NL2020804B1 - Modular Additive Manufactured Reactor System - Google Patents

Modular Additive Manufactured Reactor System Download PDF

Info

Publication number
NL2020804B1
NL2020804B1 NL2020804A NL2020804A NL2020804B1 NL 2020804 B1 NL2020804 B1 NL 2020804B1 NL 2020804 A NL2020804 A NL 2020804A NL 2020804 A NL2020804 A NL 2020804A NL 2020804 B1 NL2020804 B1 NL 2020804B1
Authority
NL
Netherlands
Prior art keywords
reactor system
ceramic
reactor
module
modules
Prior art date
Application number
NL2020804A
Other languages
Dutch (nl)
Inventor
Arnoldus Maria Willemsen Johannes
Francis De Scheemaker Gabriel
Original Assignee
3D Cat B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3D Cat B V filed Critical 3D Cat B V
Priority to NL2020804A priority Critical patent/NL2020804B1/en
Priority to EP19714816.6A priority patent/EP3735318A1/en
Priority to PCT/NL2019/050004 priority patent/WO2019135678A1/en
Priority to US16/960,160 priority patent/US11602723B2/en
Application granted granted Critical
Publication of NL2020804B1 publication Critical patent/NL2020804B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • B01J2219/00808Sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Abstract

The present invention relates to a modular reactor system for carrying out processes comprising mixing, chemical reactions, heat exchange and/or separations, the reactor system comprising of at least one additive manufactured module, the module each performing at least one process unit 5 operation, and optionally, an external housing.

Description

Figure NL2020804B1_D0001
© 2020804 © B1 OCTROOI (2?) Aanvraagnummer: 2020804 © Int. Cl.:
B01J 19/00 (2018.01) B33Y 80/00 (2019.01) © Aanvraag ingediend: 20 april 2018 (© Afsplitsing van aanvraag , ingediend (30) Voorrang:
(4A Aanvraag ingeschreven: 28 oktober 2019 (43) Aanvraag gepubliceerd:
© Octrooi verleend:
oktober 2019 © Octrooischrift uitgegeven:
oktober 2019 © Octrooihouder(s):
3D-cat B.V. te Bergen © Uitvinder(s):
Johannes Arnoldus Maria Willemsen te Bergen
Gabriel Francis de Scheemaker te Bergen © Gemachtigde:
dr. A. Krebs te Den Haag (54) Modular Additive Manufactured Reactor System (57) The present invention relates to a modular reactor system for carrying out processes comprising mixing, chemical reactions, heat exchange and/or separations, the reactor system comprising of at least one additive manufactured module, the module each performing at least one process unit operation, and optionally, an external housing.
B1 2020804
Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het octrooischrift komt overeen met de oorspronkelijk ingediende stukken.
Modular Additive Manufactured Reactor System
The present invention relates to a modular, industrial scale multiunit reactor system, a process for its manufacture, and use. More specifically, the 5 invention concerns a reactor system comprising a multitude of additive manufactured (AM) reactor sections.
Much attention has been given in the past and is still given at the present moment to the scale-up of chemical processes, which in most cases results in the scale-up of chemical reactors. Usually it is more efficient to employ a large scale reactor, and large scale separation units, rather than a multitude of independently and parallel operated smaller reactor and work-up sections.
In particular in the (petro)chemical industry, gas-gas; gas-liquid; liquidliquid processes such as mixing of reactants, chemical conversions, related heat transfers(such as e.g. heating or cooling), and separation processes (such as e.g. sorption (adsorption and desorption), application of membranes, diffusion, distillation, evaporation and drying), are normally carried out in different pieces of equipment. As a consequence, the processing facilities of this industry tend to be large, which in turn leads to high capital and operational expenditures.
An important requirement for such industrial scale chemical reactors and separation units is that they are designed to operate in a predictable fashion within a certain operational window, typically at almost full load. It is important that the reactor operates within a safe set of conditions, with a predictable output and product quality, at predictable costs. Operation at lower or higher turnover levels may negatively affect the economics and efficacy as well as safety significantly. Also, changing the scale of a reaction may alter the heat removal and mixing characteristics in a reaction zone, which may result in differences in temperature and concentration profiles. This may in turn result in a change of productivity, selectivity, catalyst deactivation, and many other factors in the reactor as well as the clean-up and separation sections. In particular, such conventional reactors require optimization of the material and heat flows in the reactor and sections before and thereafter.
Also, often in heterogenic catalytic reactors, catalyst beds are randomly distributed and hence do not provide efficient flow and active surfaces everywhere in a reactor, with hot spots and areas with limited circulation as a result.
Other reactor types such as stirred tank reactors require the presence of baffles and active mixing and stirring elements. Yet further heat exchange is difficult as the surface available for the exchange is limited, while at the same time the inclusion of heat exchangers in an operable manner is cumbersome.
Rather than simply increasing the size either in diameter and/or height, and/or throughput of existing reactor designs, including adaptation of the reactor internals, catalyst beds, mixing internals, heating/cooling system, feed lines/feed distribution, product withdrawal and the like, the present invention seeks to standardize mixer, reactor and separator internals by use of welldefined modules, by using one or more reactor sections that are of certain, preferably identical, modular dimensions, and that can be combined and operated as one single unit.
The present invention therefore relates to a reactor system suitable for carrying out chemical reactions and/or separations, the system comprising of one, two or more modular reactor sections.
The present invention therefore relates to a modular reactor system for carrying out mixing and/or chemical reactions and/or separations, the reactor system comprising at least one, preferably two or more consecutive ceramic module(s), each performing at least one reaction or unit operation (such as e.g. mixing, heat exchange and separation), and optionally, an external housing In a particularly preferred embodiment, the present invention relates to a modular reactor system for carrying out processes on an industrial scale comprising mixing, chemical reactions, heat exchange and/or separations of chemical reactants and/or (by)products, the reactor system comprising of at least one additive manufactured module, the module being configured for performing at least one process, and optionally, an external housing.
In a separate preferred embodiment, the subject reactor system may be employed for medical processes, such as dialysis. Unit operations herein refer to reactions and transport processes, such as blending and mixing and transport of materials in general, as well as heat exchange and separations. Each of the modules may comprise more than one unit operation, such as mixing and reacting, or mixing and heat exchange, or reaction and/or mixing and heat exchange, and/or separation steps, or all of the above.
Preferably, as defined herein, a unit-operation comprises mixing catalyzed and non-catalyzed reactions, heat exchange, and/or product separation. This is the invention in its broadest form and it can be modified by including any of the features defined in the embodiments described below, either separately or in any combination.
Ina further aspect, the present invention relates to a process for forming a module for a modular reactor system, the method comprising the steps of: a. providing a ceramic precursor additive material; b. depositing at least one ceramic precursor additive material in subsequent layers to form a three-dimensional structure comprising at least one pro-ceramic cavity, at least one pro-ceramic cavity having a geometric surface area; and c. firing the ceramic additive material, to form a ceramic carrier structure having at least one ceramic cavity defined therein.
For example, ceramic reactor modules may be used to separate gaseous components from the reaction stream to form preferred product gas 20 streams. Similarly, reactant gases are sometimes supplied to the ceramic membrane reactor at elevated pressure from prior chemical unit operations. It is also sometimes desirable for reaction products to be supplied at elevated pressure to increase the chemical driving force or to prevent expensive decompression/compression steps.
Brief Description of the Drawings
The following drawings illustrate preferred embodiments of a system according to the invention.
Fig. 1 depicts a side view of a reactor 1 comprising three modules 5, 6 and 7, and reactor vessel 8. A flow of a cooling medium (assuming an exothermic reaction in this illustration) enters the system from inlet 2, and exits from an outlet 11; reactant streams 9 and10 enter the system from below, whereas product streams 3 and 4 leave the reactor.
Fig. 2 shows a preferred way of keeping the modules in place by tension elements (e.g. springs) 22 that press upon the modules.
Fig. 3 depicts a stack of modules 31 that are adapted to fit with the previous and following module 32 with 33 and 33 with 34 via an optionally coprinted male 36-female 37 connection 35.
Fig. 4 shows schematically a system comprising three elements 43, 44, 45 that are adapted to fit to each other, and further shows the reactant 46 and product flow 42, and counter-flow cooling in 41 and out 47. Herein the channels connecting the modules are formed such that a user could adapt the diameter of the reaction channels as well as the coolant channels thereby increasing the efficacy of the reactor system. In this illustration of an exothermic reaction the preferred reaction channels start with a small diameter and are surrounded by cooling channels with a large diameter, as the need to remove heat is the highest at the beginning of a reaction.
The present invention preferably relates to a reactor system (see Figure 1) wherein an industrial scale process has an entrant fluid minimum flow rate of at least 5 liters per hour. Preferably, one or more modules comprise a reaction space having a mean major diameter of at least 5 cm, and a mean major height of at least 10 cm. Preferably, a system comprises at least two consecutive modules. Preferably, the module or modules are at least in part composed of ceramic material.
Preferably, the process activity comprises at least two of mixing, adsorption and/or desorption, optionally catalyzed and/or uncatalyzed chemical reactions, heat exchange, and/or product separation.
The reactor modules are typically positioned with a gas- and/or fluidtight seal between the modules and ceramic or metallic substrates of the reactor.
Chemical reactor modules based upon ceramic membranes may include structures to support the active ceramic membranes between reactant and product gases, to supply reactant gases, to remove product gases, and to isolate reactants from products. Depending upon the details of the reactor, these structures can include various metallic or ceramic membrane holders, manifolds and substrates. In the reactor system the reactor modules must also be reliably sealed to product and other fluid flows. Such seals must be gas-tight and able to sustain the operating conditions of the reactor, including the elevated temperatures and pressure gradients, without adversely affecting the ceramic materials. Operating conditions for reactors, in particular if essentially formed form ceramic materials, may include pressures up to 1000 Bar absolute and temperatures up to 1200°C, but usually the reactors operate at pressures of up to 500 Bar absolute and temperatures up to 500°C, preferably in a temperature range of from 150 to 450°C. Since ceramic material is substantially gas-impermeable, it may divide a reactor into an oxidation zone and a reduction zone, unless designed to act as a selective membrane. The seals must also be physically and chemically stable to provide reliable operation over the lifetime of the module. The seals must further be substantially gas-impermeable and able to withstand exposure to strongly oxidizing and reducing atmospheres, including hydrocarbons, hydrogen, alcohols, H2S, NOx, water, oxygen, and air. Preferably, in particular for high temperature processes, a temperature-dependent selfsealing system may be applied that makes use of the heat expansion coefficients of the seal materials.
A main advantage of the described reactor system is the fact that a rather small system can replace a whole set of separate operational units, combining a multitude of reactor modules and operating it as one single unit with common reactant feed lines and common product discharge lines. This 20 presents a significant step forward in the current industry trend of processintensification. Further advantages are the lower weight of the individual reactor modules, making transport/handling/lifting/maintenance easier. It will be appreciated that the size of a reactor may be restricted by workshop limitations, road limitations, bridge limitations, lifting equipment limitations and 25 the like.
The standardized size of form factors for connections as well as reactor modules may also allow different providers/more companies to produce the reactor.
As the reactor system is operated as an integrated single unit, there 30 are fewer workforces needed to operate the unit from the control room.
From a process control point of view there is no difference between one large reactor line-up and the reactor system of the present invention: the reactor system of the present invention is operated in the same way as one single large reactor. In general, the heat-up/cool-down rates for the reactor system according to the present invention will be faster than for large conventional reactor set-ups.
The above described reactor system is especially useful for strongly corrosive reactions, since it is largely made from non-corrosive materials, It may also offer to perform highly exothermic reactions due to the very high cooling rates obtainable due to built-in heat exchange circuits; but also optionally including electrical heaters, or the integration of conductive alloys such as Kanthal, resulting in an relatively high amount of cooling internals inside the reactor. The same applies for highly endothermic reactions as a result of very high heating rates due to built-in heat exchange circuits and/or (electrical) heaters.
The reactor system according to the present invention suitably comprises at least one, preferably between two and more than fifty single units operated reactor modules, typically between three and over forty single unit operated reactor modules, more preferably comprises at least ten modules.
Usually a reactor system will comprise a more or less conventional reactor housing or vessel, i.e. an elongated cylindrical reactor wall, which, when in use, will be a vertical reactor. It is preferred that all reactor modules are located in one reactor vessel. Preferably, all reactor sections have the same size and form factor, and also comprise hoisting lugs for insertion and removal of the modules. However, this is not essential, and different sizes of reactors may be used. It will be appreciated that in that case measures have to be taken that the feed is distributed in the desired ratio over the reactor modules. The reactor modules will preferably be operated in series. The modules may be stacked on top of each other in a vertical fashion, or may be placed against each other in a horizontal way, or in any way between these two orientations.
A reactor module may comprise of one or more catalyst sections, such as zones where a ceramic structure is covered with an appropriate active material for the required catalytic activity. Where large heat generation may take place, e.g. in strongly exothermic processes, the reactor modules preferably each comprise an indirect heat exchange system.
Depending on the chemical reaction to be carried out, gaseous and/or liquid feeds are to be introduced in the reactor system. All possible reactor flow regimes may be used, i.e. up-flow and/or down flow, co-current and/or counter-current. Also gas and/or liquid recycles may be used.
In the case of heterogeneous catalytic reactions one or more different catalysts may be used in different sections or modules. In a preferred embodiment, preferably the same catalyst may be used in all reactor sections. In an alternative embodiment, different catalysts may be employed, even if employed in the same sections, advantageously as overlapping layers.
An exemplary catalyst may be directly bound-metal catalyst, such as noble metals, base metals and combinations thereof. Examples of noble metal catalysts include platinum, rhodium, palladium, ruthenium, rhenium, silver and alloys thereof. Examples of base metal catalysts include copper, chromium, iron, cobalt, nickel, zinc, manganese, vanadium, titanium, scandium and combinations thereof. The metal catalyst preferably is in the form of a metal, but may be present as an inorganic compound, such as an oxide, nitride and carbide, or as a defect structure within the ceramic grains of the catalyst support. The metal may be applied by any suitable technique, such as those known in the art. For example, the metal catalyst may be applied by washcoat and/or chemical vapour deposition.
A further exemplary catalyst is one that is incorporated into the lattice structure of the ceramic grains of the modules. For example, an element may be Ce, Zr, La, Mg, Ca, a metal element described in the previous paragraph or combinations thereof. These elements may be incorporated in any suitable manner, such as those known in the art.
Yet a further exemplary catalyst may comprise a combination of ceramic particles having metal deposited thereon. These are typically referred to as wash coats. Generally, wash coats consist of micrometer-sized ceramic particles, such as zeolite, aluminosilicate, silica, ceria, zirconia, barium oxide, barium carbonate and alumina particles that have metal deposited thereon. The metal may be any previously described for directly deposited metal. A particularly preferred wash coat catalyst coating is one comprised of alumina particles having a noble metal thereon. It is understood that the wash coat may be comprised of more than one metal oxide, such as alumina having oxides of at least one of zirconium, barium, lanthanum, magnesium and cerium. Yet a further exemplary catalyst may be formed by and deposited on the catalyst support by calcining at a temperature of from 280° C to 2850°C.
In higher throughput situations and processes, when a reactor cannot be printed or otherwise additive manufactured in one piece, as described above, a modular flow reactor is typically formed of a plurality of modules, wherein each module comprises a body having at least one conduit passing through it, and wherein a plurality of modules are preferably aligned along a longitudinal axis (e.g. stacked) such that the conduits of the modules are aligned to form a passage for the reaction fluids (gas/liquid) and a heat exchange medium. Preferably, each module has a length along the longitudinal axis, which is less than the length of the module perpendicular to the longitudinal axis. The modules may be separate slices”, or a plurality of modules can form a slice: the slices may then be aligned linearly so that the conduits form a tube.
In one embodiment, each module has a length along the longitudinal axis, which is less than the length of the module perpendicular to the longitudinal axis.
The technical advantage of providing the modules in slices is that they can be constructed by using additive printing techniques, in particular 3Dprintirig, as well as by conventional manufacturing techniques. This reduces manufacturing costs and results in a number of other benefits.
In its broadest form, this invention is thus concerned with a new type reactor system that is modular, scalable and reconfigurable. Preferably, the 25 reactor system combines at least two processes in the same space.
The reactor comprises of any number of standard modules that, once assembled together, combine into a continuous flow chemical reactor system of a desired length. A module comprises a number of conduits, the diameters of which could vary, that once assembled togetherform a reactor system. In 30 addition, a section comprises additional conduits for allowing flow of heating or cooling medium.
As well as the manufacturing advantages mentioned above, other advantages of this sectioned design include: ability to line cavities with for example chemically reactive or catalytic material; use ceramics that have chemically reactive properties, such as catalytic er sorbent material; ability to take apart for cleaning and reassembly; ability to assemble into any length, width and depth: compactness; ability to add monitoring and measuring ports or injection ports attached to each cavity; integrated temperature control via 5 cooling or heating fluid flow or inserted electrical heating elements (such as alloys and/or coils); ability to combine a variety of reactor-designs into the same compact arrangement including a mixture of standard plug flow with baffled flow designs; and the ability to include blades instead of standard straight walled orifice for different mixing regimes. In addition, the design can 10 act as a standard platform that can be replicated to repeat reliably reaction processes only by selecting and assembling the same number and design of modules.
In another embodiment, the reactor comprises at least one reinforcing element for linking the modules together. This may include keeping the modules in place in a vertical reactor by one or more springs or similar tension mechanisms, whereby a lid of the reactor may keep the tension on a module stack, as visible for instance in Figure 2. This mechanism may vary according to the reactor set-up, e.g. in the case of a horizontal reactor set-up,
The reactor may have a plurality of the passages in parallel. In a preferred embodiment, the reactor additionally comprising at least one endconnection for fitting to at least one end of the reactor, comprising at least one conduit operable and equipped to allow the attachment of standard connectors, as set out in Figure 3. The male-female connection depicted in Figure 3 may be applied for all channel connections between the various modules, to ensure full closure and prevent leakages. The form of the malefemale connection can by any form that is known to industry today, e.g. an “edgy” transition or a “smooth” transition).
In another embodiment in which the reactor has at least two passages formed by the alignment of conduits, the module comprises a connector to 30 fluidly connect the passages together, as set out for instance in Figure 4.
It will be appreciated that a reactor preferably has multiple passages, in which case the module may be designed to connect multiple passages to each other to create parallel and/or sequential flow paths through the reactor and/or to provide connection points for external tubes (Figure 4).
The reactor system in its broadest form may include at least one module which has at least one baffle to disrupt flow of fluid through said at least one conduit. The baffle and the body of the module are preferably integrally formed. However, the reactor may also have at least one module, which is baffle-free.
in a preferred embodiment, the baffle is a region in the conduit of reduced internal diameter. The internal diameter of the region of the baffle is preferably about half of the internal diameter of the conduit in the baffle-free region. Independently, the length of the region of the baffle along the longitudinal axis of the conduit may be about a quarter of the length of the baffle-free region of the conduit.
An important technical advantage of the reactor system is that it can be constructed from modules with differing functionality depending on the needs of the user.
For example, modules can be provided with one or more of the following functionalities: a port for allowing access to at least one conduit; whereby the port may be connected to a fluid injection device; a fluid measuring device; a fluid monitoring device;
- a catalyst section positioned so as to contact any gas/fluid flowing through the at least one conduit, preferably provided in the conduit lining; support material positioned so as to contact any fluid flowing through at least one conduit; and/or a membrane for separating components of a fluid passing through it.
In a further aspect of the present invention, there is provided a single module as defined above. In a preferred embodiment, a face of a module body at one end of the conduit has a projection, and a face of the module body at an opposite end of the conduit may have a corresponding depression, whereby the projection can engage with a depression on a second Identically shaped module when the two conduits are aligned (Figure 4).
In a further aspect of the invention, there is provided a section for a modular flow reactor, comprising a body having at least one conduit passing there through along a first axis and at least one baffle to disrupt flow of fluid through said at least one conduit, wherein the body is configured such that the conduit of the body and the conduit of a second identical section can be aligned io form a passage for fluid in a modular flow reactor, wherein the modules are integrally formed.
The modular reactor system according to the invention as described herein above may advantageously be applied in the (petro-, fine-) chemical 5 industry, but also in the area of air treatment, such as for supplying oxygen deprived air to fruit containers, emission management, e.g. off-gases of ship, truck and locomotive engines as well as standalone generator sets, environmental processes, e.g. water treatment, life-sciences (e.g. pharmaceuticals production) and medical applications, e.g. dialysis.
The process activity to be performed in the modular reactor system according to the invention as described herein above preferably comprises at least two of mixing, adsorption and/or desorption, optionally catalyzed and/or uncatalyzed chemical reactions, heat exchange, and/or product separation.
The modular reactor system according to the invention as described herein above preferably comprises at least two different modules for performing at least two different processes, preferably a combination of mixing and chemical reactions, a combination of a chemical reaction and heat exchange; a combination of a chemical reaction and a separation, or combinations/ mixtures thereof, preferably, wherein at least one module is configured to perform at least two processes. More preferably, the reactor system comprises between 2 and more than 50 reactor modules arranged in stacked manner and consecutive order according to a product flow direction.
Preferably, the modules are arranged in a flow direction according to any of the 6 spatial directions, preferably, wherein the flow direction is essentially horizontal or vertical; preferably, wherein the system comprises at least one layer comprising several horizontally positioned, for instance in a 2D-honeycomb structure, optionally interconnected, modules, preferably wherein each layer is connected to a next layer in a vertical direction.
In the modular reactor system according to the invention as described 30 herein above, at least one reactor module preferably comprises one or more mixing sections, preferably forming a static mixer.
In the modular reactor system according to the invention as described herein above, at least one reactor module preferably comprises one or more catalyst and/or sorbent sections.
In the modular reactor system according to the invention as described herein above, at least one reactor module preferably comprises a passive, and/or active heat exchange system, preferably an active heat exchange system.
In the modular reactor system according to the invention as described herein above, at least one reactor module preferably comprises a separation unit.
In the modular reactor system according to the invention as described herein above, at least two modules preferably comprise common reaction chambers and/or heat exchange fluid medium channels lines connected to one another, wherein the reactor chamber volume and/or heat exchange channel volume at an initial chamber in a first module is different from the reactor chamber or channel volume in a second consecutive module.
In the modular reactor system according to the invention as described herein above, at least one reactor module preferably comprises a ceramic carrier structure defining at least one ceramic cavity, at least one ceramic cavity having a defined surface area and defined geometry.
Preferably, the module ceramic structure is a monolithic threedimensional multi-layered ceramic structure. Such structures include, but are not limited to 3D-honeycomb structures.
The modular reactor system according to the invention as described herein above, at least one reactor module preferably comprises further connector members for linking modules and/or modules and general inlets and outlets of the reactor system, and preferably also comprising connectors between modules and connecting conduits, and more preferably also comprising installation and removal members, preferably executed as hoisting lugs, and connectors for attaching modules to each other.
In the modular reactor system according to the invention as described herein above, modules are preferably designed and shaped to connect in at least two of the 6 directions, and comprising flow channels in all 6 directions for flow of reactants, end-product and cooling/heating, optionally with individually controlled flow-through varying channel diameters over the height/width of the module. Such connectors preferably comprise at least one standardized form-factor for each kind of connector. In the modular reactor system according to the invention as described herein above, a module preferably is sized and designed to a standardized form-factor.
In the modular reactor system according to the invention as described herein above, the monolithic three-dimensional multi-layered ceramic structure is preferably comprised of a plurality of thin ceramic layers of at least 50 pm.
In the modular reactor system according to the invention as described herein above, the at least one module further preferably comprises an active material present within the ceramic carrier structure. The active material may advantageously be a catalytically active and/or adsorptive material.
The ceramic support layer preferably may be a porous or non-porous material, more preferably the ceramic material is porous material, more preferably comprises alumina, titania, silica and/or zirconia.
The term “porous” herein refers to structures with pore sizes between 1 and 15 pm and interconnected, open porosities between 30% and 45%.
Preferably, it may be prepared from particulate materials that form ceramics, such as silicon carbide, silicon nitride, mullite, cordierite, beta spodumene, phosphate ceramics, such as e.g. zirconium phosphate, or combinations thereof.
Preferably, the ceramic powders form mullite or cordierite. Preferred examples of ceramics include silica, alumina, aluminum fluoride, clay, fluorotopaz, zeolite, and mixtures thereof.
Different composition means that, after sintering, the compositions have a readily discernable microstructural difference (e.g., porosity, crystalline structure or grain size) or chemical difference by typically employed techniques for characterizing ceramics.
The mixture may contain other useful components, such as those known in the art of making ceramic suspensions. Examples of other useful components include dispersants, deflocculants, flocculants, plasticizers, defoamers, lubricants and preservatives. A preferred binder in the mixture is one that is soluble in the dispersing liquid, but not soluble in water.
The mixture may also contain binders. Examples of binders include cellulose ethers, preferably, the binder is a methylcellulose or ethylcellulose.
“Porous” herein has the meaning of ceramic material having an adequate permeability, related to pore size, porosity, and configuration. Preferably the porous material has a pore size of 0.1-10 pm, a porosity of 15 to 85%, and a Pore Volume Distribution of from 100 and 0.003 pm, as determined by ASTM D4284.
Preferably, the catalyst or adsorbent material is formed on a plurality of surfaces of the porous ceramic material prior to, or post firing, e.g. when sintered. Preferably, the catalyst material may be entrapped within a plurality of voids formed in the porous ceramic material prior to, or post firing/ sintering.
The support layer may alternatively also be advantageously formed on a surface of the plurality of channels, e.g. using a negative printed form upon which the ceramic or otherwise suitable material may be applied: the negative may then be dissolved or molten or otherwise removed, leaving the positive support layer. One example includes a wax or polyolefin material that may suitably melted away. In another example, the negative form may be a ceramic material that may be dissolved once a positive form of e.g. a molten metal alloy is formed on the negative form, in a dipping process.
The modular reactor system according to the invention as described herein above preferably further comprises at least two independent fluid conduit systems that are not fluidly connected to one another, such that each system may comprise a different fluid stream. Preferably, one of the conduit systems is operable as product/reactant flow chamber/reaction chamber, and wherein the at least second system is operable as heat exchange system.
More preferably, one of the conduit systems may be operable as product flow chamber, and the at least second system may be operable as separation unit, wherein the boundary between the two systems may act as a selective product removal membrane.
The system further preferably includes at least a sensor, preferably one of a temperature sensor, a viscosity sensor, visual, e.g. opacity sensor; a flow sensor, a pressure sensor, a density sensor, each individually or all of them included into the system for providing feedback control, through a feed rate or general conditions, e.g. density, of the input of reactants or heat exchange medium.
Preferably, the reactor system comprises at least two or more modules, each module comprising one or more monolithic three-dimensional multilayer ceramic structure(s), thereby defining a unit process zone.
The system may advantageously comprise a catalyst or (ad)sorbent material formed in combination with the porous ceramic support layer, the catalyst or (ad)sorbent preferably being co-fired with the monolithic threedimensional multilayer ceramic structure, or applied after the firing of the ceramic structure.
Preferably, the reactor system comprises at least one inlet channel for reactant streams; and at least one outlet channel for reactants and products, each in fluidic communication with the reaction modules.
Preferably, the reactor system comprises a reactant vessel printed into a module of the reactor system, or it may comprise separate reactor vessel housing one or more modules.
The subject invention also relates to a process for forming a module for a modular reactor system according to any one of the previous claims, the method comprising the steps of:
a. providing a ceramic precursor additive material;
b. depositing the at least one ceramic precursor additive material in subsequent layers to form a pre-ceramic 3-dimensional structure; and
c. firing the pre-ceramic additive material and, optionally, to form a ceramic carrier structure. In step (c), the firing conditions are preferably chosen such that they involving debinding and sintering.
Preferably the process further comprises depositing a catalyst precursor material that can be co-fired with the pre-ceramic additive material, and co-firing the formed ceramic structure with the immobilized catalyst deposited thereon, or applying the catalyst or catalyst precursor material after the firing of the ceramic structure. Alternatively, at least in part, a porous ceramic support layer is being formed on a surface of the plurality of channels, forming a positive layer over a negative base additive manufactured scaffold.
Preferably the process further comprises forming an additive manufactured, heat untreated finished reactor module, herein referred to as a “green” reactor module in an additive manufacturing system wherein the “green” module is converted to a monolithic ceramic composite module, comprising the steps of:
d. selecting a firing-removable particulate or liquid binder material;
e. blending the liquid or particulate binder material with a particulate material (powder) selected from at least one of a metal powder, a carbide powder, a ceramic powder and a mixture thereof, to obtain a blended ceramic precursor material;
f. depositing a plurality of layers of the ceramic precursor material into a three-dimensional reactor module green body structure; and
g. subjecting the green body structure to a firing process in a furnace to remove the binder component, and to convert the pre-ceramic“green” body structure to a ceramic composite structure, preferably with a wall thickness in a range of from 1pm 30 millimeters. Herein a difference can be made between parts of the module that may mainly serve for stability reasons, e.g. load or pressure bearing walls, and baffles or otherwise structures that do not need to contribute to the load or pressure dissipation as much as the load bearing structures. Preferred are wall thicknesses of from 10 pm to 50pm, and from 100 pm to 15 mm, respectively.
Preferably in the process the depositing of the plurality of layers of the polymer precursor resin and powder blend is computer controlled, preferably by a three-dimensional printing process.
Preferably in the process the binder is selected from a polymer that is liquefiable and/or decomposable at the elevated temperature as present in the furnace during firing. Preferably the binder further comprises other components selected from a metallic powder, a ceramic powder, graphite powder, graphene powder, diamond powder, carbide powder, silicide powder, nitride powder, graphene, carbon nanofiber, carbon nanotubes, and mixtures thereof.
In step g., the optionally dried green body is suitably fired by heating to a sufficient top temperature for a sufficient time to result in a fired ceramic body.
The firing conditions may be varied depending on the process conditions such as specific composition of the batch, size of the green body, and nature of the equipment. The green body is preferably heated in a furnace to the highest temperature of the firing cycle preferably in the temperature range having an upper limit below 1550° C. and a lower limit of above 1350° C., and in some embodiments below 1460° C. and above 1420° C. and held at this temperature range preferably for greater than 4 hours;
more preferably between 4-30 hours; and more preferably yet between 6-20 hours. During firing, a predominant ceramic crystal phase may be formed in the ceramic article.
The subject invention also relates to the use of a reactor system or a system as obtained in a process for industrial scale processes, in particular 10 for the (petro)chemical industry.
It should be understood that while the present invention has been described in detail with respect to certain illustrative and specific embodiments thereof, it should not be considered limited to such, as numerous modifications are possible without departing from the broad scope 15 of the present invention as defined in the appended claims.

Claims (44)

CONCLUSIESCONCLUSIONS 1. Modulair reactorsysteem voor het uitvoeren van processen op industriële schaal, omvattende mengingen, chemische reacties, warmte-uitwisselingen , en/of scheidingen van chemische reactiemiddelen en/of (neven)producten, waarbij het reactorsysteem ten minste wordt gevormd door een additief-geproduceerde module, waarbij de module geconfigureerd is om ten minste één proces uit te voeren, alsook optioneel een externe behuizing.Modular reactor system for carrying out processes on an industrial scale, comprising mixtures, chemical reactions, heat exchanges, and / or separations of chemical reagents and / or (by-products), the reactor system being at least formed by an additive-produced module, wherein the module is configured to perform at least one process, as well as optionally an external enclosure. 2. Reactorsysteem volgens conclusie 1, waarin het proces op industriële schaal gebruikmaakt van een minimum debiet van een aangevoerd fluïdum van ten minste 5 liter per uur.A reactor system according to claim 1, wherein the process on an industrial scale uses a minimum flow rate of a supplied fluid of at least 5 liters per hour. 3. Reactorsysteem volgens conclusie 1 of conclusie 2, waarin de module een reactieruimte omvat die in het bezit is van een gemiddelde hoofddiameter van ten minste 5 cm, en van een gemiddelde hoofdhoogte van ten minste 10 cm.A reactor system according to claim 1 or claim 2, wherein the module comprises a reaction space that has an average head diameter of at least 5 cm, and an average head height of at least 10 cm. 4. Reactorsysteem volgens een der voorgaande conclusies, waarin het systeem ten minste twee opeenvolgende modules omvat.A reactor system according to any one of the preceding claims, wherein the system comprises at least two consecutive modules. 5. Reactorsysteem volgens een der voorgaande conclusies, waarin de module of modules ten minste gedeeltelijk gevormd is of zijn uit een keramisch materiaal.A reactor system according to any one of the preceding claims, wherein the module or modules is at least partially formed from a ceramic material. 6. Reactorsysteem volgens een der voorgaande conclusies, waarin de procesactiviteit ten minste twee omvat van mengen, adsorptie en/of desorptie, optioneel gekatalyseerde en/of niet-gekatalyseerde chemische reacties, warmte-uitwisselingen, en/of productscheidingen.A reactor system according to any one of the preceding claims, wherein the process activity comprises at least two of mixing, adsorption and / or desorption, optionally catalyzed and / or non-catalyzed chemical reactions, heat exchanges, and / or product separations. 7. Reactorsysteem volgens een der voorgaande conclusies, ten minste twee verschillende modules omvattende voor het uitvoeren van ten minste twee verschillende processen, bij voorkeur een combinatie van mengen en chemische reacties, een combinatie van een chemische reactie en van een warmte-uitwisseling; een combinatie van een chemische reactie en van een scheiding, of combinaties/mengsels daarvan, bij voorkeur waarin ten minste één module geconfigureerd is om ten minste twee processen uit te voeren.A reactor system according to any one of the preceding claims, comprising at least two different modules for carrying out at least two different processes, preferably a combination of mixing and chemical reactions, a combination of a chemical reaction and a heat exchange; a combination of a chemical reaction and of a separation, or combinations / mixtures thereof, preferably wherein at least one module is configured to perform at least two processes. 8. Reactorsysteem volgens een der voorgaande conclusies, tussen 2 en meer dan 50 reactormodules omvattende die opgesteld zijn op gestapelde wijze en in een bepaalde volgorde in overeenstemming met een richting van een productstroom.A reactor system according to any one of the preceding claims, comprising between 2 and more than 50 reactor modules arranged in a stacked manner and in a specific order in accordance with a direction of a product stream. 9. Reactorsysteem volgens conclusie 8, waarin de modules in een stromingsrichting opgesteld zijn volgens welke dan ook van de zes ruimtelijke richtingen, waarin bij voorkeur de stromingsrichting in hoofdzaak horizontaal of verticaal is; waarin bij voorkeur het systeem ten minste één laag omvat die verschillende, horizontaal gepositioneerde, optioneel onderling verbonden in honingraatstructuren opgestelde modules omvat, waarin bij voorkeur elke laag is verbonden met een, in een verticale richting volgende laag.The reactor system of claim 8, wherein the modules are arranged in a flow direction according to any of the six spatial directions, wherein preferably the flow direction is substantially horizontal or vertical; wherein preferably the system comprises at least one layer comprising different, horizontally positioned, optionally interconnected modules arranged in honeycomb structures, wherein each layer is preferably connected to a layer following in a vertical direction. 10. Reactorsysteem volgens een der voorgaande conclusies, waarin ten minste één reactormodule één of meerdere mengzones omvat, waardoor bij voorkeur een statische menger gevormd wordt.A reactor system according to any one of the preceding claims, wherein at least one reactor module comprises one or more mixing zones, whereby a static mixer is preferably formed. 11. Reactorsysteem volgens een der voorgaande conclusies, waarin ten minste één reactormodule één of meerdere katalysator- en/of sorptiedelen omvat.A reactor system according to any one of the preceding claims, wherein at least one reactor module comprises one or more catalyst and / or sorption parts. 12. Reactorsysteem volgens een der voorgaande conclusies, waarin ten minste één van de reactormodules een passief en/of actief warmte-uitwisselingsysteem omvat, bij voorkeur een actief warmte-uitwisselingsysteem.A reactor system according to any one of the preceding claims, wherein at least one of the reactor modules comprises a passive and / or active heat exchange system, preferably an active heat exchange system. 13. Reactorsysteem volgens een der voorgaande conclusies, waarin ten minste één van de reactormodules een scheidingseenheid omvat.A reactor system according to any one of the preceding claims, wherein at least one of the reactor modules comprises a separation unit. 14. Reactorsysteem volgens een der voorgaande conclusies, waarin ten minste twee modules gemeenschappelijke reactorruimten en/of kanaallijnen voor warmteoverdragend fluïdum die onderling verbonden zijn, omvatten.A reactor system according to any one of the preceding claims, wherein at least two modules comprise common reactor spaces and / or channel lines for heat transferring fluid which are interconnected. 15. Reactorsysteem volgens conclusie 14, waarin de reactorruimte en/of het warmteuitwisselingskanaal in een initiële ruimte in een eerste module verschillend is of zijn ten opzichte van de reactorruimte of kanaalvolume en/of geometrie in een tweede, volgende module.The reactor system according to claim 14, wherein the reactor space and / or the heat exchange channel in an initial space in a first module is or are different from the reactor space or channel volume and / or geometry in a second, subsequent module. 16. Reactorsysteem volgens een der voorgaande conclusies, waarin elke module een keramische dragende structuur omvat die ten minste een keramische caviteit definieert, waarbij de ten minste ene keramische caviteit in het bezit is van een gedefinieerde oppervlakte en van een gedefinieerde geometrie.A reactor system according to any one of the preceding claims, wherein each module comprises a ceramic bearing structure that defines at least one ceramic cavity, wherein the at least one ceramic cavity has a defined surface area and a defined geometry. 17. Reactorsysteem 16, waarin de keramische structuur van de module een monolithische driedimensionale meerlaagse keramische structuur is.17. Reactor system 16, wherein the ceramic structure of the module is a monolithic three-dimensional multi-layer ceramic structure. 18. Reactorsysteem volgens een der conclusies 1 tot en met 17, bovendien verbindingsdelen omvattende voor het verbinden en het uitlijnen van modules en/of modules en algemene inlaten en uitlaten van het reactorsysteem, en bij voorkeur eveneens verbindingen omvattende tussen modules en verbindende leidingen, en bij voorkeur eveneens installatie- en verwijderdelen omvattende, bij voorkeur uitgevoerd in de vorm van hijsogen, en verbindingen om verschillende modules met elkaar te verbinden.The reactor system according to any of claims 1 to 17, further comprising connecting parts for connecting and aligning modules and / or modules and general inlets and outlets of the reactor system, and preferably also including connections between modules and connecting lines, and preferably also comprising installation and removal parts, preferably in the form of lifting eyes, and connections to connect different modules to each other. 19. Reactorsysteem volgens een der conclusies 1 tot en met 18, waarin modules ontworpen zijn om in ten minste twee van de zes richtingen te verbinden, en stromingskanalen omvattende voor reactiemiddelen, eindproduct, en/of koeling/verwarming met verschillende vormen in de zes richtingen, optioneel met individueel gecontroleerde, variërende vrije kanaal diameters over de hoogte/breedte van de module.The reactor system of any one of claims 1 to 18, wherein modules are designed to connect in at least two of the six directions, and include flow channels for reactants, end product, and / or cooling / heating with different shapes in the six directions , optionally with individually controlled, varying free channel diameters across the height / width of the module. 20. Reactorsysteem volgens een der conclusies 1 tot en met 19, waarin verbindingen ten minste één gestandaardiseerde vormfactor omvatten voor elk type verbinding.The reactor system of any one of claims 1 to 19, wherein compounds comprise at least one standardized form factor for each type of connection. 21. Reactorsysteem volgens een der conclusies 1 met 20, waarin een module op een zodanige wijze gedimensioneerd en ontworpen is dat er voldaan wordt aan een gestandaardiseerde vormfactor.A reactor system according to any one of claims 1 to 20, wherein a module is dimensioned and designed in such a way that a standardized form factor is met. 22. Reactorsysteem volgens een der conclusies 10 tot en met 21, waarin de monolithische driedimensionale meerlaagse keramische structuur is gevormd uit een veelheid aan dunne keramische lagen, bij voorkeur met een dikte van 1 pm tot en met 100 pm, en beter met een dikte van 10 pm tot en met 50 pm.A reactor system according to any of claims 10 to 21, wherein the monolithic three-dimensional multi-layer ceramic structure is formed from a plurality of thin ceramic layers, preferably with a thickness of 1 µm to 100 µm, and more preferably with a thickness of 10 µm to 50 µm. 23. Reactorsysteem volgens een der conclusies 1 tot en met 22, waarin ten minste één module bovendien een actief materiaal omvat dat aanwezig is in of op de keramische dragende structuur.The reactor system of any one of claims 1 to 22, wherein at least one module further comprises an active material present in or on the ceramic-bearing structure. 24. Reactorsysteem volgens een der conclusies 1 tot en met 23 waarin het actieve materiaal een katalytisch actief en/of absorberend materiaal is.The reactor system of any one of claims 1 to 23, wherein the active material is a catalytically active and / or absorbent material. 25. Reactorsysteem volgens conclusie 23 of conclusie 24, waarin de keramische dragende laag poreus of niet-poreus is, waarin bij voorkeur het keramische materiaal poreus is, en nog beter aluminiumoxide, titaniumoxide, siliciumoxide en/of zirkoniumoxide omvat.A reactor system according to claim 23 or claim 24, wherein the ceramic support layer is porous or non-porous, wherein preferably the ceramic material is porous, and even better comprises aluminum oxide, titanium oxide, silicon oxide and / or zirconium oxide. 26. Reactorsysteem volgens conclusie 24 of conclusie 25, waarin het katalytische materiaal is gevormd op een veelheid aan oppervlakken van het poreuze keramische materiaal, voorafgaand aan of na het bakken (sinteren) ervan.The reactor system of claim 24 or claim 25, wherein the catalytic material is formed on a plurality of surfaces of the porous ceramic material prior to or after firing (sintering) thereof. 27. Reactorsysteem volgens conclusie 26, waarin het katalytische materiaal gevangen zit in een veelheid aan holle ruimten die gevormd zijn in het poreuze keramische materiaal, voorafgaand aan of na het bakken (sinteren) ervan.The reactor system of claim 26, wherein the catalytic material is trapped in a plurality of cavities formed in the porous ceramic material prior to or after firing (sintering) thereof. 28. Reactorsysteem volgens conclusie 24, waarin een poreuze keramische dragende laag is gevormd op een oppervlak van de veelheid aan kanalen, waardoor een positieve laag wordt gevormd over een negatief basisadditief-geproduceerd skelet.The reactor system of claim 24, wherein a porous ceramic-bearing layer is formed on a surface of the plurality of channels, thereby forming a positive layer over a negative base additive-produced skeleton. 29. Reactorsysteem volgens een der conclusies 1 tot en met 28, bovendien ten minste twee onafhankelijke fluïdumleidingsystemen omvattende die onderling niet met elkaar in fluïdumverbinding staan, zodat door elk systeem een verschillende fluïdumstroming kan stromen.The reactor system of any one of claims 1 to 28, further comprising at least two independent fluid line systems that are not in fluid communication with each other, so that a different fluid flow can flow through each system. 30. Reactorsysteem volgens conclusie 29, waarin één van de leidingsystemen werkzaam is als product/reactiemiddel stromingskamer/reactieruimte, en waarin het ten minste tweede systeem werkzaam is als warmte-uitwisselingsysteem.The reactor system of claim 29, wherein one of the piping systems is active as a product / reagent flow chamber / reaction space, and wherein the at least second system is operative as a heat exchange system. 31. Reactorsysteem volgens conclusie 30, waarin één van de leidingsystemen werkzaam is als productstromingskamer, en waarin het ten minste tweede systeem werkzaam is als scheidingseenheid, waarin de grens tussen de twee systemen fungeert als membraan voor het op selectieve wijze verwijderen van producten.The reactor system of claim 30, wherein one of the piping systems is operative as a product flow chamber, and wherein the at least second system is operable as a separation unit, wherein the boundary between the two systems acts as a membrane for selectively removing products. 32. Reactorsysteem volgens een der conclusies 1 tot en met 31, bovendien ten minste een sensor omvattende, bij voorkeur één van een temperatuursensor, een viscositeitsensor, een visuele sensor, bijvoorbeeld een opaciteitsensor, een stromingssensor, een druksensor, een dichtheidssensor, voor het aanleveren van een feedbackcontrole, bij voorkeur in de vorm van een aanvoersnelheid, algemene omstandigheden, dichtheid, temperatuur, en/of de aanvoerstroom en/of omstandigheden van de reachemiddelen of het warmte-uitwisselingsfluïdum.The reactor system according to any of claims 1 to 31, further comprising at least one sensor, preferably one of a temperature sensor, a viscosity sensor, a visual sensor, for example an opacity sensor, a flow sensor, a pressure sensor, a density sensor, for supplying of a feedback control, preferably in the form of a feed rate, general conditions, density, temperature, and / or the feed stream and / or conditions of the reach means or the heat exchange fluid. 33. Reactorsysteem volgens een der voorgaande conclusies, ten minste twee of meerdere modules omvattende, waarbij elke module één of meerdere, monolithische, driedimensionale, meerlaagse, keramische structuren omvat zodat er een eenheidproceszone gedefinieerd is.A reactor system according to any one of the preceding claims, comprising at least two or more modules, wherein each module comprises one or more, monolithic, three-dimensional, multi-layered, ceramic structures so that a unit process zone is defined. 34. Reactorsysteem volgens conclusie 33, bovendien een katalysator- of sorptiemateriaal omvattende dat gevormd is in combinatie met de poreuze keramische dragende laag, waarbij de katalysator samen met de monolithische driedimensionale meerlaagse keramische structuur gebakken is of is aangebracht na het bakken van de keramische structuur.The reactor system of claim 33, further comprising a catalyst or sorption material formed in combination with the porous ceramic-bearing layer, wherein the catalyst is fired together with the monolithic three-dimensional multi-layer ceramic structure or has been fired after firing the ceramic structure. 35. Reactorsysteem volgens conclusie 34, bovendien ten minste één inlaatkanaal omvattende voor reactiemiddel stromen, alsook ten minste één uitlaatkanaal voor de reactiemiddelen en producten, elk in fluïdumverbinding met de reactiemodules.The reactor system of claim 34, further comprising at least one inlet channel for reagent streams, as well as at least one outlet channel for the reagents and products, each in fluid communication with the reaction modules. 36. Werkwijze voor het vormen van een module voor een modulair reactorsysteem volgens een der voorgaande conclusies, waarbij de werkwijze de stappen omvat met:A method of forming a module for a modular reactor system according to any one of the preceding claims, wherein the method comprises the steps of: a. het voorzien van een precursor-additiefmateriaal; ena. providing a precursor additive material; and b. het afzetten van het ten minste ene precursor-additiefmateriaal in achtereenvolgende lagen, teneinde een driedimensionale structuur te vormen.b. depositing the at least one precursor additive material in successive layers to form a three-dimensional structure. 37. Werkwijze volgens conclusie 36, waarin het precursormateriaal een keramisch precursor-additiefmateriaal is, en waarin een pre-keramische driedimensionale structuur wordt gevormd, waarin de werkwijze bovendien een stap (c) omvat voor het bakken (omstandigheden die aanleiding geven tot sinteren) van het pre-keramische (groene) additiefmateriaal, en optioneel voor het vormen van een thermische dragende structuur.The method of claim 36, wherein the precursor material is a ceramic precursor additive material, and wherein a pre-ceramic three-dimensional structure is formed, wherein the method further comprises a step (c) for baking (sintering conditions) of the pre-ceramic (green) additive material, and optionally for forming a thermal bearing structure. 38. Werkwijze volgens conclusie 37, bovendien het afzetten omvattende van een katalytisch precursormateriaal dat samen met het pre-keramische additiefmateriaal kan gebakken worden, en het tegelijkertijd bakken van de gevormde keramische structuur met de daarop afgezette geïmmobiliseerde katalysator, of het aanbrengen van het katalysatorof katalysatorprecursormateriaal na het bakken van de keramische structuur.The method of claim 37, further comprising depositing a catalytic precursor material that can be baked together with the pre-ceramic additive material, and simultaneously baking the formed ceramic structure with the immobilized catalyst deposited thereon, or applying the catalyst or catalyst precursor material after firing the ceramic structure. 39. Werkwijze volgens een der conclusie 37 of 38, het vormen omvattende van een additiefgeproduceerde, thermisch onbehandelde, afgewerkte, pre-keramische reactormodule in een additief-productiesysteem waarin de pre-keramische module wordt omgevormd tot een monolithische keramische composietmodule, de stappen omvattende met:The method of any one of claims 37 or 38, comprising forming an additive-produced, thermally untreated, finished, pre-ceramic reactor module in an additive-manufacturing system in which the pre-ceramic module is transformed into a monolithic ceramic composite module comprising the steps of : a. het selecteren van een door bakken te verwijderen deeltjesvormig of vloeibaar bindmiddel;a. selecting a particulate or liquid binder to be removed by baking; b. het mengen van het vloeibare of deeltjesvormige bindmiddel met een deeltjesvormig materiaal (poeder) dat geselecteerd is uit ten minste één van een metaalpoeder, een carbidepoeder, een keramisch poeder, en een mengsel van de voorgaande, teneinde een gemengd keramisch precursormateriaal te verkrijgen;b. mixing the liquid or particulate binder with a particulate material (powder) selected from at least one of a metal powder, a carbide powder, a ceramic powder, and a mixture of the foregoing, to obtain a mixed ceramic precursor material; c. het afzetten van een veelheid aan lagen van het keramische precursormateriaal tot een driedimensionale groene lichaamsstructuur voor een reactormodule verkregen wordt, bij voorkeur om een wanddikte te realiseren die gelegen is in een bereik van 1 pm tot en met 30 mm, bij verdere voorkeur met een verschil tussen de buitenwand en de onderdelen aan de binnenkant van de reactor;c. depositing a plurality of layers of the ceramic precursor material until a three-dimensional green body structure for a reactor module is obtained, preferably to realize a wall thickness that is in a range of 1 µm to 30 mm, further preferably with a difference between the outside wall and the parts on the inside of the reactor; d. het onderwerpen van de lichaamsstructuur aan een bakproces in een oven, teneinde de bindmiddelcomponent te verwijderen (ontbinden), en om de groene lichaamsstructuur om te vormen tot een keramische compositiestructuur (sinteren).d. subjecting the body structure to a baking process in an oven, to remove (dissolve) the binder component, and to transform the green body structure into a ceramic composition structure (sintering). 40. Werkwijze volgens conclusie 39, waarin het afzetten van de veelheid aan lagen computergestuurd plaatsvindt, bij voorkeur in de vorm van een driedimensionaal drukproces.The method of claim 39, wherein the depositing of the plurality of layers takes place in a computer-controlled manner, preferably in the form of a three-dimensional printing process. 41. Werkwijze volgens een der conclusies 39 of 40, waarin het bindmiddel is geselecteerd uit een polymeer dat vloeibaar kan gemaakt worden en/of kan ontbinden bij de hoge temperatuur die heerst in de oven tijdens het ontbinden en/of het bakken.A method according to any of claims 39 or 40, wherein the binder is selected from a polymer that can be liquefied and / or can decompose at the high temperature prevailing in the oven during decomposition and / or baking. 42. Werkwijze volgens conclusie 41, waarin het bindmiddel bovendien andere componenten omvat die geselecteerd zijn uit een metallisch poeder, een keramisch poeder, grafietpoeder, grafeenpoeder, diamantpoeder, carbidepoeder, silicidepoeder, nitridepoeder, grafeen, koolstof nanovezels, koolstof nanobuisjes en mengsels van de voorgaande.The method of claim 41, wherein the binder further comprises other components selected from a metallic powder, a ceramic powder, graphite powder, graphene powder, diamond powder, carbide powder, silicide powder, nitride powder, graphene, carbon nanofibers, carbon nanotubes, and mixtures of the foregoing . 43. Werkwijze voor het vormen van een modulair reactorsysteem volgens een der voorgaande conclusies, waarbij de werkwijze de stappen omvat met:A method for forming a modular reactor system according to any one of the preceding claims, wherein the method comprises the steps of: a. het voorzien van een negatief precursor-additiefmateriaal; enproviding a negative precursor additive material; and b. het afzetten van het ten minste ene precursor-additiefmateriaal in opeenvolgende lagen, teneinde een driedimensionale negatieve structuur te vormen, enb. depositing the at least one precursor additive material in successive layers to form a three-dimensional negative structure, and c. het op de negatieve vorm afzetten van een pre-keramisch of op een andere wijze geschikt materiaal; enc. depositing a pre-ceramic or otherwise suitable material on the negative form; and d. het verwijderen van de negatieve vorm van de positieve laag, teneinde een holle positieve dragende laag te verkrijgen.d. removing the negative form of the positive layer to obtain a hollow positive bearing layer. 44. Gebruik van een reactorsysteem volgens een der conclusies 1 tot en met 35, of een systeem zoals dat verkregen is aan de hand van een werkwijze volgens 30 tot en met 43, voor werkwijzen op industriële schaal, in het bijzonder voor de (petro)chemische industrie.44. Use of a reactor system according to one of claims 1 to 35, or a system as obtained by a method according to 30 to 43, for processes on an industrial scale, in particular for the (petro) chemical industry.
Figure NL2020804B1_C0001
Figure NL2020804B1_C0001
NL2020804A 2018-01-05 2018-04-20 Modular Additive Manufactured Reactor System NL2020804B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NL2020804A NL2020804B1 (en) 2018-04-20 2018-04-20 Modular Additive Manufactured Reactor System
EP19714816.6A EP3735318A1 (en) 2018-01-05 2019-01-04 Modular additive manufactured reactor system
PCT/NL2019/050004 WO2019135678A1 (en) 2018-01-05 2019-01-04 Modular additive manufactured reactor system
US16/960,160 US11602723B2 (en) 2018-01-05 2019-01-04 Modular additive manufactured reactor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2020804A NL2020804B1 (en) 2018-04-20 2018-04-20 Modular Additive Manufactured Reactor System

Publications (1)

Publication Number Publication Date
NL2020804B1 true NL2020804B1 (en) 2019-10-28

Family

ID=63145152

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2020804A NL2020804B1 (en) 2018-01-05 2018-04-20 Modular Additive Manufactured Reactor System

Country Status (1)

Country Link
NL (1) NL2020804B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049160A (en) * 1998-07-13 2000-04-11 The State University Of New Jersey Rutgers Radial ceramic piezoelectric composites
WO2013050764A1 (en) * 2011-10-04 2013-04-11 Brunel University A modular flow reactor
WO2017106915A1 (en) * 2015-12-23 2017-06-29 Commonwealth Scientific And Industrial Research Organisation A rotary device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049160A (en) * 1998-07-13 2000-04-11 The State University Of New Jersey Rutgers Radial ceramic piezoelectric composites
WO2013050764A1 (en) * 2011-10-04 2013-04-11 Brunel University A modular flow reactor
WO2017106915A1 (en) * 2015-12-23 2017-06-29 Commonwealth Scientific And Industrial Research Organisation A rotary device

Similar Documents

Publication Publication Date Title
AU2002331937B2 (en) Catalytic reactor
US7591947B2 (en) Porous membrane microstructure devices and methods of manufacture
CN100450593C (en) Ion transport membrane module and vessel system with directed internal gas flow
Agar Multifunctional reactors: old preconceptions and new dimensions
CA2396191C (en) Catalytic reactor
US6482375B1 (en) Method for carrying out a chemical reaction
US8460411B2 (en) Microchannel compression reactor
Tomašić et al. State-of-the-art in the monolithic catalysts/reactors
US4865630A (en) Porous membrane for use in reaction process
RU2290257C2 (en) Integral reactor (versions), the method of its manufacture, the method of simultaneous realization of the exothermal and endothermal reactions (versions)
Davó-Quiñonero et al. Improved asymmetrical honeycomb monolith catalyst prepared using a 3D printed template
KR100822229B1 (en) Process and device for carrying out reactions in a reactor with slot-shaped reaction spaces
JP2008521595A (en) Multi-channel cross-flow porous device
US20040123626A1 (en) Coated microstructure and method of manufacture
RU2016117903A (en) REACTOR WITH A SET OF CERAMIC TRANSPORTING OXYGEN MEMBRANES AND REFORMING METHOD
AU2002331937A1 (en) Catalytic reactor
KR20040024580A (en) Catalytic reactor
WO2006049940A2 (en) Ceramic monolithic multi-channel membrane support
NO330178B1 (en) Process for hydrocarbon vapor reforming
SG187377A1 (en) Catalytic filter system
EP1843837B1 (en) Layered ceramic microreactor having at least three interior spaces and buffers
US11602723B2 (en) Modular additive manufactured reactor system
NL2020804B1 (en) Modular Additive Manufactured Reactor System
Peter Application of catalysts to metal microreactor systems
EP3433011B1 (en) Reactor for producing synthesis gas