NL2020897B1 - Apparatus and methods for recording power output during an activity. - Google Patents

Apparatus and methods for recording power output during an activity. Download PDF

Info

Publication number
NL2020897B1
NL2020897B1 NL2020897A NL2020897A NL2020897B1 NL 2020897 B1 NL2020897 B1 NL 2020897B1 NL 2020897 A NL2020897 A NL 2020897A NL 2020897 A NL2020897 A NL 2020897A NL 2020897 B1 NL2020897 B1 NL 2020897B1
Authority
NL
Netherlands
Prior art keywords
pressure
bladder
power
crank arm
during
Prior art date
Application number
NL2020897A
Other languages
Dutch (nl)
Inventor
Willibrordus Maria Vroling Paulus
Original Assignee
Power2Watt B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power2Watt B V filed Critical Power2Watt B V
Priority to NL2020897A priority Critical patent/NL2020897B1/en
Priority to PCT/NL2019/050275 priority patent/WO2019216765A2/en
Application granted granted Critical
Publication of NL2020897B1 publication Critical patent/NL2020897B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/44Footwear characterised by the shape or the use with electrical or electronic arrangements with sensors, e.g. for detecting contact or position
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/14Shoes for cyclists
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • G01L25/006Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency for measuring work or mechanical power or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0095Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring work or mechanical power

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measuring Fluid Pressure (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The present disclosure provides a device for determining a measure of power exerted during an athletic activity. The device includes a bladder filled with a fluid and an electronics assembly. The electronics assembly is fluidly connected to the bladder and includes a pressure sensor and a processor. The pressure sensor is configured to sense a pressure of the fluid in the bladder. The processor is configured to calibrate the electronics assembly, to measure a reference pressure during a first point in time, and to measure an exerted pressure during a second point in time. The processor calculates a power output using a pressure differential between the reference pressure and the exerted pressure.

Description

FIELD [0001] The present disclosure is directed to an apparatus and methods for recording power output during an activity.
BACKGROUND [0002] Athletes of many levels utilize compact consumer electronics such as wearable technology, GPS watches, heart rate monitors, power meters and activity trackers to record performance data in a variety of athletic activities. These devices can record numerous forms of data such as speed, location, time elapsed, heartbeat, power output, cadence, and distance travelled.
[0003] Power meters, are usually restricted to cycling, and conventionally include numerous strain gauges that are installed on components of a bicycle drive train system. Strain gauge-based power meters are typically fixed to a crank arm, between the chainrings and crank spider, crankset spindle, pedal spindle, or the hub of a bicycle wheel. Although an athlete may transfer these power meters between individual bicycles, installation conventionally requires knowledge of bicycle maintenance, and calibration procedures using specialist tools such as a torque wrench.
[0004] Accuracy of strain gauge-based power meters is conventionally dependent upon the quality of the strain gauges used, arrangement of the strain gauges, and accuracy of the placement in the arrangement. As such, accurate strain gauge-based power meters can be expensive, creating a barrier to entry for many athletes.
[0005] There remains a need to develop an apparatus and method for providing power measurement that may provide accurate power measurement that can be utilized in a number of different settings without complex installation procedures.
BRIEF SUMMARY [0010] The present disclosure provides a device for determining a measure of power exerted by an athlete during an activity, and methods for recording power exerted by an athlete during an activity.
[0011] According to a first aspect, the invention provides a device for determining a measure of power exerted by an athlete during an activity, wherein, the device includes a bladder containing a fluid, and an electronics assembly. The electronics assembly includes at least one pressure sensor and a processor. The pressure sensor is configured to sense a pressure of the fluid in the bladder. The processor is configured to calibrate the electronics assembly, to measure a reference pressure during a first point in time, to measure an exerted pressure during a second point in time, and to calculate a power output by the athlete using a pressure differential between the reference pressure and the exerted pressure and converting the pressure differential into a calculated power output. The step of calibrating the electronics assembly typically comprises detennining a conversion factor that is used in combination with the pressure differential to calculate the calculated power output.. The processor thus converts the pressure differential into a calculated power output using the conversion factor, wherein the calculated power output provides a measure of the power exerted by the athlete during the activity.
[0012] According to a second aspect, the invention provides a method for recording power exerted by an athlete during an activity. The method includes using or providing a bladder filled with a fluid and an electronics assembly fluidly connected to the bladder. The bladder is connectable to a drivetrain of a bicycle. The method includes calibrating the electronics assembly by determining a conversion factor. The method also includes sensing a reference pressure within the bladder during a revolution of a pedal stroke. The method also includes converting a pressure differential between the reference pressure and an exerted pressure to a calculated power output using the conversion factor. The calculated output can be recorded as a measure of the power exerted by the athlete on the bladder during the activity. This may be achieved e.g. by recording the calculated output in a memory of the electronics assembly, or by transmitting the calculated output to an external device that is adapted for recording, and optionally displaying, the calculated output.
[0013] Additionally or alternatively, the invention provides a method for recording power exerted by an athlete during an activity, wherein the method includes using or providing a bladder filled with a fluid and configured such that the bladder is connectable to a drivetrain of a bicycle. The method includes using or providing an electronics assembly that is fluidly connected to the bladder, and which includes a pressure sensor. The method also includes calibrating the electronics assembly to determine a resting pressure within the bladder, sensing an instantaneous pressure within the bladder, and converting the instantaneous pressure to a power output measurement. The power output measurement may be recorded as a measure of the power exerted by the athlete on the bladder during the activity, e.g. in the manner described earlier herein.
[0014] Additionally or alternatively, the invention provides a method for recording power exerted by an athlete during an activity, wherein the method includes using or providing a bicycle drivetrain which includes at least one crank arm, connecting at least one power measurement assembly to the drivetrain, pedaling the drivetrain through at least one full rotation of the crank arm, and sensing when the crank arm enters a reference position. The method also includes calibrating the power measurement assembly such that a pressure recorded within the power measurement assembly at the reference position of the pedal stroke is used to offset the power measurement assembly. The power measurement assembly is typically adapted for recording a measured power exerted by the athlete thereon during the activity after the power measurement assembly has been calibrated.
[0015] Additional embodiments and features are set forth in part in the description that follows, and will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed subject matter. A further understanding of the nature and advantages of the present disclosure may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS [0016] The description will be more fully understood with reference to the following figures and flowcharts, which are presented as various embodiments of the disclosure and should not be construed as a complete recitation of the scope of the disclosure, wherein:
[0017] FIG. 1 shows a side view of an athletic shoe incorporating an embodiment of a power measurement assembly in use by an athlete and connected to a bicycle.
[0018] FIG 2 shows a side view of the athletic shoe of FIG. 1.
[0019] FIG. 3 is a side view of the athletic shoe of FIG 1 where parts of the athletic shoe are shown in cross-section.
[0020] FIG. 4 is a perspective view of one embodiment of a bladder of the power measurement assembly and insole of the athletic shoe of FIG. 1.
[0021] FIG. 5 is a side cross-sectional view of a bladder of the power measurement assembly in FIG. 4 with particular emphasis on the area labeled as FIG. 5 in FIG. 3.
[0022] FIG. 6 is a side cross-sectional view of the bladder of FIG. 4 with particular emphasis on the area labeled as FIG. 6 in FIG. 3.
[0023] FIG. 6A is a side cross sectional view of an alternate embodiment of the bladder in FIG. 6.
[0024] FIG. 7 is a schematic of a method of pressure calibration in an embodiment.
[0025] FIG. 8 is a schematic of a method of position calibration in an embodiment.
[0026] FIGS. 9-12 are side views of the athletic shoe and bicycle of FIG. 2 showing the shoe at different rotational positions on the crankset.
[0027] FIG 13 is a schematic of a method of pressure calibration in an alternate embodiment from the method shown in FIG. 7.
[0028] FIG. 14, 17 and 18 show a side view of a crankset of a bicycle under different force scenarios.
[0029] FIGS. 15 and 16 show a side view of the athletic shoe of FIG. 1 under different force scenarios.
[0030] FIGS. 19 and 20 show a side view of the athletic how of FIG 1, alongside a representation of the bladder under different force scenarios.
DETAILED DESCRIPTION [0031] The present disclosure may be understood by reference to the following detailed description, taken in conjunction with the drawings as described below. It is noted that, for purposes of illustrative clarity, certain elements in various drawings may not be drawn to scale.
[0032] The present disclosure provides an apparatus and methods for recording power output during a variety of activities. The apparatus includes a bladder containing a fluid and an electronic assembly fluidly connected to the bladder. The electronic assembly is configured to detect pressure within the bladder and convert pressure into a power reading that is communicated to the athlete. The apparatus is insertable into an athletic shoe such as a cycling shoe, and measures power using a pressure sensor as opposed to strain gauges. The apparatus can help an athlete record power exerted during an activity, and can be transferred between equipment more easily than a traditional apparatus for recording power output by an athlete.
[0033] The present disclosure also provides a method of recording power exerted by an athlete during an activity’. The method includes providing the apparatus as described above, calibrating the electronics assembly, sensing a pressure exerted on the bladder, and converting the pressure exerted on the bladder into a power output measurement.
[0034] FIG. 1 shows an athletic shoe 100 in one embodiment of the present disclosure, as used in connection with a bicycle 1000. A portion of a frame of the bicycle 1000 and a portion of an athlete are also shown in FIG. 1. The athletic shoe 100 in the illustrated embodiment is a cycling shoe that is connectable to a drivetrain 1015 of the bicycle 1000 via a cleat 1005 that is connectable to a pedal 1010. The drivetrain assembly 1015 includes a crankset 1020 including a pair of crank arms 1025 and at least one chainring 1030, a chain 1035, a hub (not shown) of a rear wheel 1040, and at least one sprocket (not shown) connected to the hub.
[0035] Referring to FIG. 2, the athletic shoe 100 includes an outsole 105 and an upper 110. The outsole 105 may be a composite material such as carbon fiber or fiber glass, or a hardened polymeric material such as nylon. The upper includes a tightening system. The tightening system shown in FIG. 2 is a band and reel closure system 115, however other tightening systems may be used such as hook and loop fastener tightening systems, lace tightening systems, and ratchet buckle and belt tightening systems. The outsole 105 and upper 110 cooperate to define a toe 120, a heel 125, an instep 130 and a lateral outer side 135.
[0036] As shown in FIG. 3, an insole 140 is received in the interior of the shoe 100. A power measurement assembly 145 is disposed intermediate the outsole 105 and the insole 140. Referring to FIGS. 3 and 4, the power measurement assembly 145 includes a bladder 155 and an electronics assembly 160. The bladder 155 is fluid tight, and is filled with atmospheric air in an embodiment. The bladder 155 additionally includes a plurality of projections which are configured to prevent the athlete from compressing and isolating areas of the bladder 155 during a pedal stroke. Stated differently, the projections ensure that all areas of the bladder 155 are in communication with one another when the athlete compresses the bladder 155 during the pedal stroke. As best seen in FIGS. 3 and 5, the projections are a number of columns 165 that project inwardly from interior surfaces 170 of the bladder 155. As stated above, the columns 165 may ensure that the bladder
155 deforms isotropically during the pedal stroke, and that the volume of the bladder 155 is reduced only as a result of compressive force.
[0037] In the embodiment shown in FIGS. 3, 5 and 6, the power measurement assembly 145 is placed intermediate the outsole 105 and the insole 140 to ensure that the power measurement assembly 145 is disposed in proximity to the force created by the athlete and based on considerations of durability. Force created by the athlete is transferred into the bicycle drivetrain 1015 at the pedals 1010, and the crankset 1025, chainring 1030, chain 1035 convert the force created by the athlete into rotation of the rear wheel. Disposing the power measurement assembly 145 of the illustrated embodiment within the shoe 100 between the outsole 105and the insole 140, records power where it is created by the athlete, as opposed to where an athlete’s muscular power is converted into motive power at the hub. Additionally, the illustrated embodiment of the bladder 155 comprises two halves formed from a polymeric material such as polyethylene that are secured at a seam 161; placing the power measurement assembly within the shoe 100 protects the power measurement assembly 145 against punctures from the drivetrain components or environmental features.
[0038] As shown in FIG. 4 and 6, the insole 140 defines a cavity 150 sized to receive at least a portion of the power measurement assembly 145. The power measurement assembly 145 includes at least one connector 175 that fluidly connects the bladder 155 to the electronics assembly 160, the bladder 155 defines a central void 157 that receives the electronic assembly 160, and the connector 175 projects into the void 157.
[0039] FIGS. 9-12 depict representations of the force exerted by the athlete throughout the pedal stroke. Crank arm position is usually described using the position of the hour hand on an analog clock face. For example, when the left and right crank arms are oriented directly vertically up and directly vertically down, they are defined as being in the 12 o’clock and 6 o’clock positions. Accordingly, FIG. 9 shows a drive-side crank arm in the 3 o’clock position; FIG. 10 shows the drive-side crank arm in the 6 o’clock position; FIG. 11 shows the drive-side crank arm in the 9 o’ clock position; and FIG. 12 shows the drive-side crank arm 1025 in the 12 o’ clock position. The shoe 100 is shown in a side cross-sectional view in FIGS. 9-12. A number of vectors are also shown in FIGS. 9-12 that illustrate the location and the corresponding amount of force exerted on various parts of the athletic shoe 100. As described in greater detail below, athletes with an efficient pedal stroke may exert increasing downward force on the bladder 155 from the 12 o’clock position until approximately the 5 o’clock position, and between the 6 o’clock position and the 12 o’clock position little to no compression force is exerted on the bladder 155.
[0040] As shown in FIG. 9, the greatest amount of force is typically exerted on an area of the insole 140 that receives a ball of the foot, and an area of the insole 140 that receives a first metatarsal head. In an embodiment best seen in FIG. 4, a rigid plate 159 (shown in phantom) having substantially the same outline as the insole 140 may be disposed within the insole 140, to ensure uniform compression of the bladder 155, and to prevent the ball of the foot and the first metatarsal head from isolating an area near the front interior portion of the shoe from the remainder of the bladder 155.
[0041] As will be discussed in greater detail below, the electronics assembly 160 is configured to detect fluid pressure within the bladder 155 and convert dynamic pressure that the athlete exerts on the bladder 155 into a power measurement. The electronics assembly 160 includes a housing 180, having a sensor compartment 185 that is fluidly sealed from the ambient environment. A sensor assembly includes a pressure sensor 190 and a temperature assembly 195, and is disposed in the housing such that the sensor assembly is in fluid communication with the bladder 155. The sensor assembly shown in FIGS. 3 and 6 is a BMP280 series sensor produced by Bosch Sensortec. The electronics assembly 160 further includes a sensor that detects change in motion, and which is configured to sense cadence and to provide a position detection function (see below). In the embodiment shown in FIG. 6, the sensor comprises an inertial measurement unit (IMU) 197, which includes a 3-axis accelerometer and a gyroscope. The pressure sensor 190 in the illustrated embodiment is a piezoresisitive pressure sensor, however, one of ordinary skill will appreciate that other pressure sensors such as a piezoelectric or optical sensor can be utilized.
[0042] The housing 180 shown in FIG. 6, also includes a battery compartment 200 that is fluidly sealed from the sensor compartment 185. The battery compartment 200 is configured to house a battery 205, and includes a door 207 that is selectively openable to allow the athlete to exchange the battery 205. The battery compartment 200 is fluidly sealed form the sensor compartment 185 so that the battery 205 can be replaced without depressurizing the bladder 155.
[0043] hi an alternate embodiment shown in FIG. 6A, the power measurement assembly 145 is disposed within the bladder 155, and a number of projections 165 extend from the electronics assembly 160 to prevent damage to the electronics assembly 160 during compression of the bladder 155. A housing 180 surrounds the electronics assembly housing the pressure sensor 190, the IMU 197 and the processor 210. The housing 180 and the pressure sensor 190 are configured such that the sensor is disposed in fluid contact with the fluid of the bladder 155.
[0044] The electronics assembly 160 in FIGS. 3-6 includes a processor 210 that is programmed to calculate force exerted on the bladder 155 based on pressure readings, and convert the force into a power measurement (see Mechanical Power on a Bicycle Crank Assembly and Pressure to Power Algorithm described below). To execute the pressure to power algorithm, the processor 210 is further programmed to contain information specific to the power measurement assembly 145 including the surface area of the bladder 155 and the length of the crank arm 1025, as this data is pertinent to the pressure to power algorithm described in greater detail below. The processor 210 operates many times per second to take pressure values from the pressure sensor 190 and convert the pressure values into the power measurement.
Pressure Sensor Calibration [0045] As will be described in greater detail below, an orientation of the shoe 100 as well as normal and tangential forces applied by the shoe 100 can be used to determine a force tangential to the crank arms 1025 applied by the athlete. Like strain-gauge-based power meters, the power measurement assembly 145 must be calibrated before the forces applied by the athlete to the crank arms 1025 can be accurately measured. FIG. 13 shows a flow chart of one method of calibrating the power sensor. The method depicted in FIG. 13 instructs the athlete to progress through a series of steps to determine base values for pressure and temperature within the bladder 155.
[0046] In one embodiment, the processor 210 employs a conversion factor to convert pressure into force, while simultaneously taking various factors such as temperature into account which may influence a baseline pressure within the bladder. In this embodiment, the processor 210 calculates the conversion factor during the calibration procedures depicted in FIG. 13.
[0047] The method of FIG 13. begins when the athlete requests calibration from a head unit, smart phone or wearable device (not shown). In one embodiment, the processor requests the athlete to enter his weight. The athlete is then instructed to keep his shoe in the air. The processor 210 then records a baseline pressure (Phase) and baseline temperature (Tbase). Once done, the processor 210 sends a signal to the athlete to stand up and put his full weight on the bladder 155. The processor 210 then records a second set of pressure (PCOmp) and temperature (Tcomp) readings to compensate for any changes in temperature resulting from the athlete’s body temperature heating up the air within the bladder 155 to calculate a pressure correction factor PCOit. The correction factor for temperature is 375 Pa for every 1°C rise in temperature:
Pcorr Pcomp 4 (j*base ^comp) * 375 [0048] After the processor 210 calculates PCon, the processor 210 then calculates the force that the athlete has placed on the bladder 155 by multiplying the weight that the athlete has entered in the first step by acceleration due to gravity. Although acceleration due to gravity is approximately 9.80665 m/s2 at the earth’s surface, the processor 210 also communicates with the IMU 197 to measure the acceleration due to gravity via the accelerometer.
[0049] Finally, using the acceleration due to gravity, the processor determines the conversion factor CPressure2force:
weight * gravity
CPressure2force = —---------‘corr ‘base
Position Sensing [0050] As will be described in greater detail below, converting the pressure exerted on the bladder 155 into the athlete’s power output requires determining the orientation of the crank arms 1025 and the angular velocity ω. The IMU 197 detects acceleration of the shoe 100 throughout all the phases of the pedal stroke shown in FIGS. 9-12, and the processor determines an orientation of the crank arms 1025 using the acceleration data generated by the IMU 197.
[0051] Referring to FIGS. 9-12, the IMU 197 provides acceleration data in three axes, an x-axis oriented in the lateral direction of the bicycle 1000, a y-axis oriented in the fore-aft direction of the bicycle 1000 and a z-axis oriented in the vertical direction of the bicycle 1000. The processor 210 ignores acceleration in the x-axis direction, as the x-axis does not contribute to determining the orientation of the crank arms 1025 in the pedal stroke. The IMU 197 will detect that acceleration along tire y-axis reaches an extreme at the 12 o’clock position (FIG. 12) and an extreme in the opposite direction at the 6 o’clock position (FIG. 10). Further, the acceleration along the z-axis reaches one extreme at the 3 o’clock position (FIG. 9), and an extreme in the opposite direction at the 9 o’clock position (FIG. 11). The acceleration along the y-axis reaches zero at the 3 o’clock position and the 9 o’clock position whereas the acceleration along the z-axis reaches zero at the 12 o’clock and 6 o’clock positions. As earth’s gravity also affects the acceleration measured by the IMU 197, the calibration step which measures acceleration due to earth’s gravity discussed above and shown in FIG. 13 provides the processor with the gravitational acceleration value, which the processor uses to correct the data received from the IMU 197.
[0052] In addition to detecting the acceleration of the shoe around the pedal stroke as described above, the IMU 197 also detects noise in the form of vibrations that are transferred from the terrain to the accelerometers via the bicycle 1000. In order to determine location and orientation of the crank arms throughout the pedal stroke, the processor 210 filters acceleration data received from the IMU 197, and breaks the filtered acceleration data down into blocks of one revolution of the crankset 1025. hi one embodiment, the processor 210 filters the acceleration data using a moving window average implementing a weighted average on 21 poles. As discussed below in connection with the pressure to power conversion, the processor also utilizes the one revolution blocks of data in the calculation of power by measuring a reference pressure at a reference orientation during at least one revolution of the pedal stroke. Further, the processor 210 determines a pressure differential between the reference pressure and an exerted pressure to calculate power output.
[0053] hi one embodiment, the processor 210 breaks the filtered data from the IMU 197 in the zaxis down into one revolution blocks using a dynamic hysteresis threshold. In this method, the processor 210 determines an overall average of the acceleration data and sets the overall average as a “threshold” value. Once the threshold value is set, the processor 210 begins testing for an extreme acceleration in the positive direction once the acceleration values rise above the threshold value. The processor 210 sets the start of one revolution as the point at which the acceleration values rise above the threshold value. The processor 210 continues to sense an extreme acceleration in the positive direction until the acceleration data from the IMU 197 falls below the negative threshold value. Once the acceleration data drops below the negative threshold value, the processor begins testing for an extreme acceleration in the negative direction. The process 210 continues to sense an extreme acceleration in the positive direction until the acceleration data from the IMU 197 reaches the threshold value. Once the acceleration data reaches the threshold value, the processor 210 determines that a single revolution has taken place, and determines the time to complete one revolution. The processor 210 then converts the time for one revolution into cadence and angular velocity values.
[0054] The position sensing method also utilizes a confidence determination that will reject the acceleration data received from the IMU 197 if it detects that cadence reaches an extreme. For example, if the processor 210 determines that the athlete is pedaling at a cadence below 30 rpms or above 180 rpms, the processor 210 rejects the acceleration data. When the processor 210 determines that the cadence falls within an acceptable confidence level, the processor derives the orientation of the crank arms 1025, φ. In one embodiment, the processor 210 determines that start of the revolution (e.g. at the threshold value) begins at 63% of a theoretical extreme in the positive, direction, and correlates the beginning of the revolution of the crank arms 1025 with a crank orientation of 40°. Assuming that the athlete maintains a constant cadence, the processor 210 assumes that crank orientation remains linear with time over a single revolution, and correlates crank orientation with time elapsed during the pedal stroke from the beginning of the revolution of the crank arms 1025.
Pressure to Power Conversion [0055] The power measurement assembly 145 measures the amount of force created by the athlete upon the bladder 155 as the shoe 100 travels at angular velocity throughout the portions of the pedal stroke depicted in FIGS. 9-12:
Power = τ x ω
Where τ = the torque exerted on the crank arms and ω = the angular velocity of the crank arms. Torque is a measure of the rotational force around the crank arm 1025. Torque is a measure of the rotational force around the axis defined by the bottom bracket B-B:
τ = Ft x I
Where Ft = the tangential force exerted on the crank arm, and 1 = the length of the lever arm (i.e. the crank arms 1025 in the illustrated embodiment). The tangential crank arm force Ft always acts in the same direction, perpendicular to the longitudinal axis of the crank arm 1025 A-A (see Fig. 14). The tangential crank arm forces Ft cause rotational movement of the crank arm 1025 which in turn propel the bicycle and athlete. The forces exerted by the athlete on the crank arm 1025 through the shoe 100 and pedal are broken down into a normal force (N) exerted perpendicular to a plane (P) defined by the outsole 105 of the shoe 100, and a tangential shoe force (D) exerted parallel to the plane (P) (see FIGS. 15 and 16).
[0056] Referring to FIGS. 18 and 19, the pressure sensor 190 and processor 210 communicate to measure a reference pressure value pref at a reference orientation of the crank arms 1025. In one embodiment discussed below, the reference orientation is the 6 o’ clock position of the pedal stroke (FIG. 10). The pressure sensor 190 and processor 210 also communicate to determine a change in pressure (e.g. a pressure peXerted exerted by the athlete during compression of the bladder) which the processor then converts into normal force N exerted by the shoe 100. As pressure is the product of area and force, the normal force exerted by the cyclist on the bladder 155 is the product of the change in pressure and the area of the bladder 155. The processor 210 determines normal force N exerted on the bladder as:
exerted
Pref') 4
Where A is the bladder surface area. In one embodiment, the athlete enters his shoe size during a set up method, which the processor associates with a corresponding area.
[0057] The shoe 100 changes orientation during a single revolution of the crank arms 1025 as the shoe 100 rotates around the pedal axle. The orientation of the plane (P) with respect to horizontal is denoted by an angle Θ. Vertical and horizontal components of the normal force, FyN and FZN, respectively are determined using the orientation of the plane Θ:
FyN = —N sinO
FZN = — N cos θ [0058] Likewise, vertical and horizontal components of the tangential shoe force (D), FyD and
FZD respectively, are determined using the orientation of the plane 9::
FyD = D cos9
FZD = —D sin θ [0059] Referring to FIGS. 17 and 18, once the horizontal and vertical components of the normal shoe force (N) and the tangential shoe force (D) are determined, the tangential crank arm force Ft can be determined using the orientation of the crank amis φ (determined using the position sensing method described above), as Ft is a summation of the horizontal (Fy) and vertical (Fz) components of the normal shoe force N and the tangential shoe force D:
Ft = —Fy N sin φ + FzN cos φ — Fy D sin φ + Fz D cos φ [0060] Orientation of the plane P affects the horizontal and vertical components of normal and tangential shoe forces N and D thus:
Ft = N sin Θ sin φ — N cos Θ cos φ — D cos Θ sin φ — D sin Θ cos φ
Which can be simplified as:
Ft = N cos(0 + φ) +Dsin(0 + <p) [0061] Once the tangential crank force is determined, torque τ is determined using the tangential crank force Ft and the length of the crank arms lCEmk. In one embodiment, the athlete enters the crank length during the calibration method described above. Thus the processor 210 determines torque dependent upon the
T Flcrank COS(0 + <p) + D lcrank^m(e + φ) [0062] Thus, mechanical power from forces exerted by the athlete on the pedal is described as:
P = (Nlcrank cos(0 + φ) + D lcrank sin(0 + φ)) * ω [0063] The method discussed in paragraphs [0053]-[0058] describes the theoretical calculations to determine mechanical power acting on the bladder 155. As a result of the configuration of the bladder 155, however, the pressure measurement assembly 145 does not detect shearing forces (e.g. the configuration of the bladder ensures that the bladder only deforms due to compressive forces). Consequently, the power sensing assembly 145 cannot detect the tangential shoe force D. As the normal force comprises the difference between the base pressure detected in the tangential crank force can be expressed as:
Ft = (Pexerted ~ Pref)A * Cpressure2Force * sin<p [0064] Accordingly, the processor 210 calculates the mechanical power created by the athlete and exerted by the shoe on the crank arms as:
p = {(Pexerted ~ Pref * CPressure2Force * sin^J * 1„αηΙ{ * ω [0065] As mentioned above, the processor 210 calculates a reference pressure at a reference orientation, and the reference pressure pref is used to calculate a pressure differential throughout the various phases of the pedal stroke and thereby determine the power exerted by the athlete. In one embodiment, the reference pressure is calculated during each revolution of the crank arm 1025 when the crank arm 1025 are in the reference orientation. Stated differently, the reference pressure pref is measured when the crank arm 1025 reaches the same position in every pedal stroke.
[0066] Referring to FIGS. 9-12, normal force exerted on the bladder 155 changes throughout the pedal stroke as an athlete using an efficient pedal stroke exerts muscular force on different portions of the shoe 1000 during different phases of the pedal stroke shown in FIGS. 9-12. Compressive force exerted on the bladder 155 rises between the 12 o’clock portion of the pedal stroke (FIG. 12) and the 3 o’clock portion of the pedal stroke (Fig. 9), and diminishes from the 3 o’clock portion of the pedal stroke to the 6 o’clock portion of the pedal stroke (FIG. 10). Shearing forces directed toward the heal 125 of the athletic shoe 100 rise past the 3 o’clock portion of the pedal stroke and are highest around the 6 o’clock portion of the pedal stroke. Tension forces exerted on the upper 110 of the shoe rise between the 6’oclock portion of the pedal strike, and are highest around the 9 o’clock portion of the pedal stroke (FIG. 11). Shearing forces directed toward the toe 120 of the athletic shoe rise between the 9 o’clock portion of the pedal stroke, and are highest around the 12 o’clock portion of the pedal stroke.
[0067] In one embodiment, the structure of the bladder 155 does not allow for direct detection of the shearing forces towards the heel and toe of the shoe, but the tension forces exerted on the upper of the shoe 1000 are read as “negative” pressure exerted on the bladder 155. Using the position detection method described above, the processor 210 detennines when the crank arm 1025 is at the 6 o’clock position(FIG. 10) of the pedal stroke. When the crank arm 1025, the processor 210 senses the pressure exerted on the bladder 155 and sets the reference pressure pref. In an efficient pedal stroke the athlete still exerts a degree of compressive force on the bladder 155 at the 6 o’clock position but little to no pressure between the 6 o’clock position and the 12 o’clock position. Accordingly, by setting the reference pressure prer as the pressure at the 6 o’clock position, the difference between pref and pexerted between the 6 o’ clock position will become negative. Although the pressure differential prer- pexerted becomes negative the force is still recorded as positive power, because the sin of the crank angle (simp) is negative between a 180° and 360° position of the crank arm 1025. Accordingly, in this embodiment power through all phases of the pedal stroke may be recorded even though an athlete may not exert normal force to compress the bladder 155 during all phases of the pedal stroke.
ALTERNATE EMBODIMENTS
Pressure Sensor Calibration [0067] In one embodiment, the power measurement assembly is calibrated by calculating a resting pressure within the bladder 155, and power exerted by the athlete is determined by comparing the pressure exerted during the activity to a baseline pressure reading.
[0068] FIG.7 shows a flowchart of one method for calibrating the power measurement assembly. The method of FIG. 7 begins by waking the power measurement assembly 145 from a sleep or low power mode. In one embodiment, the IMU 197 signals the processor 210 to wake the power measurement assembly from sleep/low power mode once it senses that shoe 100 has exceeded a threshold level of movement. Alternatively, the power measurement assembly may wake from sleep/low power mode after receiving a wireless signal from an athlete’s bicycle head unit, smart phone, or wearable device (not shown). Once the power measurement assembly 145 is woken from sleep mode, the processor 210 activates a pressure calibration mode.
[0069] As pressure calibration mode is entered, the athlete is instructed to put no pressure on the pedals 1010. The instruction may take the form of a message displayed upon the athlete’s bicycle head unit, smart phone, or wearable device. Alternatively, the instruction may take the form of haptic feedback provided to the athlete via the electronic assembly 160. Once the athlete is instructed to put no pressure on the pedals, the processor begins taking a certain number n of sample pressure readings (Pn) over a certain amount of time t.
[0070] The processor then executes an algorithm to determine the resting pressure in the bladder 155 by taking the average of the n sample pressure readings:
Σ”=ιΡη
P avg. resting = -----16 [0071] Once the processor executes the average pressure algorithm, the standard deviation between the sample pressures is determined. The processor then determines if the standard deviation exceeds a calibration threshold. In an embodiment, the calibration threshold is set at 2 mbar, the amount of pressure that the athlete might exert on the power measurement assembly 145 if he wiggled his toes during calibration. If the standard deviation exceeds the calibration threshold, the athlete is again instructed to put no pressure on the pedals, and the processor 210 activates calibration mode again. If the standard deviation does not exceed the calibration threshold, the processor 210 sets the average of the n sample pressure readings as a baseline pressure, and the processor 210 activates an activity record mode.
Position Detection [0072] In an embodiment, the processor 210 includes computer readable instructions for a finite state machine. The finite state machine is programed to detect when the IMU 197 records positive and negative extreme acceleration values as well as overall average or “zero acceleration values”. [0073] As discussed above, the IMU 197 detects acceleration values on a coordinate system comprised of a y-axis and a z-axis. Acceleration along the y-axis reaches an extreme at the 12 o’clock position (FIG. 12) and an extreme in the opposite direction at the 6 o’clock position (FIG. 10). Further, the acceleration along the z-axis reaches one extreme at the 3 o’clock position (FIG 9), and an extreme in the opposite direction at the 9 o’clock position (FIG. 11). The acceleration along the y-axis reaches the zero acceleration value at the 3 o’clock position and the 9 o’clock position whereas the acceleration along the z-axis reaches the zero acceleration value at the 12 o’clock and 6 o’clock positions.
[0074] Rather than approximate the orientation of the crank arm at all positions of the pedal stroke, the finite state machine indicates that the power measurement assembly 145 has transitioned between four portions of the pedal stroke: the 3 o’clock position, the 6 o’clock position, the 9 o’clock position, and the 12 o’clock position. The finite state machine detects when the IMU 197 records the extreme acceleration values, as well as zero acceleration transition signals to determine when the shoe 100 and crank arm 1025 crosses these four distinct portions of the pedal stroke.
Position Detection Calibration [0075] The embodiment of the position detection function using the finite state machine must be calibrated before the position detection function can accurately determine the position of the crank arms. The calibration method sets maximum and minimum acceleration values, which the state machine then uses to determine location of the shoe (and by extension the crank arms 1025) in the pedal stroke. FIG. 8 shows a flow chart of one method for calibrating the position detection function.
[0076] The method of FIG. 8 begins by activating the position calibration mode. The position calibration mode can be activated immediately after executing the pressure calibration function described above. Alternatively, the position calibration mode can be activated as the result of receiving a signal from the athlete’s bicycle head unit, smart phone, or wearable technology.
[0077] After position calibration mode is activated, the athlete is instructed to begin pedaling backwards for a certain number of revolutions, “x” above a certain cadence “y” hi one embodiment, the athlete is instructed to pedal at a cadence above 30 rpm. The instruction can take the form of a written message displayed on the athlete’s bicycle head unit, smart phone, or wearable technology. Alternatively, the instruction can take the form of a second haptic feedback signal which is discretely identifiable in comparison to the pressure calibration function haptic feedback signal discussed above (i.e. the signal not to pedal in calibration mode includes a single discrete haptic feedback signal, and the signal to begin pedaling backwards in the position calibration mode includes two discrete haptic feedback signals).
[0078] Once the athlete begins backpedaling, the accelerometer of the IMU 197 begins providing acceleration values to the processor 210. The processor 210 determines the maximum and minimum acceleration values, and adjusts the maximum or minimum as higher or lower acceleration values are received in subsequent revolutions.
[0079] Once the athlete has pedaled backwards x number of revolutions, the processor 210 determines how much time has passed between the instruction to the athlete to pedal backwards and the time required to set the maximum and minimum acceleration values. If the time required to set the maximum and minimum acceleration values exceeds a threshold time value, the athlete is again instructed to pedal backwards at the given cadence y. If the time to set maximum and minimum acceleration values does not exceed the threshold time, the processor 210 then determines if the pressure sensor 190 recorded any pressure values below the baseline pressure value determined in the pressure calibration mode. If pressure values dip below the baseline pressure value, the processor 210 recommences the pressure calibration procedure shown in FIG. 7 and discussed above. If pressure values are equal to or above the baseline pressure value, the processor 210 enters activity record mode.
Environmental Compensation [0080] An athlete using the athletic shoe 100 shown in FIGS. 1-6 might climb thousands of feet in elevation in the course of an activity. For example, well-traveled bicycle routes such as Mt. Evans in Colorado finish above 4250 meters (14,000 feet), and some routes such as Mount Haleakela in Hawaii climb more than 2900 meters (9,711 feet) from start to finish. Additionally, ambient temperature and an athlete’s rising body temperature can cause the temperature within the bladder to fluctuate in the course of an activity. Since temperature and external atmospheric pressure influence the resting pressure within the bladder, the power measurement assembly 145 includes an environmental compensation feature in an embodiment.
[0081] Referring to FIGS. 3 and 6, the electronics assembly 160 includes a thermometer 215 disposed in fluid communication with the bladder 155. The thermometer communicates with the processor 210, and the processor 210 modifies the baseline pressure setting to compensate for any changes in temperature when performing the pressure to power conversion algorithm.
[0082] In the embodiment shown in FIG. 6, the electronics assembly 160 also includes a wireless transceiver 220 that is capable of communicating with an external device such as a bicycle head unit, a smart phone, or wearable technology via Bluetooth low energy (BLE) or ANT+ protocol. The wireless transceiver 220 provides information about the ambient atmospheric pressure, and the processor 210 compensates for the influence of any changes in external pressure when performing the pressure to power conversion algorithm.
[0083] In one embodiment, the wireless transceiver 220 communicates with an externally disposed barometer in the external device. The wireless transceiver 220 communicates the atmospheric pressure data from the barometer to the processor 210, which then compensates for changes in the internal resting pressure of the bladder 155.
[0084] In an embodiment where the external device includes a GPS module, the processor 210 secures data concerning the elevation derived from the GPS module, and compensates for changes in tire internal resting pressure of the bladder 155 based on the elevation data from the GPS module. [0085] In an embodiment, the bladder 155 comprises a material that is sufficiently porous that the 5 fluid disposed within the bladder 155 may diffuse across the bladder during changes in ambient pressure such that the resting pressure within the bladder remains equal to the ambient pressure.
[0086] Those skilled in the art will appreciate that the presently disclosed embodiments teach by way of example and not by limitation. Therefore, the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting 10 sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.

Claims (48)

ConclusiesConclusions 1. Een inrichting voor het bepalen van een maat van vermogen dat wordt uitgeoefend door een atleet tijdens een activiteit, omvattend:An apparatus for determining a measure of power exerted by an athlete during an activity, comprising: een blaas bevattend een fluïdum;a bladder containing a fluid; een elektronica-samenstel dat in fluïdumverbinding is met de blaas en omvattend een processor en een druksensor voor het waarnemen van een druk van het fluïdum in de blaas;an electronics assembly that is in fluid communication with the bladder and comprising a processor and a pressure sensor for sensing a pressure of the fluid in the bladder; waarin de processor is ingericht voor het kalibreren van het elektronica-samenstel, het meten van een referentiedruk tijdens een eerste punt in de tijd, het meten van een uitgeoefende druk tijdens een tweede punt in de tijd, en voor het berekenen van een door de atleet geleverd vermogen gebruikmakend van een drukverschil tussen de referentiedruk en de uitgeoefende druk en voor het omzetten van het drukverschil naar een berekend geleverd vermogen.wherein the processor is adapted to calibrate the electronics assembly, measure a reference pressure during a first point in time, measure an applied pressure during a second point in time, and calculate an athlete's delivered power using a pressure difference between the reference pressure and the applied pressure and for converting the pressure difference to a calculated delivered power. 2. Inrichting volgens conclusie 1, waarbij de inrichting een sportschoen is, en waarbij de blaas is aangebracht in of op een zool van de schoen.Device as claimed in claim 1, wherein the device is a sports shoe, and wherein the bladder is arranged in or on a sole of the shoe. 3. Inrichting volgens conclusie 2, waarbij de blaas ten minste 80% en bij voorkeur 90% van een oppervlakte van de zool van de schoen bestrijkt.Device as claimed in claim 2, wherein the bladder covers at least 80% and preferably 90% of a surface of the sole of the shoe. 4. Inrichting volgens één der voorgaande conclusies, waarbij de inrichting is ingericht om te zijn verbonden met een fietsaandrijflijn en zodanig geconfigureerd dat een op een pedaal van de fietsaandrijflijn uitgeoefende kracht wordt overgedragen op de blaas;Device as claimed in any of the foregoing claims, wherein the device is adapted to be connected to a bicycle drive line and configured such that a force exerted on a pedal of the bicycle drive line is transmitted to the bladder; waarbij de processor verder is geconfigureerd voor het uitvoeren van de stappen van:the processor being further configured to perform the steps of: het meten van de referentiedruk tijdens ten minste één omwenteling van een crank-arm van de fietsaandrijflijn;measuring the reference pressure during at least one revolution of a crank arm of the bicycle drive line; het bepalen van de oriëntatie van de crank-arm tijdens de omwenteling van de crank-arm, en het meten van de uitgeoefende druk bij de oriëntatie van de crankarm;determining the orientation of the crank arm during the rotation of the crank arm, and measuring the pressure applied at the orientation of the crank arm; het vergelijken van de uitgeoefende druk en de referentiedruk om een drukverschil van het fluïdum te bepalen; en het berekenen van het geleverd vermogen gebaseerd op het drukverschil van het fluïdum, de oriëntatie van de crank-arm, een lengte van de crank-arm en een cadans van de crank-arm.comparing the applied pressure and the reference pressure to determine a pressure differential of the fluid; and calculating the power supplied based on the pressure differential of the fluid, the orientation of the crank arm, a length of the crank arm, and a cadence of the crank arm. 5. Inrichting volgens conclusie 1, waarbij het fluïdum een gas is en de ten minste één sensor is aangebracht in een behuizing die in fluïdumverbinding staat met de blaas.The device of claim 1, wherein the fluid is a gas and the at least one sensor is disposed in a housing that is in fluid communication with the bladder. 6. Inrichting volgens conclusie 1, waarbij de inrichting een fietsschoen is die een buitenzooi omvat, en waarbij de blaas binnen de schoen aangrenzend aan de buitenzooi is aangebracht.The device of claim 1, wherein the device is a cycling shoe that includes an outer sack, and wherein the bladder is disposed within the shoe adjacent to the outer sack. 7. Inrichting volgens conclusie 6, verder omvattend een stijve laag aangrenzend aan één zijde van de blaas geplaatst zodanig dat de blaas tussen de buitenzooi en de stijve laag is geplaatst.The device of claim 6, further comprising a rigid layer positioned adjacent to one side of the bladder such that the bladder is disposed between the outer pouch and the rigid layer. 8. Inrichting volgens conclusie 1, waarbij de blaas een veelvoud aan uitsteeksels omvat die zich naar binnen toe uitstrekken vanaf een binnenoppervlak van de blaas.The device of claim 1, wherein the bladder comprises a plurality of protrusions that extend inwardly from an inner surface of the bladder. 9. Inrichting volgens conclusie 8, waarbij de uitsteeksels zich naar binnen toe uitstrekken vanaf binnenoppervlakken van boven- en onderwanden van de blaas.The device of claim 8, wherein the protrusions extend inwardly from inner surfaces of upper and lower walls of the bladder. 10. Inrichting volgens conclusie 1, waarbij de processor is geconfigureerd voor het aan de atleet communiceren van het berekende geleverd vermogen.The device of claim 1, wherein the processor is configured to communicate the calculated power supplied to the athlete. 11. Inrichting volgens conclusie 1, waarbij de processor is geconfigureerd om het elektronica-samenstel te kalibreren door een conversiefactor te bepalen, en om het drukverschil in een geleverd vermogen om te zetten met behulp van de conversiefactor.The apparatus of claim 1, wherein the processor is configured to calibrate the electronics assembly by determining a conversion factor, and to convert the pressure difference to a power supplied using the conversion factor. 12. Een werkwijze voor het registreren van vermogen dat door een atleet wordt uitgeoefend tijdens een activiteit, waarbij tijdens de werkwijze gebruik wordt gemaakt van een blaas die gevuld is met een fluïdum en van een elektronica-samenstel dat in fluïdumverbinding is met de blaas, waarbij de blaas zodanig is geconfigureerd dat de blaas verbindbaar is met een fietsaandrijflijn, waarbij de werkwijze omvat: het kalibreren van het elektronica-samenstel;12. A method for recording power exerted by an athlete during an activity, wherein during the method use is made of a bladder filled with a fluid and of an electronics assembly in fluid communication with the bladder, wherein the bladder is configured such that the bladder is connectable to a bicycle drive line, the method comprising: calibrating the electronics assembly; terwijl de blaas is verbonden met de aandrijflijn, het waarnemen van een referentiedruk in de blaas tijdens een omwenteling van een pedaalslag;while the bladder is connected to the drive line, sensing a reference pressure in the bladder during a revolution of a pedal stroke; het omzetten van een drukverschil tussen de referentiedruk en een uitgeoefende druk naar een berekend geleverd vermogen.converting a pressure difference between the reference pressure and an applied pressure to a calculated supplied power. 13. Werkwijze voor het registreren van vermogen volgens conclusie 12, waarbij het kalibreren van het elektronica-samenstel verder omvat het bepalen van een basisdruk en een basistemperatuur in de blaas.The power registration method according to claim 12, wherein the calibration of the electronics assembly further comprises determining a base pressure and a base temperature in the bladder. 14. Werkwijze voor het registreren van vermogen volgens conclusie 13, waarbij het kalibreren van het elektronica-samenstel verder omvat het bepalen van een correctiedruk die veranderingen in druk als gevolg van het boven de basistemperatuur stijgen van een temperatuur in de blaas in aanmerking neemt.The power recording method according to claim 13, wherein the calibration of the electronics assembly further comprises determining a correction pressure that takes into account changes in pressure due to a temperature in the bladder rising above the base temperature. 15. Werkwijze voor het registreren van vermogen volgens conclusie 12, waarbij het kalibreren van het elektronica-samenstel verder omvat het bepalen van een conversiefactor die het drukverschil omzet naar de geleverd vermogen meting.The power recording method according to claim 12, wherein the calibration of the electronics assembly further comprises determining a conversion factor that converts the pressure difference to the power measurement supplied. 16. Werkwijze voor het registreren van vermogen volgens conclusie 12, waarbij het converteren van het drukverschil omvat:The power registration method of claim 12, wherein converting the pressure difference comprises: het instellen van de referentiedruk door te bepalen wanneer de crank-arm van de aandrijflijn een referentie-oriëntatie bereikt;setting the reference pressure by determining when the crank arm of the powertrain reaches a reference orientation; het berekenen van een op de blaas overgedragen kracht door het vermenigvuldigen van het drukverschil met een oppervlakte van de blaas, een functie van een oriëntatie van de crank-arm en een conversiefactor;calculating a force transmitted to the bladder by multiplying the pressure difference by an area of the bladder, a function of an orientation of the crank arm, and a conversion factor; het vermenigvuldigen van de op de blaas overgedragen kracht met een lengte van de crank-arm om een momentaan koppel uitgeoefend op de aandrijflijn te verkrijgen; en het vermenigvuldigen van het momentaan koppel uitgeoefend op de aandrijflijn met een hoeksnelheid van de crank-arm.multiplying the force transmitted to the bladder by a length of the crank arm to obtain instantaneous torque applied to the drive line; and multiplying the instantaneous torque applied to the drive line by an angular velocity of the crank arm. 17. Werkwijze voor het registreren van vermogen volgens conclusie 16, waarbij de referentie oriëntatie een 6-uurs positie van de crank-arm is.The method for registering power according to claim 16, wherein the reference orientation is a 6-hour position of the crank arm. 18. Werkwijze voor het registreren van vermogen volgens conclusie 16, waarbij het elektronica-samenstel een versnellingsmeter omvat, en waarbij het detecteren van de positie van de crank-arm omvat het gebruiken van een door de versnellingsmeter gemeten versnellingswaarde van de crank-arm om de oriëntatie van de crank-arm te bepalen.The power recording method according to claim 16, wherein the electronics assembly comprises an accelerometer, and wherein detecting the position of the crank arm comprises using an acceleration value of the crank arm measured by the accelerometer about the determine the orientation of the crank arm. 19. Werkwijze voor het registreren van vermogen volgens conclusie 18, waarbij de blaas en het elektronica-samenstel zijn opgenomen in een fietsschoen, waarbij de werkwijze verder omvat:The method for registering power according to claim 18, wherein the bladder and the electronic assembly are included in a cycling shoe, the method further comprising: het meten van een veelvoud aan versnellingswaarden van de crank-arm tijdens een enkele omwenteling van de crank-arm;measuring a plurality of acceleration values of the crank arm during a single revolution of the crank arm; het bepalen van een gemiddelde van het veelvoud van versnellingswaarden;determining an average of the plurality of acceleration values; het bepalen van een begin van een enkele omwenteling van de fietsschoen doormiddel van een pedaalslag door te detecteren wanneer een versnellingswaarde van de crank-arm boven het gemiddelde van het veelvoud van versnellingswaarden stijgt;determining a start of a single revolution of the cycling shoe by means of a pedal stroke by detecting when an acceleration value of the crank arm rises above the average of the plurality of acceleration values; het volgen van de versnellingswaarde gedurende een positieve fase boven de gemiddelde versnellingswaarde, en gedurende een negatieve fase onder de gemiddelde versnellingswaarde; en het bepalen dat de enkele omwenteling compleet is zodra de versnellingswaarde wederom het gemiddelde bereikt.following the acceleration value during a positive phase above the average acceleration value, and during a negative phase below the average acceleration value; and determining that the single revolution is complete once the acceleration value again reaches the average. 20. Werkwijze voor het registreren van vermogen volgens conclusie 12, verder omvattend:The power registration method according to claim 12, further comprising: het bepalen wanneer een crank-arm van de fietsaandrijflijn een referentie oriëntatie bereikt, het instellen van een drukmeting op de referentie oriëntatie als de referentiedruk; en het omzetten van een negatief drukverschil tussen de referentiedruk en een drukmeting geregistreerd tijdens een deel van de pedaalslag terwijl de atleet geen drukkracht uitoefent op de blaas, naar een positief berekend vermogen.determining when a crank arm of the bicycle drive line reaches a reference orientation, setting a pressure measurement on the reference orientation as the reference pressure; and converting a negative pressure difference between the reference pressure and a pressure measurement recorded during a portion of the pedal stroke while the athlete does not apply pressure to the bladder, to a positive calculated power. 21. Werkwijze voor het registreren van vermogen volgens conclusie 12, waarbij het waarnemen van de referentiedruk omvat het meten van de referentiedruk tijdens een eerste punt in de tijd, en het converteren van het drukverschil omvat het meten van de uitgeoefende druk tijdens een tweede punt in de tijd.The power recording method according to claim 12, wherein the sensing of the reference pressure comprises measuring the reference pressure during a first point in time, and converting the pressure difference comprises measuring the applied pressure during a second point in the time. 22. Werkwijze voor het registreren van vermogen dat wordt uitgeoefend door een atleet tijdens een activiteit, waarbij tijdens de werkwijze gebruik gemaakt wordt van een blaas die gevuld is met een fluïdum en een elektronica-samenstel dat in fluïdumverbinding is met de blaas, waarbij de blaas zodanig is ingericht dat de blaas verbindbaar is met een aandrijflijn van een fiets, en waarbij het elektronica-samenstel een druksensor omvat, waarbij de werkwijze omvat:A method for registering power exerted by an athlete during an activity, the method utilizing a bladder filled with a fluid and an electronic assembly in fluid communication with the bladder, the bladder is arranged such that the bladder is connectable to a drive line of a bicycle, and wherein the electronics assembly comprises a pressure sensor, the method comprising: het kalibreren van het elektronica-samenstel om een rustdruk in de blaas te bepalen; het waarnemen van een momentane druk in de blaas; en het omzetten van de momentane druk naar een meting van geleverd vermogen.calibrating the electronics assembly to determine a rest pressure in the bladder; observing a momentary pressure in the bladder; and converting the current pressure to a measurement of supplied power. 23. Werkwijze voor het registreren van vermogen volgens conclusie 22, waarbij het kalibreren van het elektronica-samenstel omvat:The power registration method of claim 22, wherein the calibration of the electronics assembly comprises: het registreren van een verandering in de druk van het fluïdum in de blaas tijdens een eerste pedaalslag van de fietsaandrijflijn; en het bepalen van een eerste laagste drukmeting tijdens de eerste pedaalslag.registering a change in the pressure of the fluid in the bladder during a first pedal stroke of the bicycle drive line; and determining a first lowest pressure measurement during the first pedal stroke. 24. Werkwijze voor het registreren van vermogen volgens conclusie 23, waarbij het kalibreren van het elektronica-samenstel verder omvat het toewijzen van een basisdrukwaarde aan de eerste laagste-drukmeting die tijdens de eerste pedaalslag is geregistreerd.The power registration method of claim 23, wherein the calibration of the electronics assembly further comprises assigning a base pressure value to the first lowest pressure measurement recorded during the first pedal stroke. 25. Werkwijze voor het registreren van vermogen volgens conclusie 24, waarbij het kalibreren van het elektronica-samenstel omvat:The power recording method according to claim 24, wherein the calibration of the electronics assembly comprises: het uitvoeren van een timerfunctie zodat het elektronica-samenstel op een tijdsinterval een kalibratiemodus ingaat;performing a timer function so that the electronics assembly enters a calibration mode at a time interval; het registreren van het drukverschil tijdens een tweede veelvoud aan pedaalslagen;registering the pressure difference during a second plurality of pedal strokes; het bepalen van de laagste-drukmeting tijdens het tweede veelvoud aan pedaalslagen; en het resetten van de basisdrukmeting indien de laagste-drukmeting anders is dan de laagste-drukmeting geregistreerd tijdens een eerdere kalibratiemodus.determining the lowest pressure measurement during the second plurality of pedal strokes; and resetting the basic pressure measurement if the lowest pressure measurement is different from the lowest pressure measurement recorded during a previous calibration mode. 26. Werkwijze voor het registreren van vermogen volgens conclusie 25, waarbij het kalibreren van het elektronica-samenstel omvat:The method for registering power according to claim 25, wherein the calibration of the electronics assembly comprises: het verstrekken van een eerste instructie aan de atleet om geen druk uit te oefenen op de blaas;providing an initial instruction to the athlete not to put pressure on the bladder; het nemen van een reeks van momentane drukmetingen;taking a series of instantaneous pressure measurements; het heractiveren van de kalibratiemodus indien de sensor detecteert dat één van de momentane drukwaarden het gemiddelde overstijgt met een kalibratiedrempel.reactivating the calibration mode if the sensor detects that one of the current pressure values exceeds the average with a calibration threshold. 27. Werkwijze voor het registreren van vermogen volgens conclusie 26, verder omvattend het verstrekken van een tweede instructie aan de atleet om geen druk uit te oefenen op de blaas indien één van de momentane drukwaarden het gemiddelde overstijgt met de kalibratiedrempel.The power recording method according to claim 26, further comprising providing a second instruction to the athlete not to apply pressure to the bladder if one of the current pressure values exceeds the average by the calibration threshold. 28. Werkwijze voor het registreren van vermogen volgens conclusie 22, waarbij het converteren van de momentane drukwaarde omvat:The power registration method according to claim 22, wherein converting the current pressure value comprises: het berekenen van de op de blaas overgedragen kracht door de momentane drukwaarde te vermenigvuldigen met een oppervlakte van de blaas; en het vermenigvuldigen van de op de blaas overgedragen kracht met een lengte van de crank-arm om een momentaan koppel te verkrijgen dat op het aandrijfsamenstel wordt uitgeoefend.calculating the force transmitted to the bladder by multiplying the instantaneous pressure value by a surface area of the bladder; and multiplying the force transmitted to the bladder by a length of the crank arm to obtain an instantaneous torque applied to the drive assembly. 29. Werkwijze voor het registreren van vermogen volgens conclusie 22, verder omvattend het installeren van de blaas in een fietsschoen, of waarbij de blaas is geïnstalleerd in een fietsschoen.The power registration method according to claim 22, further comprising installing the bladder in a cycling shoe, or wherein the bladder is installed in a cycling shoe. 30. Werkwijze voor het registreren van vermogen volgens conclusie 28, waarbij het omzetten van de momentane drukwaarde naar de meting van geleverd vermogen verder omvat het meten van een trapcadans.The power recording method according to claim 28, wherein converting the current pressure value to the supplied power measurement further comprises measuring a cadence. 31. Werkwijze voor het registreren van vermogen volgens conclusie 28, waarbij het omzetten van de momentele druk naar geleverd vermogen omvat het detecteren van een positie van een crank-arm van de aandrijflijn, en het aftrekken van op de blaas overgedragen krachten op de blaas van de meting van geleverd vermogens tijdens delen van de pedaalslag.The power recording method according to claim 28, wherein converting the current pressure to power supplied comprises detecting a position of a crank arm from the power train, and subtracting forces transmitted to the bladder on the bladder from the measurement of power supplied during parts of the pedal stroke. 32. Werkwijze voor het registreren van vermogen volgens conclusie 30, waarbij het elektronica-samenstel een versnellingsmeter omvat, en waarbij het detecteren van de positie van de crank-arm omvat het detecteren van de positie van de crank-armpositie gebruikmakend van een door de versnellingsmeter gemeten versnellingswaarde van de crank-arm.The method for registering power according to claim 30, wherein the electronics assembly comprises an accelerometer, and wherein detecting the position of the crank arm comprises detecting the position of the crank arm using an accelerometer measured acceleration value of the crank arm. 33. Werkwijze voor het registreren van vermogen volgens conclusie 31, verder omvattend het kalibreren van een crank-annpositiesensor door het tegen de klok in roteren van de crank-armen voor een veelvoud aan omwentelingen.The power recording method of claim 31, further comprising calibrating a crank annposition sensor by rotating the crank arms counterclockwise for a plurality of revolutions. 34. Werkwijze voor het registreren van vermogen volgens conclusie 32, waarbij het kalibreren van de crank-annpositiesensor omvat het instellen van minimale en maximale versnellingswaarden van de crank-annpositiesensor.The power registration method of claim 32, wherein calibrating the crank annposition sensor comprises setting minimum and maximum acceleration values of the crank annposition sensor. 35. Werkwijze voor het registreren van vermogen volgens conclusie 22, verder omvattend het detecteren van een omgevingsdrukmeting buiten de blaas, en het compenseren voor het drukverschil tussen de blaas en de omgevingsdrukmeting.The power recording method according to claim 22, further comprising detecting an ambient pressure measurement outside the bladder, and compensating for the pressure difference between the bladder and the ambient pressure measurement. 36. Werkwijze voor het registreren van vermogen volgens conclusie 25, waarbij het detecteren van een omgevingsdrukmeting omvat het verbinden van het elektronicasamenstel aan een barometer om de omgevingsdrukmeting te bepalen.The power recording method of claim 25, wherein detecting an ambient pressure measurement comprises connecting the electronics assembly to a barometer to determine the ambient pressure measurement. 37. Werkwijze voor het registreren van vermogen volgens conclusie 36, waarbij het detecteren van een omgevingsdrukmeting omvat het bepalen van een hoogte op basis van GPS coördinaten, en het berekenen van de omgevingsdruk door het bepalen van de gemiddelde druk op de hoogte.The power recording method according to claim 36, wherein detecting an ambient pressure measurement comprises determining a height based on GPS coordinates, and calculating the ambient pressure by determining the average pressure at the height. 38. Werkwijze voor het registreren van vermogen volgens conclusie 22, verder omvattend het detecteren van een temperatuur in de blaas en het compenseren voor een verandering in temperatuur.The power recording method according to claim 22, further comprising detecting a temperature in the bladder and compensating for a change in temperature. 39. Een werkwijze voor het registreren van vermogen dat wordt uitgeoefend door een atleet tijdens een activiteit, waarbij tijdens de werkwijze gebruik wordt gemaaid van een fietsaandrijflijn die ten minsten één crank-arm omvat, waarbij de werkwijze omvat:39. A method for registering power exerted by an athlete during an activity, wherein during the method use is made of a bicycle drive line comprising at least one crank arm, the method comprising: het verbinden van ten minste één vermogensmeetsamenstel met de aandrijflijn;connecting at least one power measurement assembly to the drive line; het trappen van de aandrijflijn door tenminste één volledige omwenteling van de crank-arm;pedaling the drive train through at least one complete revolution of the crank arm; het waarnemen wanneer de crank-arm een referentiepositie bereikt; en het kalibreren van het vermogensmetingsamenstel zodat een druk geregistreerd door het vermogensmetingsamenstel op de referentiepositie van de pedaalslag wordt geregistreerd als een basislijndruk, welke basislijndruk wordt gebruikt om eventuele wijzigingen in een bedrijfsomgeving in aanmerking te nemen.observing when the crank arm reaches a reference position; and calibrating the power measurement assembly such that a pressure recorded by the power measurement assembly at the pedal stroke reference position is recorded as a baseline pressure, which baseline pressure is used to account for any changes in an operating environment. 40. Werkwijze voor het registreren van vermogen volgens conclusie 39, waarbij het verbinden van het vermogensmeetsamenstel omvat het assembleren van een met fluïdum gevulde blaas en een elektronica-samenstel dat is ingericht om een druk in de blaas te bepalen.The power recording method according to claim 39, wherein connecting the power measurement assembly comprises assembling a fluid-filled bladder and an electronics assembly adapted to determine a pressure in the bladder. 41. Werkwijze voor het registreren van vermogen volgens conclusie 39, waarbij het verbinden van het vermogensmeetsamenstel met de aandrijflijn omvat het plaatsen van het vermogensmeetsamenstel in een fietsschoen en het verbinden van de schoen met een pedaal.The power recording method according to claim 39, wherein connecting the power measurement assembly to the drive line comprises placing the power measurement assembly in a bicycle shoe and connecting the shoe to a pedal. 42. Werkwijze voor het registreren van vermogen volgens één der conclusies 39-42, waarbij het waarnemen wanneer de crank-arm de referentiepositie bereikt omvat het bepalen wanneer de crank-arm in een 6-uurs positie van een pedaalslag is geplaatst.The power registration method according to any of claims 39-42, wherein the detecting when the crank arm reaches the reference position comprises determining when the crank arm is placed in a 6-hour position of a pedal stroke. 43. Werkwijze voor het registreren van vermogen volgens één der conclusies 39-42, waarbij het kalibreren van het vermogensmeetsamenstel verder omvat het detecteren van een omgevingsfactor buiten de blaas, en het compenseren van de invloed van de omgevingsfactor op de druk in de blaas.A power recording method according to any of claims 39-42, wherein calibrating the power measurement assembly further comprises detecting an environmental factor outside the bladder, and compensating for the influence of the environmental factor on the pressure in the bladder. 44. Werkwijze voor het registreren van vermogen volgens conclusie 43, waarbij de stap van het detecteren van een omgevingsfactor verder omvat het meten van een omgevingsdruk buiten de blaas en het compenseren voor een drukverschil tussen een blaas-druk binnen de blaas en een omgevingsdruk.The power registration method of claim 43, wherein the step of detecting an environmental factor further comprises measuring an ambient pressure outside the bladder and compensating for a pressure difference between a bladder pressure within the bladder and an ambient pressure. 45. Werkwijze voor het registreren van vermogen volgens conclusie 44, waarbij het kalibreren van het vermogenssmeetsamenstel omvat het verbinden van een elektronicasamenstel met een barometer die buiten de blaas is aangebracht.The power recording method of claim 44, wherein calibrating the power measurement assembly comprises connecting an electronics assembly to a barometer disposed outside the bladder. 46. Werkwijze voor het registreren van vermogen volgens conclusie 45, waarbij het detecteren van een omgevingsfactor verder omvat het detecteren van een fluïdumtemperatuur in de blaas en het compenseren voor een temperatuurverschil in vergelijking met een eerder gedetecteerde fluïdumtemperatuur in de blaas.The power recording method according to claim 45, wherein detecting an environmental factor further comprises detecting a fluid temperature in the bladder and compensating for a temperature difference compared to a previously detected fluid temperature in the bladder. 47. Werkwijze voor het registreren van vermogen volgens één der conclusies 39-46, waarbij de basislijndruk is geconfigureerd als nul vermogen uitgeoefend op het vermogensmeetsamenstel.A power registration method according to any of claims 39-46, wherein the baseline pressure is configured as zero power applied to the power measurement assembly. 48. Een door een computer leesbaar medium, omvattend instructies die, wanneer uitgevoerd, bewerkstelligen dat een processor de werkwijze van één van de conclusies 1247 uitvoert.A computer-readable medium comprising instructions that, when executed, cause a processor to perform the method of any one of claims 1247. 1/121/12 10001000
NL2020897A 2018-05-08 2018-05-08 Apparatus and methods for recording power output during an activity. NL2020897B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2020897A NL2020897B1 (en) 2018-05-08 2018-05-08 Apparatus and methods for recording power output during an activity.
PCT/NL2019/050275 WO2019216765A2 (en) 2018-05-08 2019-05-08 Device and methods for recording power output during an activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2020897A NL2020897B1 (en) 2018-05-08 2018-05-08 Apparatus and methods for recording power output during an activity.

Publications (1)

Publication Number Publication Date
NL2020897B1 true NL2020897B1 (en) 2019-11-14

Family

ID=67441557

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2020897A NL2020897B1 (en) 2018-05-08 2018-05-08 Apparatus and methods for recording power output during an activity.

Country Status (2)

Country Link
NL (1) NL2020897B1 (en)
WO (1) WO2019216765A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1274239Y (en) * 2021-06-16 2021-10-19 Galan Ramon Carlos POTENTIOMETER AND TEMPLATE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875571A (en) * 1997-11-06 1999-03-02 Huang; Tien-Tsai Insole pad having step-counting device
US7599806B2 (en) * 2006-03-17 2009-10-06 Gunter Hauschildt Portable power meter for calculating power applied to a pedal and crank arm based drive mechanism and a method of calculating the power
WO2011063468A1 (en) * 2009-11-28 2011-06-03 Entecho Pty Ltd Cyclic cranked system method and related devices
WO2012112930A1 (en) * 2011-02-17 2012-08-23 Nike International Ltd. Footwear having sensor system

Also Published As

Publication number Publication date
WO2019216765A2 (en) 2019-11-14
WO2019216765A3 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
TWI721460B (en) Cycling shoe power sensors
US8011242B2 (en) System and device for measuring and analyzing forces applied by a cyclist on a pedal of a bicycle
US8744783B2 (en) System and method for measuring power generated during legged locomotion
US8762077B2 (en) Device and method for measurement of cycling power output
US20160209281A1 (en) Pedaling Torque and Power Measuring Device for a Bicycle
US20160219968A1 (en) Footwear with performance measurement device
US9341526B2 (en) System for speed-based power calculation
JP5922105B2 (en) System and apparatus for correlating heart rate with exercise parameters
US20140200835A1 (en) Pedaling Torque Sensor Device for Each Cyclist&#39;s Leg and Power Meter Apparatus
US10633055B2 (en) Method and a system for estimation of a useful effort provided by an individual during a physical activity consisting in executing an alternating pedalling movement on a pedal device
Duc et al. Validity and reproducibility of the ergomo® pro power meter compared with the srm and powertap power meters
US9964456B2 (en) System for estimating total power input by a bicyclist using a single sided power meter system
NL2020897B1 (en) Apparatus and methods for recording power output during an activity.
US20160273983A1 (en) Performance sensing system for pedal powered vehicles
JP2008544782A (en) Data capture, processing and transmission procedures and apparatus linked to human energy consumption during daily life and / or sports practice
US10065075B2 (en) Dynamic tire pressure sensor system for a bike
US10908632B2 (en) Device and method for use in cycling
TWI756080B (en) Smart Bicycle Shoes

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: SPECIALIZED BICYCLE COMPONENTS, INC.; US

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: POWER2WATT B.V.

Effective date: 20201006

MM Lapsed because of non-payment of the annual fee

Effective date: 20210601