemented together by replication technology according to
W02009048320A1 and in preferred embodiments they contain additional integrated intermediate substrates, filters and diaphragms. Injection molded type lenses can be used as well. The contents of W02009048320 are considered to be incorporated here in its entirety.
In an embodiment of the present optical unit the thickness of at least one of said polymer layers is in a range of 10 - 300 micro meter, preferably in a range of 25 - 200 micro meter.
In an embodiment of the present optical unit the first lens group further comprises another polymer layer, the polymer layer positioned adjacent to the curved substrate facing away from the curved surface.
In an embodiment of the present optical unit the second lens group further comprises another polymer layer, the polymer layer positioned adjacent to the curved substrate facing away from the curved surface.
In an embodiment of the present optical unit the additional polymer layer(s) as mentioned above has been manufactured according replication technology as well, for example by replication technology according to W02009048320A1 .
In an embodiment of the present optical unit comprising three lens groups the third lens group comprises two lens elements, wherein the two lens elements within the fourth lens group have different optical properties, wherein in the third lens group no glass substrate is present.
In the present optical unit comprising three lens groups the third lens group can be identified as a wafer level optics bimaterial lens system, the third lens group being an assembly of at least two contiguous lens elements comprising at least two different lens materials having different optical properties.
The present term “bimaterial lenses “refers to the use of two different materials in one lens, e.g... a lens element X made of material Q (e.g. photo curable epoxy resin) and a lens element Z (e.g. photo curable acrylic resin) made of material P, wherein both lens element X and lens element Y form together a lens.
In an embodiment of the present optical unit comprising three lens groups each of the two lens elements within said third lens group have been manufactured according replication technology.
In an embodiment of the present optical unit comprising three lens groups no flat glass support is present in at least one or more of the first, second and third lens groups.
In an embodiment of the present optical unit comprising three lens groups the first lens group has a positive refraction power, especially the second lens has a positive refraction power, especially the third lens group has a negative refraction power.
In an embodiment of the present optical unit comprising three lens groups wherein a focal length of the integral optical camera lens is f, a focal length of said first lens group is f 1, a focal length of said second lens group is f2, a focal length of said third lens group is f3, the following relational expressions apply:
0.5 < f1/f < 1;
0.5 < f2/f< 1;
-1< f3/f< -0.1.
In an embodiment of the present optical unit comprising three lens groups the range of index (n) and Abbe properties in said first lens group are:
(A) 1.5< n < 1.8, 40 < Abbe < 80 (B) 1.4< n < 1.8,60 < Abbe < 90 (C) 1.5< n < 1.8, 20 < Abbe < 40, wherein the term “A” refers to a lens element toward an object side, the term (B) refers to a curved substrate, and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical unit comprising three lens groups the range of index (n) and Abbe properties in said second lens group are:
(A) 1.5< n < 1.8, 20 < Abbe < 40 (B) 1.4< n < 1.8,40 < Abbe < 80 (C) 1.5< n < 1.8, 40 < Abbe < 80, wherein the term “A” refers to a lens element toward an object side, the term (B) refers to a curved substrate, and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical unit comprising three lens groups the range of index (n) and Abbe properties in said third lens group are:
(A) 1.4< n < 1.7, 30 < Abbe < 60 (C) 1.5< n < 1.8 , 20 < Abbe < 50, wherein the term “A” refers to a lens element toward an object side and the term “C” refers to a lens element towards an image surface side.
The present invention also relates to a lens system, more in particular to optical unit comprising four lens groups, i.e. a first lens group, a second lens group, a third lens group and a forth lens group, which are arranged in order from an object side toward an image side surface side.
In an embodiment of the present optical unit comprising four lens groups the first lens group has positive refraction power, especially the second lens group has positive refraction power, especially the third lens group has positive refraction power and especially the fourth lens group has negative refraction power, wherein the order from an object side toward an image side surface side is: first lens group, second lens group, third lens group and fourth lens group, said fourth lens group here being a lens group comprising two lens elements, wherein said two lens elements within said lens group have different optical properties, wherein in said third lens group no glass substrate is present, wherein said first lens group, said second lens group and said third lens group each comprise a substrate having a curved optical surface, wherein said curved optical surface is provided with a polymer layer.
In an embodiment of the present optical unit comprising four lens groups, wherein a focal length of the integral optical camera lens is f, a focal length of the first lens group is f 1, a focal length of the second lens group is f2, a focal length of the third lens group is f3, a focal length of the fourth lens group is f4, the following relational expressions apply:
0.5 < f1/f < 0.98;
< f2/f < 35;
0.5 < f3/f< 1;
-1< f4/f< -0.1;
Foran optimum optical performance of the present optical unit several embodiments will be disclosed hereafter. The specific location of the first, second, third and fourth lens groups and the lens elements present therein will be elucidated when discussing the figures.
In an embodiment of the present optical unit comprising four lens groups the range of index (n) and Abbe properties in the first lens group are:
(A) 1.5< n < 1.8, 40 < Abbe < 80 (B) 1.4< n < 1.8,60 < Abbe < 90 (C) 1.5< η < 1.8, 20 < Abbe < 40, wherein the term “A” refers to a lens element toward an object side, the term (B) refers to a curved substrate, and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical unit comprising four lens groups the range of index (n) and Abbe properties in the second lens group are:
(A) 1.5< n < 1.8, 40 < Abbe < 80 (B) 1.6< n < 1.85 , 30 < Abbe < 50 (C) 1.5< n < 1.8, 20 < Abbe < 40, wherein the term “A” refers to a lens element toward an object side, the term (B) refers to a curved substrate, and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical unit comprising four lens groups the range of index (n) and Abbe properties in the third lens group are:
(A) 1.5< n < 1.8, 20 < Abbe < 40 (B) 1.4< n < 1.8,40 < Abbe < 80 (C) 1.5< n < 1.8, 40 < Abbe < 80, wherein the term “A” refers to a lens element toward an object side, the term (B) refers to a curved substrate, and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical unit comprising four lens groups the range of index (n) and Abbe properties in the fourth lens group are:
(A) 1.4< n < 1.7, 30 < Abbe < 60 (C) 1.5< n < 1.8,20 < Abbe < 40 wherein the term “A” refers to a lens element toward an object side and the term “C” refers to a lens element towards an image surface side.
In an embodiment of the present optical units one or more additional layers may be present in one or more of the four lenses groups, the additional layers being chosen form the group of integrated intermediate substrates, IR filters, UV filters, apertures and diaphragms, or combinations thereof.
In an embodiment of the present optical units the materials of each of the polymer layer(s) are chosen from the group of UV curable polymers, preferably epoxy, acrylic and nylon type polymers.
The present invention also relates to a stack of a lens assembly, wherein the stack comprises an optical unit according to the present invention.
In an embodiment of the present stack the individual three or four lens groups from the optical unit are stacked by using spacers and/or adhesives.
In an embodiment the present stack further comprises one or more of an image sensor, a sensor cover plate and a cover plate.
The present invention will be explained by using the Figures and embodiments.
Fig 1 shows an embodiment of a lens system comprising four lens groups according to the present invention.
Fig 2 shows a ray tracing model for the present lens system shown in Figure 1.
Fig 3 shows the MTF vs. frequency of the lens system according to Fig
1.
Fig 4 shows an embodiment of a lens system comprising three lenses groups according to the present invention.
Fig 5 shows the MTF vs. frequency of the lens system according to Fig
4.
The present inventors found that the optical performance of the present optical unit is to a large extent determined by the combinations of the different lens groups (see Figure 1 and Figure 4).
Fig 1 shows an embodiment of a lens system 1 comprising four lens groups 100, 200, 300 and 400 according to the present invention. The lens groups are arranged in order from an object side toward an image side surface side. The first lens group 100 (identified as Lensl) comprises material A in layer 101, material B in lens body 102 and material C in layer 103. The second lens group 200 (identified as Lens2) comprises material A in layer 201, material B in lens body 202 and material C in layer 203. The third lens group 300 (identified as Lens3) comprises material A in layer 301, material B in lens body 302 and material C in layer 303. The fourth lens group 400 (identified as Lens4) comprises material A in layer 401, material B in layer 402. Lens system 1 further comprises a cover glass 500 and an image sensor 600.
In an embodiment of the present invention lens body 102, lens body 202 and lens body 302 comprise a curved substrate having a curved surface. The curved surface is preferably made of glass. Layer 101, 201 and 301 are polymer layers. Layer 103, 203 and 303 are preferably polymer layers. The afore mentioned polymer layers may have any combination of (different) material types as indicated in the range of material properties in the sub claims. Diaphragm is preferably between surfaces 102 and 103, between surfaces 202 and 203 but in other embodiments other positions, such as one or more of 301 and 302, 401 and 402, and between cover glass 500 and the image sensor 600, are also possible. In the present lens system 1 one or more integrated intermediate substrates, IR filters, UV filters, apertures and diaphragms, or combinations thereof have not been shown. The optical properties within one lens group may not be the same, this means that for example the optical properties for lens element 101 differ from the one used for lens element 103. The same applies for lens element 201 and lens element 203, and for lens element 301 and lens element 303.
Preferred embodiments of the present invention have been formulated in the dependent claims.
Fig 2 shows a ray tracing model for the present lens system shown in both figure 1. Fig 3 shows the MTF vs. frequency of the lens system according to Fig
1. Such a lens system comprising four lens groups is characterized by high nominal performance, high performance after tolerances.
Fig 4 shows an embodiment of a lens system 2 comprising three lenses groups 1000, 2000 and 3000 according to the present invention. The lens groups are arranged in order from an object side toward an image side surface side. The first lens group 1000 (identified as Lensl) comprises material A in layer 1001, material B in lens body 1002 and material C in layer 1003. The second lens group 2000 (identified as Lens2) comprises material A in layer 2001, material B in lens body 2002 and material C in layer 2003. The third lens group 3000 (identified as Lens3) comprises material A in layer 3001 and material B in layer 3002. Lens system 2 further comprises a cover glass 5000 and an image sensor 6000.
In an embodiment of the present invention lens body 1002 and lens body 2002 comprise a curved substrate having a curved surface. The curved surface is preferably made of glass. Layer 1001 and 2001 are polymer layers. Layer 1003 and 2003 are preferably polymer layers. The afore mentioned polymer layers may have any combination of (different) material types as indicated in the range of material properties in the sub claims. Diaphragm is preferably between surfaces 1002 and 1003, between surfaces 2002 and 2003 but in other embodiments other positions, such as one or more of 3001 and 3002 and between cover glass 5000 and the image sensor 6000, are also possible. In the present lens system 2 one or more integrated intermediate substrates, IR filters, UV filters, apertures and diaphragms, or combinations thereof have not been shown. The optical properties within one lens group may not be the same, this means that for example the optical properties for lens element 1001 differ from the one used for lens element 1003. The same applies for lens element 2001 and lens element 2003, and for lens element 3001 and lens element 3002.
Fig 5 shows the MTF vs. frequency of the lens system comprising three lenses groups according to Fig 4. Such a lens system comprising three lenses groups is characterized by high nominal performance, high performance after tolerances.
The present lenses are groups of contiguous lens elements cemented together by replication technology, for example manufactured according to W02009048320A1. The contents of W02009048320 are considered to be incorporated here in its entirety.
The thickness of the polymer layer is designed for maximum 300 microns thickness. This is sufficient to achieve the desired lens shape without affecting the thermal stability of the optical performance. Thermal instability is caused by the high CTE of the optical polymers (> 30 ppm/K) compared to glass surfaces (< 10ppm/K). In addition, the present optical unit comprising four lens groups shows high manufacturing tolerances and a good MTF.
Optical table for Embodiment (a lens system comprising four lens groups according to the invention):
Type Radius Thickness IGIass Diameter Conic Comment
OBJ STANDARD Infinity : Infinity 0 0:
1EVENASPH 1.784.386:0.07461107 NA02 2.819.6585 ######## Lensl A
2 EVENASPH 3 STANDARD Infinity 2.005.767Ï0.6939659 :0.0875 N-FK51 MH03 2.82 2.82 0 Lensl 0 Lensl B C
4 EVENASPH 1.454.055:0.08109678 2.406.335 -1: 5
5 EVENASPH 4.889.077:0.03 NA02 2; it####### Lens? A
6 EVENASPH 3.118.723:0.3049661 H-ZLAF52 2 0 Lens2 B
STO STANDARD 8 STANDARD Infinity Infinity 50.03 0 H-ZLAF52 MH03 25 0 Aperture 25 0 Lens2 C
9 EVENASPH 305.589:0.5087968 1.722.851 -2.930.491:
10 EVENASPH 11 STANDARD Infinity -3.436.057:0.3657673 MH03 1.600.929 BACD14 3.44 1.831.802:1.139.852 Lens3 0 Lens3 A B
12 EVENASPH -2.134.22450.1 NA02 3.44 0 Lens3 c
13 EVENASPH -1.707.64550.6258183 3.44 -0.8058666
14 EVENASPH -3.836.64550.2138236 BAIS 4.028.77850.7221674 Lens4 A
15 STANDARD 16 EVENASPH Infinity :0.335649 2.967.187^0.2963093 MH03 5 5 0 Lens4 0.8626891 B
17 STANDARD Infinity :0.3 B270 5.280.581; 0 Cover glass
IMA 18 STANDARD STANDARD Infinity infinity 50.1320785 5.486.814 5.402.725 0 05
Surface data detail (a lens system comprising four lens groups according to the invention):
Surface OBJ STANDARD
Surface 1 EVENASPH Lensl A
Coefficient on rA 2 0
Coefficient on rA 4 0.02073967
Coefficient on rA 6 0.021569812
Coefficient on rA 8 -0.035164538
Coefficient on rA 10 0.031644054
Coefficient on rA12 -0.016450493
Coefficient on rA14 0.0025477208
Coefficient on rA16 0.0003843807
Surface 2 EVENASPH Lensl B
Coefficient on rA 2 0
Coefficient on rA 4 0
Coefficient on rA 6 0
Coefficient on rA 8 0
Coefficient on rA10 0
Coefficient on rA12 0
Coefficient on rA14 0
Coefficient on rA16 0
Aperture : Floating Aperture
Maximum Radius 1.41
Surface 3 STANDARD Lensl C
Aperture : Floating Aperture
Maximum Radius 1.41
Surface 4 EVENASPH
Coefficient on rA 2 0
Coefficient on rA 4 -0.025238296
Coefficient on rA 6 -0.030514088
Coefficient on rA 8 0.14784406
Coefficient on rA 10 -0.24904109
Coefficient on rA12 0.219848
Coefficient on rA14 -0.099177548
Coefficient on rA16 0.018792558
Surface 5 EVENASPH Lens2 A
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.030413879
Coefficient on rA 6 0.016053059
Coefficient on rA 8 0.065094267
Coefficient on rA10 -0.025951214
Coefficient on rA12 -0.069239021
Coefficient on rA14 0.096809183
Coefficient on rA16 -0.030885419
Aperture : Floating Aperture
Maximum Radius 1
Surface 6 EVENASPH Lens2 B
Coefficient on rA 2 0
Coefficient on rA 4 0
Coefficient on rA 6 0
Coefficient on rA 8 0
Coefficient on rA 10 0
Coefficient on rA 12 0
Coefficient on rA 14 0
Coefficient on rA16 0
Aperture : Floating Aperture
Maximum Radius 1
Surface STO STANDARD Aperture
Surface 8 STANDARD Lens2 C
Aperture : Floating Aperture
Maximum Radius 1
Surface 9 EVENASPH
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.0091227423
Coefficient on rA 6 0.038416261
Coefficient on rA 8 -0.014524684
Coefficient on rA 10 -0.023154004
Coefficient on rA 12 -0.050784195
Coefficient on rA 14 0.22416434
Coefficient on rA16 -0.17725224
Surface 10 EVENASPH Lens3 A
Coefficient on rA 2 0
Coefficient on rA 4 -0.052083887
Coefficient on rA 6 0.0374764
Coefficient on rA 8 -0.12055997
Coefficient on rA 10 0.11334096
Coefficient on rA12 0.0080938945
Coefficient on rA14 -0.10021303
Coefficient on rA16 0.0451033
Surface 11 STANDARD Lens3 B
Aperture : Floating Aperture
Maximum Radius1.72
Surface 12 EVENASPH Lens3 C
Coefficient on rA 2 :0
Coefficient on rA 4 :0
Coefficient on rA 6 :0
Coefficient on rA 8 :0
Coefficient on rA 100
Coefficient on rA 120
Coefficient on rA140
Coefficient on rA 160
Aperture : Floating Aperture
Maximum Radius 1.72
Surface 13 EVENASPH
Coefficient on rA 2 :0
Coefficient on rA 4 0.015145707
Coefficient on rA 6 -0.0069013393
Coefficient on rA 8 : 0.00074194888
Coefficient on rA 10 : 2.9320512e-005
Coefficient on rA12 : 0.00042062296
Coefficient on rA14 : -0.00016262301
Coefficient on rA16 1,8277182e-005
Aperture : Floating Aperture
Maximum Radius 1.72
Surface 14 EVENASPH Lens4 A
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.054648888
Coefficient on rA 6 0.021022479
Coefficient on rA 8 -0.002700377
Coefficient on rA10 : -2.8070393e-005
Coefficient on rA12 : 4.5940096e-005
Coefficient on rA 14 1,2439457e-006
Coefficient on rA 16 : -8.8421409e-007
Surface 15 STANDARD Lens4 B
Aperture : Floating Aperture
Maximum Radius 2.5
Surface 16 EVENASPH
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.077671238
Coefficient on rA 6
Coefficient on rA 8
Coefficient on rA 10
Coefficient on rA12
Coefficient on rA14
Coefficient on rA16
Aperture
Maximum Radius
0.01975526 : -0.0027659834 : -7.6235332e-005 : 5.3783853e-005 : -3.4670944e-006 : 2.9394733e-009 : Floating Aperture
2.5
Surface 17 STANDARD Cover glass
Surface 18 STANDARD
Surface IMA STANDARD
Optical table for Embodiment (a lens system comprising three lens groups according to the invention):
SURF ACE DATA SUMMARY:
Surf Type OBJ STANDARD 1 EVENASPH 2 STANDARD STO STANDARD Radius Infinity 1.532.433 1.734.685 Infinity Thickness Infinity 0.2387991 0.6782706 0.176848 Glass ;Diameter 0 NA02 :2.38 N-FK51 j2.38 MP10 :2.38 Conic :Com ;ment o: 0:Lensl ;A OLensl 8 0:Lensl ;C
4 EVENASPH 6.012.303 0.S164299 ; 1.826.493 2.505.869:
5 EVENASPH -4.363.352 0.1777506 MP10 :1.964.043 ########:Lens2 A
6 STANDARD Infinity 123.586 BACD14 ;3.24 0:Lens2 B
7 STANDARD -216.773 0.4766798 NA02 :3.24 0:Lens2 C
8 EVENASPH -1.662.949 0.5117453 ;3.24 -186.523:
9 EVENASPH -8.063.461 0.316391 NA02 : 3.314.355 1.770.205: LensS A
10 STANDARD Infinity 0.2682554 BA15 :4.86 0:Lens3 B
11 EVENASPH 1.671.874 0.5496616 :4.86 ########
12 STANDARD Infinity 0.3 8270 ; 5.501.982 0: Cover glass
13 STANDARD Infinity 0.05 :5.664.114 0:
IMA STANDARD Infinity ; 5.707.325 0:Senso r
Surface data detail (a lens system comprising three lens groups according to the invention):
SURFACE DATA DETAIL:
Surface OBJ STANDARD
Surface 1 EVENASPH Lensl A
Coefficient on rA 2 : 0
Coefficient on rA 4 0.0019065606
Coefficient on rA 6 -0.0099878808
Coefficient on rA 8 0.17155845
Coefficient on rA10 -0.43148215
Coefficient on rA 12 0.52083743
Coefficient on rA 14 -0.30329861
Coefficient on rA16 0.070506695
Aperture : Floating Aperture
Maximum Radius1.19
Surface 2 STANDARD Lensl B
Aperture : Floating Aperture
Maximum Radius1.19
Surface STO STANDARD Lensl C
Aperture : Floating Aperture
Maximum Radius1.19
Surface 4 EVENASPH
Coefficient on rA 2 0
Coefficient on rA 4 0.026074464
Coefficient on rA 6 0.045511582
Coefficient on rA 8 0.10123878
Coefficient on rA 10 -0.88076679
Coefficient on rA 12 2.2654847
Coefficient on rA 14 -2.4831452
Coefficient on rA 16 1.0333396
Surface 5 EVENASPH Lens2 A
Coefficient on rA 2
Coefficient on rA 4 -0.094943263
Coefficient on rA 6 0.12297449
Coefficient on rA 8 -0.32813015
Coefficient on rA10 0.28975634
Coefficient on rA12 -0.040717456
Coefficient on rA14 -0.1277611
Coefficient on rA16 0.038841237
Surface 6 STANDARD Lens2 B
Aperture : Floating Aperture
Maximum Radius 1.62
Surface 7 STANDARD Lens2 C
Aperture : Floating Aperture
Maximum Radius 1.62
Surface 8 EVENASPH
Coefficient on rA 2
Coefficient on rA 4
Coefficient on rA 6
Coefficient on rA 8
Coefficient on rA10
Coefficient on rA12
Coefficient on rA14
Coefficient on rA 16 Aperture Maximum Radius
-0.054421138
0.02029859
-0.020070593
0.010395231 : -0.0036402038 : 0.00066787049 : -7.1782481e-005
Floating Aperture
1.62
Surface 9 EVENASPH Lens3 A
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.2356588
Coefficient on rA 6 0.10837249
Coefficient on rA 8 -0.035475831
Coefficient on rA 10 : 0.00070673088
Coefficient on rA12 0.0065407411
Coefficient on rA 14 : -0.0033118596
Coefficient on rA 16 0.000517159
Surface 10 STANDARD Lens3 B
Aperture : Floating Aperture
Maximum Radius 2.43
Surface 11 EVENASPH
Coefficient on rA 2 : 0
Coefficient on rA 4 -0.058030208
Coefficient on rA 6 0.021138202
Coefficient on rA 8 -0.0075325933
Coefficient on rA10 0.0020277744
Coefficient on rA12 -0.00036898821
Coefficient on rA14 : 3.5897533e-005
Coefficient on rA 16 -1,312025e-006
Aperture : Floating Aperture
Maximum Radius 2.43
Surface 12 STANDARD Cover glass
Surface 13 STANDARD
Surface IMA STANDARD Sensor

Claims (30)

CONCLUSIESCONCLUSIONS 1. Optische eenheid, omvattende drie lensgroepen, te weten een eerste lensgroep, een tweede lensgroep en een derde lensgroep, die, vanaf een objectzijde naar een beeldzijde achtereenvolgens zijn gerangschikt, waarbij een of meer van voornoemde lensgroepen omvatten een substraat voorzien van een gekromd optisch oppervlak, waarbij voornoemd gekromd optische oppervlak is voorzien van een polymeerlaag.An optical unit comprising three lens groups, namely, a first lens group, a second lens group, and a third lens group, which are sequentially arranged from an object side to an image side, one or more of said lens groups comprising a substrate provided with a curved optical surface, wherein said curved optical surface is provided with a polymer layer. 2. Optische eenheid volgens conclusie 1, waarbij voornoemde eerste lensgroep en voornoemde tweede lensgroep elk een gekromd substraat voorzien van een gekromd oppervlak omvatten.The optical unit according to claim 1, wherein said first lens group and said second lens group each comprise a curved substrate provided with a curved surface. 3. Optische eenheid volgens een of meer van de conclusies 1-2, waarbij voornoemd gekromd substraat is vervaardigd uit glas.Optical unit according to one or more of claims 1-2, wherein said curved substrate is made of glass. 4. Optische eenheid volgens een of meer van de conclusies 1-3, waarbij voornoemde polymeerlaag is vervaardigd onder toepassing van replicatechnologie.The optical unit according to one or more of claims 1-3, wherein said polymer layer is made using replicate technology. 5. Optische eenheid volgens een of meer van de conclusies 1-4, waarbij de dikte van ten minste een van voornoemde polymeerlagen zich bevindt in een gebied van 10-300 micrometer, bij voorkeur in een gebied van 25-200 micrometer.The optical unit according to one or more of claims 1-4, wherein the thickness of at least one of said polymer layers is in a range of 10-300 micrometers, preferably in a range of 25-200 micrometers. 6. Optische eenheid volgens een of meer van de conclusies 1-5, waarbij voornoemde eerste lensgroep verder omvat een andere polymeerlaag, voornoemde andere polymeerlaag is grenzend aan voornoemd gekromd substraat gepositioneerd, afgekeerd van voornoemd gekromd oppervlak.An optical unit according to any one of claims 1 to 5, wherein said first lens group further comprises another polymer layer, said other polymer layer is positioned adjacent to said curved substrate, remote from said curved surface. 7. Optische eenheid volgens een of meer van de conclusies 1-6, waarbij voornoemde tweede lensgroep verder een andere polymeerlaag omvat, voornoemde andere polymeerlaag is gepositioneerd grenzend aan voornoemd gekromd substraat afgekeerd van voornoemd gekromd oppervlak.The optical unit according to one or more of claims 1-6, wherein said second lens group further comprises another polymer layer, said other polymer layer is positioned adjacent to said curved substrate away from said curved surface. 8. Optische eenheid volgens een of meer van de conclusies 6-7, waarbij genoemde polymeerlaag is vervaardigd onder toepassing van replicatechnologie.The optical unit according to one or more of claims 6-7, wherein said polymer layer is made using replicate technology. 9. Optische eenheid volgens een of meer van de conclusies 1-8, waarbij voornoemde derde lensgroep twee lenselementen omvat, waarbij voornoemde tweede lenselementen in voornoemde derde lensgroep de beschikking hebben over verschillende optische eigenschappen, waarbij in voornoemde derde lensgroep geen glassubstraat aanwezig is.Optical unit according to one or more of claims 1-8, wherein said third lens group comprises two lens elements, wherein said second lens elements in said third lens group have different optical properties, wherein no glass substrate is present in said third lens group. 10. Optische eenheid volgens conclusie 9, waarbij elk van voornoemde tweede lenselementen in voornoemde derde lensgroep zijn vervaardigd onder toepassing van replicatechnologie.The optical unit of claim 9, wherein each of said second lens elements in said third lens group are made using replicate technology. 11. Optische eenheid volgens een of meer van de voorgaande conclusies, waarbij ten minste een aanvullende lensgroep is gepositioneerd tussen een of meer van de eerste en tweede lensgroep en de tweede en derde lensgroep.The optical unit according to one or more of the preceding claims, wherein at least one additional lens group is positioned between one or more of the first and second lens group and the second and third lens group. 12. Optische eenheid volgens conclusie 11, waarbij voornoemde aanvullende lensgroep is gepositioneerd tussen voornoemde eerste lensgroep en voornoemde tweede lensgroep.The optical unit of claim 11, wherein said additional lens group is positioned between said first lens group and said second lens group. 13. Optische eenheid volgens een of meer van de conclusies 10-12, waarbij voornoemde aanvullende lensgroep een gekromd substraat voorzien van een gekromd oppervlak omvat, waarbij voornoemd gekromd optisch oppervlak is voorzien van een polymeerlaag, waarbij voornoemd gekromd substraat bij voorkeur uit glas is vervaardigd.Optical unit according to one or more of claims 10-12, wherein said additional lens group comprises a curved substrate provided with a curved surface, said curved optical surface being provided with a polymer layer, said curved substrate preferably being made of glass . 14. Optische eenheid volgens een of meer van de voorgaande conclusies, waarbij geen vlak glasdrager aanwezig is in ten minste een of meer van voornoemde eerste, tweede, derde en vierde lensgroepen.An optical unit according to one or more of the preceding claims, wherein no flat glass support is present in at least one or more of said first, second, third and fourth lens groups. 15. Optische eenheid volgens een of meer van de conclusies 1-10 en 14, waarbij voornoemde eerste lensgroep een positief brekingsvermogen, in het bijzonder voornoemde tweede lens bezit een positief brekingsvermogen, in het bijzonder voornoemde derde lensgroep bezit een negatief brekingsvermogen.Optical unit according to one or more of claims 1-10 and 14, wherein said first lens group has a positive refractive power, in particular said second lens has a positive refractive power, in particular said third lens group has a negative refractive power. 16. Optische eenheid volgens een of meer van de conclusies 1-10 en 14-15, waarbij een brandpuntslengte van de integrale optische cameralens f is, een focale lengte van voornoemde eerste lensgroep is f 1, een focale lengte van voornoemde tweede lensgroep is f2, een focale lengte van voornoemde derde lensgroep is f3, die aan de volgende vergelijking voldoet:An optical unit according to any one of claims 1-10 and 14-15, wherein a focal length of the integral optical camera lens is f, a focal length of said first lens group is f 1, a focal length of said second lens group is f2 , a focal length of said third lens group is f3, which satisfies the following equation: 0,5 <f1/f< 1;0.5 <f1 / f <1; 0,5 <f2/f< 1;0.5 <f2 / f <1; -1 <f3/f< -0,1.-1 <f3 / f <-0.1. 17. Optische eenheid volgens een of meer van de conclusies 1-10 en 14-16, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde eerste lensgroep voldoen aan:The optical unit according to one or more of claims 1-10 and 14-16, wherein the refractive index (s) and Abbe properties in said first lens group meet: (A) 1,5< η < 1,8, 40 < Abbe < 80 (B) 1,4< n < 1,8 , 60 < Abbe < 90 (C) 1,5< n < 1,8, 20 < Abbe < 40, waarbij de term “A” verwijst naar een lenselement aan een objectzijde, de term “B” verwijst naar een gekromd substraat en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.5 <η <1.8, 40 <Abbe <80 (B) 1.4 <n <1.8, 60 <Abbe <90 (C) 1.5 <n <1.8, 20 <Abbe <40, wherein the term "A" refers to a lens element on an object side, the term "B" refers to a curved substrate and the term "C" refers to a lens element on an image surface side. 18. Optische eenheid volgens een of meer van de conclusies 1-10 en 14-17, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde tweede lensgroep voldoen aan:The optical unit according to one or more of claims 1-10 and 14-17, wherein the refractive index (s) and Abbe properties in said second lens group meet: (A) 1,5< n < 1,8, 20 < Abbe < 40 (B) 1,4< n < 1,8 , 40 < Abbe < 80 (C) 1,5< n < 1,8, 40 < Abbe < 80, waarbij de term “A” verwijst naar een lenselement aan een objectzijde, de term “B” verwijst naar een gekromd substraat en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.5 <n <1.8, 20 <Abbe <40 (B) 1.4 <n <1.8, 40 <Abbe <80 (C) 1.5 <n <1.8, 40 <Abbe <80, wherein the term "A" refers to a lens element on an object side, the term "B" refers to a curved substrate and the term "C" refers to a lens element on an image surface side. 19. Optische eenheid volgens een of meer van de conclusies 1-10 en 14-18, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde derde lensgroep voldoen aan:The optical unit according to one or more of claims 1-10 and 14-18, wherein the refractive index (s) and Abbe properties in said third lens group meet: (A) 1,4< n < 1,7, 30 < Abbe < 60 (C) 1,5< n < 1,8 , 20 < Abbe < 50, waarbij de term “A verwijst naar een lenselement aan een objectzijde en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.4 <n <1.7, 30 <Abbe <60 (C) 1.5 <n <1.8, 20 <Abbe <50, wherein the term "A refers to a lens element on an object side and the term "C" refers to a lens element on an image surface side. 20. Optische eenheid volgens een of meer van de conclusies 1-14, waarbij voornoemde eerste lensgroep de beschikking heeft over een positief brekingsvermogen, in het bijzonder voornoemde tweede lensgroep beschikt over een positief brekingsvermogen, in het bijzonder voornoemde derde lensgroep beschikt over een positief brekingsvermogen en in het bijzonder voornoemde vierde lensgroep beschikt over een negatief brekingsvermogen, waarbij de volgorde van een objectzijde naar een beeldzijde oppervlaktezijde is: eerste lensgroep, tweede lensgroep, derde lensgroep en vierde lensgroep, voornoemde vierde lensgroep is hier een lensgroep omvattende twee lenselementen, waarbij voornoemde twee lenselementen in voornoemde lensgroep de beschikking hebben over verschillende optische eigenschappen, waarbij in voornoemde vierde lensgroep geen glassubstraat aanwezig is, waarbij voornoemde eerste lensgroep, voornoemde tweede lensgroep en voornoemde derde lensgroep elk een substraat voorzien van een gekromd optisch oppervlak omvatten, waarbij voornoemd gekromd optisch oppervlak is voorzien van een polymeerlaag.Optical unit according to one or more of claims 1-14, wherein said first lens group has a positive refractive power, in particular said second lens group has a positive refractive power, in particular said third lens group has a positive refractive power and in particular said fourth lens group has a negative refractive power, the order from an object side to an image side being surface side: first lens group, second lens group, third lens group and fourth lens group, said fourth lens group is here a lens group comprising two lens elements, said two lens elements in said lens group have different optical properties, wherein in said fourth lens group no glass substrate is present, wherein said first lens group, said second lens group and said third lens group each have a substrate provided with a curved substrate optical surface, wherein said curved optical surface is provided with a polymer layer. 21. Optische eenheid volgens conclusie 20, waarbij een focale lengte van de integrale optische cameralens f is, een focale lengte van voornoemde eerste lensgroep is f 1, een focale lengte van voornoemde tweede lensgroep is f2, een focale lengte van voornoemde derde lensgroep is f3, een focale lengte van voornoemde vierde lensgroep is f4, die aan de volgende vergelijking voldoet:The optical unit of claim 20, wherein a focal length of the integral optical camera lens is f, a focal length of said first lens group is f 1, a focal length of said second lens group is f2, a focal length of said third lens group is f3 , a focal length of said fourth lens group is f4, which satisfies the following equation: 0,5 <f1/f< 0,98;0.5 <f1 / f <0.98; 20 < f2/f < 35;20 <f2 / f <35; 0,5 < f3/f< 1;0.5 <f3 / f <1; -1< f4/f< -0,1.-1 <f4 / f <-0.1. 22. Optische eenheid volgens een of meer van de conclusies 20-21, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde eerste lensgroep voldoen aan:The optical unit according to one or more of claims 20 to 21, wherein the refractive index (s) and Abbe properties in said first lens group meet: (A) 1,5< n < 1,8, 40 < Abbe < 80 (B) 1,4< n < 1,8,60 < Abbe < 90 (C) 1,5< n < 1,8, 20 < Abbe < 40, waarbij de term “A” verwijst naar een lenselement aan een objectzijde, de term “B” verwijst naar een gekromd substraat en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.5 <n <1.8, 40 <Abbe <80 (B) 1.4 <n <1.60 <Abbe <90 (C) 1.5 <n <1.8, 20 <Abbe <40, wherein the term "A" refers to a lens element on an object side, the term "B" refers to a curved substrate and the term "C" refers to a lens element on an image surface side. 23. Optische eenheid volgens een of meer van de conclusies 20-22, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde tweede lensgroep voldoen aan:Optical unit according to one or more of claims 20-22, wherein the refractive index (s) and Abbe properties in said second lens group meet: (A) 1,5< n < 1,8, 40 < Abbe < 80 (B) 1,6< n < 1,85,30 < Abbe < 50 (C) 1,5< n < 1,8, 20 < Abbe < 40, waarbij de term “A” verwijst naar een lenselement aan een objectzijde, de term “B” verwijst naar een gekromd substraat en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.5 <n <1.8, 40 <Abbe <80 (B) 1.6 <n <1.85.30 <Abbe <50 (C) 1.5 <n <1.8, 20 <Abbe <40, wherein the term "A" refers to a lens element on an object side, the term "B" refers to a curved substrate and the term "C" refers to a lens element on an image surface side. 24. Optische eenheid volgens een of meer van de conclusies 20-23, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde derde lensgroep voldoen aan:The optical unit according to one or more of claims 20 to 23, wherein the refractive index (s) and Abbe properties in said third lens group meet: (A) 1,5< n < 1,8, 20 < Abbe < 40 (B) 1,4<n< 1,8,40 < Abbe <80 (C) 1,5< n < 1,8, 40 < Abbe < 80, waarbij de term “A” verwijst naar een lenselement aan een objectzijde, de term “B” verwijst naar een gekromd substraat en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.5 <n <1.8, 20 <Abbe <40 (B) 1.4 <n <1.80 <Abbe <80 (C) 1.5 <n <1.8, 40 <Abbe <80, wherein the term "A" refers to a lens element on an object side, the term "B" refers to a curved substrate and the term "C" refers to a lens element on an image surface side. 25. Optische eenheid volgens een of meer van de conclusies 20-24, waarbij de brekingsindex (n) en Abbe eigenschappen in voornoemde vierde lensgroep voldoen aan:The optical unit according to one or more of claims 20 to 24, wherein the refractive index (s) and Abbe properties in said fourth lens group meet: (A) 1,4< n < 1,7, 30 < Abbe < 60 (C) 1,5< n < 1,8, 20 < Abbe < 40, waarbij de term “A” verwijst naar een lenselement aan een objectzijde en de term “C” verwijst naar een lenselement aan een beeldoppervlakzijde.(A) 1.4 <n <1.7, 30 <Abbe <60 (C) 1.5 <n <1.8, 20 <Abbe <40, where the term "A" refers to a lens element on an object side and the term "C" refers to a lens element on an image surface side. 26. Optische eenheid volgens een of meer van de voorgaande conclusies, waarbij in een of meer van voornoemde lensgroepen een of meer aanvullende lagen aanwezig zijn, gekozen uit de groep van geïntegreerde tussenliggende substraten, IR filters, UV filters, apertures en diafragma’s, of combinaties hiervan.An optical unit according to any one of the preceding claims, wherein one or more of said lens groups includes one or more additional layers selected from the group of integrated intermediate substrates, IR filters, UV filters, apertures and diaphragms, or combinations of this. 27. Optische eenheid volgens een of meer van de voorgaande conclusies, waarbij de materialen van elk van voornoemde polymeerlagen zijn gekozen uit de groep van UV hardbare polymeren, bij voorkeur epoxy, acryl en nylon type polymeren.An optical unit according to any one of the preceding claims, wherein the materials of each of said polymer layers are selected from the group of UV curable polymers, preferably epoxy, acrylic and nylon type polymers. 28. Stapeling van een lenslangschikking, waarbij voornoemde stapeling een optische eenheid volgens een of meer van de conclusies 1-27 omvat.A stack of a lens tube arrangement, wherein said stack comprises an optical unit according to one or more of claims 1-27. 29. Stapeling volgens conclusie 28, waarbij voornoemde individuele vier lensgroepen van voornoemde optische eenheid zijn gestapeld onder toepassing van spacers en/of hechtmiddelen.The stack of claim 28, wherein said individual four lens groups of said optical unit are stacked using spacers and / or adhesives. 30. Stapeling volgens een of meer van de conclusies 28-29, verder omvattende een of meer van een beeldsensor, een sensorafdekplaat en een afdekplaat.A stack according to any one of claims 28 to 29, further comprising one or more of an image sensor, a sensor cover plate, and a cover plate. 1/51/5
NL2020987A 2018-05-25 2018-05-25 Lens system NL2020987B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2020987A NL2020987B1 (en) 2018-05-25 2018-05-25 Lens system
US16/416,492 US11048067B2 (en) 2018-05-25 2019-05-20 Lens system
CN201910446102.9A CN110596868B (en) 2018-05-25 2019-05-27 Optical unit and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2020987A NL2020987B1 (en) 2018-05-25 2018-05-25 Lens system

Publications (2)

Publication Number Publication Date
NL2020987A NL2020987A (en) 2019-12-02
NL2020987B1 true NL2020987B1 (en) 2020-01-07

Family

ID=63556387

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2020987A NL2020987B1 (en) 2018-05-25 2018-05-25 Lens system

Country Status (1)

Country Link
NL (1) NL2020987B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299283C (en) * 2002-08-05 2007-02-07 皇家飞利浦电子股份有限公司 Scanning device including an objective lens formed of two materials
WO2004027880A2 (en) * 2002-09-17 2004-04-01 Koninklijke Philips Electronics N.V. Camera device, method of manufacturing a camera device, wafer scale package
JP4857529B2 (en) * 2004-06-25 2012-01-18 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
JP2006106109A (en) * 2004-09-30 2006-04-20 Nikon Corp Aspherical lens and optical apparatus having the same
US20130265459A1 (en) * 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
NL2011874C2 (en) * 2013-11-29 2015-06-01 Anteryon Wafer Optics B V Lens system.

Also Published As

Publication number Publication date
NL2020987A (en) 2019-12-02

Similar Documents

Publication Publication Date Title
US10684452B2 (en) Optical lens system
US11754809B2 (en) Optical assembly for a wide field of view point action camera with low field curvature
TWI627437B (en) Optical imaging system
KR101659140B1 (en) Lens module
KR20230042450A (en) Optical imaging system
KR102483092B1 (en) Optical system
NL2011874C2 (en) Lens system.
CN106959501B (en) Four surface narrow visual field compound lenses
US8289634B2 (en) Image capture lens modules
TWI828256B (en) Optical imaging system
US10935771B2 (en) Lens system
US11048067B2 (en) Lens system
NL2020987B1 (en) Lens system
TWI769714B (en) Optical imaging system
CN110824677A (en) Optical lens
TWM630709U (en) Optical imaging system
KR20220066697A (en) Optical system and camera module
KR20220019487A (en) Optical system
US20200326512A1 (en) Lens system
KR101659240B1 (en) Lens module
CN219475909U (en) Imaging lens system
JP2001215409A (en) Zoom lens
KR20220099411A (en) Optical system
TWM651368U (en) Imaging lens system
TWM651387U (en) Optical imaging system