NL2020082B1 - Subsea actuator tool - Google Patents

Subsea actuator tool Download PDF

Info

Publication number
NL2020082B1
NL2020082B1 NL2020082A NL2020082A NL2020082B1 NL 2020082 B1 NL2020082 B1 NL 2020082B1 NL 2020082 A NL2020082 A NL 2020082A NL 2020082 A NL2020082 A NL 2020082A NL 2020082 B1 NL2020082 B1 NL 2020082B1
Authority
NL
Netherlands
Prior art keywords
fingers
actuator tool
actuator
connection interface
tool
Prior art date
Application number
NL2020082A
Other languages
Dutch (nl)
Inventor
Pattillo Scott
James Cowe Andrew
Original Assignee
Fugro Tech Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fugro Tech Bv filed Critical Fugro Tech Bv
Priority to NL2020082A priority Critical patent/NL2020082B1/en
Priority to PCT/NL2018/050835 priority patent/WO2019117718A1/en
Application granted granted Critical
Publication of NL2020082B1 publication Critical patent/NL2020082B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/04Manipulators for underwater operations, e.g. temporarily connected to well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/0355Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/02Valve arrangements for boreholes or wells in well heads
    • E21B34/04Valve arrangements for boreholes or wells in well heads in underwater well heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • F16L37/12Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members using hooks, pawls or other movable or insertable locking members
    • F16L37/121Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members using hooks, pawls or other movable or insertable locking members using freely rocking hooks

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manipulator (AREA)
  • Actuator (AREA)

Abstract

An actuator tool (100) for actuating a component (220) of a subsea structure (200). The actuator tool (100) comprises a connection mechanism (1 10) for locking the actuator tool (100) onto a connection interface (2 10) of the subsea structure (200) while actuating the component. The connection mechanism (1 10) comprises a plurality of fingers (1 1 1,112) which are located circumferentially around a central axis (X). Each of the fingers (1 1 1,1 12) is configured to pivot radially inward or outward for switching between a closed position (“C”) wherein the respective fingers (1 1 1,1 12) are configured latch onto the connection interface (2 10) for forming a respective connection therewith, and an open position (“O”) wherein the respective fingers (1 1 1,112) are configured to release their respective connection with the connection interface (2 10).

Description

TECHNICAL FIELD AND BACKGROUND
The present disclosure relates to a subsea actuator tool for actuating a component, such as valve of a subsea tree, and a method of operating such a tool, e.g. by means of an underwater vehicle.
Underwater vehicles have various applications in deep water industries such as offshore hydrocarbon extraction. Most commonly used are unmanned underwater vehicles (UUV) which are vehicles that are able to operate underwater without a human occupant. These vehicles may be divided into categories including remotely operated underwater vehicles (ROVs), which are controlled by a remote human operator, and autonomous underwater vehicles (AUVs), which operate independently of direct human input.
A “subsea tree” or “Christmas tree” is a subsea structure with valves, spools, and fittings used in the field of petroleum and natural gas extraction. An underwater vehicle can be equipped with manipulator arms to handle a subsea tool for interacting with components of the subsea structure. Typically, the subsea structure has a particularly shaped interfaces to allow a connection mechanism of the subsea tool to engage and lock on to the respective interface.
Once locked on to the interface, parts of the tool may be actuated to manipulate a corresponding component, e.g. valve of the subsea tree. For example, a Linear Actuator Override Tool (LAOT), also referred to as a Linear Valve Override Tool (LVOT), is a subsea tool designed to actuate a valve stem in a subsea tree by pushing a (piston) rod of the tool into a corresponding valve interface while keeping the rest of the tool secured via the locking mechanism. The tool typically comprises a profile that acts as the locking mechanism with the valve interface to keep the tool secured in reaction to the axial override force generated by the tool piston rod.
For example, international standard ISO 13628-8:2002 (confirmed in 2015) gives functional requirements and guidelines for ROV interfaces on subsea production systems for the petroleum and natural gas industries. One type of locking mechanism (e.g. compatible with ISO 13628-8 Type B interface) has a horseshoe interface profile on the tool that can slide over an outward flange of the valve interface. However, high actuation forces of the tool may deteriorate structural integrity of such asymmetrical profiles. Other types of locking mechanisms (e.g. compatible with ISO 13628-8 Type A or C interface) may involve more symmetrical collet shapes such as a bayonet profile comprising multiple inward teeth and slots. However, such interfaces may be difficult to operate typically requiring more precise alignment of the tool with corresponding outward slots and teeth on the valve flange interface and/or twisting of the tool for locking the interface.
U.S. patent publication number 2005/0146137 Al relates to mechanical joints for subsea equipment and discloses a mechanical connector for an oil and gas well apparatus which comprises a plurality of fingers which are located circumferentially around a pair of pipe flanges and which each include a linger reaction surface, a stationary retainer ring against which each finger reaction surface is pressed, and a runner ring which is located radially outside the fingers and is movable lengthwise along the fingers by an actuator. However, the known connector may be difficult to operate in combination with a subsea actuator tool which may be placed and removed many times, e.g. by means of an underwater vehicle.
For these and other consideration, it is desired to provide an improved connection mechanism for subsea tools, optimizing a combination of structural integrity with easy of operation.
SUMMARY
Aspects of the present disclosure relates to a subsea actuator tool for actuating a component of a subsea structure and methods of installing such tool onto an interface of the subsea structure. Typically, the actuator tool comprises a connection mechanism for locking the actuator tool onto the connection interface of the subsea structure while actuating the component. As described herein, the connection mechanism comprises a plurality of fingers, also referred to as “collet fingers” or “dogs”, which are located circumferentially around a central axis. Each of the fingers is configured to switch between a closed position wherein the respective fingers are configured latch onto the connection interface for forming a respective connection therewith, and an open position wherein the respective fingers are configured to release their respective connection with the connection interface. Advantageously, a connection interface with circumferentially arranged fingers may be relatively easy to install while providing an even distribution of forces around the connection interface. For example, by providing the connection interface the capability of snapping onto the interface of the subsea structure, the tool can be more easily placed e.g. using only one manipulator arm of an underwater vehicle to operate the connection interface.
BRIEF DESCRIPTION OF DRAWINGS
These and other features, aspects, and advantages of the apparatus, systems and methods of the present disclosure will become better understood from the following description, appended claims, and accompanying drawing wherein:
FIGs 1A and IB illustrate perspective front and back views of an embodiment of an actuator tool with a mechanically operated switching mechanism;
FIGs 2A and 2B illustrate perspective front and back views of an embodiment of an actuator tool with a hydraulically operated switching mechanism;
FIG 3A illustrates a cross-section view of an embodiment of an actuator tool in an armed configuration;
FIG 3B illustrates a front view of the embodiment in the armed configuration;
FIG 3C illustrates a perspective view of parts of the switching mechanism of the embodiment in the armed configuration;
FIG 3D illustrates a close-up view of the switching mechanism in the armed configuration;
FIGs 4A-4D illustrate similar views of the embodiment as FIGs 3A-3D, but now in the locked configuration;
FIGs 5A-5D illustrate similar views of the embodiment as FIGs 3A-3D and 4A-4D, but now in the unlocked configuration;
FIGs 6-10 illustrate side and perspective views for example operation, including installing and removing the actuator tool from a subsea structure;
FIGs 11A and 1 IB illustrate side views of another embodiment of an actuator tool with another mechanically operated switching mechanism;
FIGs 12A and 12B illustrate side and perspective views of a combination of a Linear Actuator Override Tool (LOAT) attached to a Linear Lockout Tool (LLT);
FIG 13A illustrate a sided view of another combination of a LOAT and LLT;
FIG 13B illustrates a close-up view of a locking mechanism of the LLT.
DESCRIPTION OF EMBODIMENTS
Terminology used for describing particular embodiments is not intended to be limiting of the invention. As used herein, the singular forms a, an and the are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term and/or includes any and all combinations of one or more of the associated listed items. It will be understood that the terms comprises and/or comprising specify the presence of stated features but do not preclude the presence or addition of one or more other features. It will be further understood that when a particular step of a method is referred to as subsequent to another step, it can directly follow said other step or one or more intermediate steps may be carried out before carrying out the particular step, unless specified otherwise. Likewise it will be understood that when a connection between structures or components is described, this connection may be established directly or through intermediate structures or components unless specified otherwise.
The invention is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. In the drawings, the absolute and relative sizes of systems, components, layers, and regions may be exaggerated for clarity. Embodiments may be described with reference to schematic and/or crosssection illustrations of possibly idealized embodiments and intermediate structures of the invention. In the description and drawings, like numbers refer to like elements throughout. Relative terms as well as derivatives thereof should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the system be constructed or operated in a particular orientation unless stated otherwise.
FIGs 1A and IB illustrate perspective front and back views of an embodiment of a subsea actuator tool 100 comprising a mechanically operated switching mechanism 116,117. FIGs 2A and 2B illustrate a similar embodiment of an actuator tool 100, but with a hydraulically operated switching mechanism 116,117h.
Typically, the actuator tool 100 comprises a connection mechanism 110 for locking the actuator tool 100 onto a connection interface such as a flange of a subsea structure while actuating a component. In a preferred embodiment, e.g. as shown, the connection mechanism 110 comprises a plurality of fingers 111,112. The fingers are located circumferentially around a central axis “X”. As will be further illustrated with reference to FIG 3-5 below, each of the fingers 111,112 is configured to pivot radially inward or outward for switching between a closed position “C” and an open position “O”. In the closed position “C”, the respective fingers 111,112 are configured to latch onto a connection interface such as a flange for forming a respective connection therewith. In the open position “O”, the respective fingers 111,112 are configured to release their respective connection with the connection interface.
In a preferred embodiment, as illustrated in FIGs 3A-3D, the actuator tool 100 is operable in an armed configuration “A”. When the tool is switched to the armed configuration, at least some of the fingers 111 are biased with a predefined biasing force pushing the biased fingers 111 to the closed position “C”. In one embodiment, as particularly shown in the crosssection view of FIG 3A, the connection mechanism 110 comprises a biasing means lllr, e.g. spring mechanism and/or elastic material. For example, the biasing means are configured to directly or indirectly push the biased fingers 111 closed with a predefined biasing force Fb (indicated by an arrow) when the actuator tool 100 is set to operate in the armed configuration “A”. Accordingly, the biased fingers 111 are sprung closed in the armed configuration “A”. Preferably, the biasing force Fb can be overcome by an external force, in particular by a contact force between the connection interface 210 and the biased fingers 111 when the front of the actuator tool 100 is pushed there against, allowing the biased fingers 111 to be momentarily pushed to the open position. Accordingly, in the armed configuration “A”, the connection mechanism 110 is configured to momentarily open the biased fingers 111 and snap onto the connection interface 210 when the actuator tool 100 is frontally pushed against, e.g. a flange that is part of the connection interface 210 of the component.
In one embodiment, the fingers, or at least the biased fingers 111, comprise a tapered front profile configured to open, e.g. spread out, the biased fingers 111 counteracting the biasing force Fb when pushed against the connection interface 210. Alternatively, or in addition, also the connection interface 210 may comprise a tapered profile to push the biased fingers 111 open (not shown).
In some embodiments, depending on the connection interface 210, the fingers 111,112, biased or otherwise, each comprise a frontal hook profile configured to latch onto a rim or flange profile of the connection interface 210. For example, the fingers 111,112 each comprise a radially inward frontal hook profile configured to latch onto an outward flange profile of the connection interface 210. In other or further embodiments, in the armed configuration “A”, the biasing force Fb is predefined such that, when the tapered front profiles of the biased fingers 111 are pushed against a rim of the connection interface 210, the biased fingers 111 are allowed to spread to the open position Ό” counteracting the biasing force Fb; and when the frontal hook profiles of the biased fingers 111 are pushed beyond the rim of the connection interface 210, the biased fingers 111 are pushed by the biasing force Fb back to the closed position “C”.
In one embodiment, the connection mechanism 110 is configured to lock the actuator tool 100 at least onto a flange interface, e.g. as defined by the international standard ISO 13628-8:2006 Type B interface. In another or further embodiment, the connection mechanism is adapted to additionally or alternatively connect to other interfaces, e.g. also on a Type A and/or Type C interface of that standard. For example, a connection interface 210 of Type A has a profile comprising a flange with a flange diameter of 187 mm and 30 mm flange thickness, wherein the flange is connected to a cylinder with a 127 mm outer cylinder diameter, wherein the flange and cylinder comprise a central opening with 55 mm diameter. Of course the connection mechanism can also be adapted to fit other connection interfaces.
In a preferred embodiment, as shown e.g. in the front view of FIG 3B, in the armed configuration “A”, at least three of the fingers are biased to the closed position “C”. In another or further preferred embodiment, in the armed configuration “A”, at least some of the fingers are forced to the open position Ό”. In other words, in the armed configuration “A”, preferably not all of the fingers are biased in the closed position “C”. Accordingly, in the armed configuration “A”, a first subset of fingers 111 may be biased to the closed position “C” and a second subset of fingers 112 may be forced in the open position Ό”. For example, in the armed configuration “A”, at least three of the other fingers are positioned or forced in the open position “O”, preferably more, e.g. at least six or at least nine. Most preferably, the second subset 112 contains an integer multiple number of fingers relative to the first subset 111. Also preferably, the biased fingers 111 are distributed equidistantly around a circumference of the central axis “X”.
In a preferred embodiment, as shown in FIGs 4A-4D, the actuator tool 100 is operable in a locked configuration “L” wherein all the fingers 111 are forced to the closed position “C”. For example, the fingers 111,112 are configured to radially pivot inward to the closed position “C” (e.g. shown in FIG 4A) and radially pivot outward to the open position “O” (e.g. shown in FIG 5A).
In some embodiments, as shown particularly in the cross-section of FIG 4A, the actuator tool 100 comprises a runner ring 113 movable along the central axis “X” and comprising an inner profile configured to run over an outer profile of the fingers 111,112. Accordingly, the runner ring 113 exerts a fore on the fingers so as to pivot the fingers between the closed position “C” and open position “O” depending on an axial position of the runner ring 113 with respect to the fingers 111,112. For example, the inner profile of runner ring 113 has an inner minimum diameter configured to radially fit around an outer circumference of the fingers 111,112 in the closed position “C” to prevent the fingers from opening and maintain the locked configuration “L” when the runner ring 113 is moved to a front of the actuator tool 100 around the fingers 111,112.
In some embodiments, as also shown in FIG 4A, the actuator tool
100 comprises a retainer ring 114 for engaging an inner profile of the fingers 111,112. Accordingly the fingers 111,112 are configured to pivot around and/or radially press against the retainer ring 114. For example, as shown, the retainer ring 114 forms a flange profile at a front of the actuator tool 100. In some embodiments, the fingers 111,112 comprise a lateral hook profile configured to stay latched behind the flange profile formed by the retainer ring 114 and, e.g. in combination with the runner ring 113, keep the fingers attached to the actuator tool 100. In other or further embodiments, the fingers 111,112 comprise a frontal a lateral hook profile which in use keeps a flange profile formed by the retainer ring 114 and a flange profile of the connection interface 210 together when the fingers are biased or forced in the closed position “C”. In the embodiment shown, the retainer ring 114 is fixed relative to the moveable runner ring 113 and/or the fingers 111,112. For example, the retainer ring 114 is fixed to a hull or main body 101 of the actuator tool 100. Preferably, the retainer ring 114 is fixed by a threaded profile, e.g. screwed onto the main body 101.
In some embodiments, as also shown in FIG 4A, the actuator tool 100 comprises an abutment surface 112s, e.g. provided by a reaction ring, at positions of the non-biased fingers 112. Preferably, the abutment surface 112s is configured to keep the non-biased fingers 112 in the open position “O”, e.g. in combination with the inner profile of the runner ring 113 and/or the profile of the retainer ring 114.
Typically, the actuator tool 100 comprises an actuator mechanism for actuating a component while the actuator tool 100 is locked onto the connection interface 210, i.e. when the fingers are in the closed position. In one embodiment, the actuator tool 100 comprises an actuator rod 121 extendible along the central axis “X” from a front side of the actuator tool 100 relative to the fingers 111,112, e.g. for directly or indirectly actuating the component 220, possibly through interaction with intermediate elements. For example, the connection interface 210 comprises a central opening, e.g. cylinder with a flange, through which the actuator rod 121 may extend into the connection interface 210 for actuating the component 220. For example, the component 220 is a valve and the actuator rod 121 is configured to actuate a valve stem 221 inside the connection interface 210 of the valve as shown in FIG 4A.
In some embodiments, as also visible e.g. in FIG 1A or IB, the actuator tool 100 comprises an alignment guide 115 for centering the central axis “X” with respect to the connection interface 210. For example, the alignment guide 115 fits into a central opening of the connection interface 210. Preferably, the alignment guide 115 comprises a tapered profile tapering inward towards the front side of the actuator tool 100. In the embodiment shown, the alignment guide 115 comprises a central opening allowing the actuator rod 121 to extend from the alignment guide 115.
In some embodiments, particularly in the locked configuration “L”, the closed fingers 111,112 are configured to keep the actuator tool 100 fixated relative to the connection interface 210 of the subsea structure 200 while an actuator rod 121 extends towards or into the subsea structure 200 to actuate the component 220. Preferably, the actuator rod 121 is configured to be hydraulically operated. For example, the actuator rod 121 comprises a piston configured to move in an inner chamber 122 of the actuator tool 100. For example, a pressure supply channel 127 is arranged to apply pressure in the chamber to push the piston out from the front of the actuator tool 100.
In some embodiments, as shown e.g. in FIG IB, the actuator tool 100 comprises a so-called hotstab receptacle port 125 for receiving pressure from an external hydraulic pump. For example, the pressure is generated by a hydraulic pump in an underwater vehicle (not shown) operating the actuator tool 100. For example, the pressure supply channel 127 is configured to receive pressure via the hotstab receptacle port 125 from the underwater vehicle. In other or further embodiments, also shown in FIG IB, the actuator tool 100 comprises a hydraulic switch 126 for maintaining pressure inside, e.g. in case the external hydraulic pump is disengaged from the hotstab receptacle port 125. This allows the actuator tool 100 to be left behind on the subsea structure while keeping the component actuated, e.g. keeping a valve open (or closed).
In a preferred embodiment, as shown in FIGs 5A-5D, the actuator tool 100 is operable in an unlocked configuration “U” wherein all the fingers 111 are forced in the open position Ό”. For example, in the unlocked configuration “U”, the biasing force (shown in FIG 4A) is deactivated or counteracted forcing also the otherwise biased fingers 111 to the open position Ό”
As shown e.g. in FIGs 3C,4C, and 5C, the actuator tool 100 may comprise a switching mechanism for switching the actuator tool 100 between at least three different configurations including an armed configuration “A”, a locked configuration “L”, and an unlocked configuration “U”. For example, as shown, the actuator tool 100 is switchable from the unlocked configuration “U” to the locked configuration “L” via the armed configuration “A” intermediate there between, and vice versa. Preferably, the switching mechanism is mechanically operable, e.g. by manipulator arms of an underwater vehicle moving one or more handles 116,117 on the actuator tool 100, as shown in the embodiment of FIG 1.
In some embodiments, the switching mechanism for switching between the armed configuration “A” and the locked configuration “L” is operable by moving a first handle 116. In other or further embodiments, the switching mechanism for switching between the armed configuration “A” and the locked configuration “L” is operable by moving a second handle 117. In one embodiment, as shown e.g. in FIG 5C, the first handle 116 is operable by rotation R of the first handle 116 around an axis Y transverse to the central axis “X”. In the embodiments of FIGs 3-5, the second handle 117 is operated by axially moving the second handle 117 along the central axis “X”. In some embodiments, the second handle 117 is configured to move the runner ring 113 along the central axis “X” with respect to the fingers 111,112 or vice versa. For example, the second handle 117 is connected to the runner ring 113. In some embodiments, e.g. as shown, the second handle 117 is separate from the first handle 116. Alternatively, one handle may cause all switching. In one embodiment, as shown in FIGs 11A and 11B, a switching handle is configured to move the runner ring 113 by pivoting the handle forward or backward, instead of translating. Accordingly the mechanically switching between different configurations may involve any combination of translating, pivoting and/or rotating handles.
Alternatively, or in addition to a mechanical switching mechanism, the switching mechanism may be partially or wholly operable by a hydraulic switching mechanism 117h, as shown in the embodiment of FIG 2. In one embodiment, the actuator tool 100 is configured to switch from the unlocked configuration “U” to the armed configuration “A” upon application of a first hydraulic pressure. In another or further embodiment, the actuator tool 100 is configured to switch from the armed configuration “A” to the locked configuration “L” upon application of a second hydraulic pressure. In another or further embodiment, the actuator tool 100 is configured to actuate the actuator rod 121 upon application of a third hydraulic pressure. For example, the hydraulic pressure may be increased in different steps to cause the actuator tool 100 to sequentially switch between different modes “U”,”A”,”L” and/or actuate the actuator rod 121 while the actuator tool 100 is in the locked configuration “L”. Alternatively, or additionally, the actuator tool 100 may also comprise hydraulic switches to switch the different configuration.
In some embodiment the switching is performed by a hydraulic sequential method. For example the switching may occur from the unlocked configuration “U” to the locked configuration “L”, e.g. via the armed configuration “A”. Alternatively, the hydraulic sequential method may directly switch from the locked configuration “L” to the unlocked configuration “U”, or vice versa without any armed configuration “A” there between. In one example, the armed configuration “A” may be entirely omitted. Accordingly, an actuator tool 100 as described herein can be envisioned, but without the armed configuration “A”, e.g. omitting the biasing mechanism and using only non-biased fingers 112.
In one embodiment, as illustrated with reference to FIGs 3C,4C,5C, the switching mechanism comprises a cam mechanism 118. For example, as particularly visible in the enlarged views of FIGs 3D,4D,5D, the cam mechanism 118 may comprise a slot profile 118s configured to guide a cam follower 118f. For example, a first part of the slot profile 118s extends parallel to the central axis “X” to guide the cam follower 118f between the armed configuration “A” and the locked configuration “L”. For example, a second part of the slot profile 118s extends at an angle with respect to first part to guide the cam follower 118f partially inward, or outward (not shown), while also moving further along the central axis “X”. As shown e.g. in FIG 5C, the cam follower 118f can be connected to the rotatable first handle 116 causing the cam follower 118f to be pulled inward (or outward, not shown) when rotating the handle while further pushing back the runner ring 113 with respect to the fingers 111,112 causing the switch from the armed configuration “A” to the unlocked configuration “U”.
FIGs 6-10 illustrate successive steps of example operation for the actuator tool 100 as described herein.
In some embodiments, as shown in FIGs 6 and 7, the actuator tool 100 as described herein is installed onto a connection interface 210 of a subsea structure 200. For example, the actuator tool 100 is set to an armed configuration “A” wherein at least some of the fingers are biased with a predefined biasing force to the closed position; a tapered front profile of the biased fingers is pushed against a rim of the connection interface 210 causing the biased fingers to the open position temporarily counteracting the biasing force; and a frontal hook profile of the biased fingers is pushed beyond the rim of the connection interface 210, wherein the biased fingers are pushed by the biasing force back to the closed position. In other or further embodiments, as shown in FIG 8, the tool is set to a locked configuration “L”, wherein all the biased fingers are forced to the closed position. In some embodiments (not shown here), hydraulic pressure is supplied to the actuator tool 100 to actuate an actuator rod while the actuator tool 100 is locked onto the connection interface 210. In other or further embodiments. Afterwards, as shown in FIG 9, the actuator tool 100 can be switched back from the locked configuration to the unlocked configuration “U” to remove the actuator tool 100 from the connection interface 210.
In a preferred embodiment, the subsea actuator tool 100 is remotely and/or automatically operable e.g. by one or more manipulator arms 302 of an underwater vehicle, e.g. a remotely operated vehicle (ROV) or Autonomous Underwater Vehicles (AUX7)· For example,, the actuator tool 100 is manufactured from material such as Grade5 Titanium with good strength to weight ratio to cope with high linear valve override forces but yet be light enough to be handle-able e.g. by the ROV manipulators. For example, the actuator tool 100 is installed by an underwater vehicle comprising a first manipulator arm 301 and a second manipulator arm 302.
In a preferred embodiment, the installing of the actuator tool 100 is handled entirely by the first manipulator arm 301 while the second manipulator arm 302 keeps the underwater vehicle attached to the subsea structure 200. For example, the first manipulator arm 301 switches the actuator tool 100 from the armed configuration “A” to the locked configuration “L” after the actuator tool 100 is pushed onto the connection interface 210. Afterwards, the first manipulator arm 301 can switch the actuator tool 100 from the locked configuration “L” to the unlocked configuration “U” to remove the actuator tool 100 from the connection interface 210.
In the embodiment as illustrated by FIGs 6A and 6B the actuator tool 100 is armed and ready to installed. For example, the embodiment comprises one or more of the following steps. The underwater vehicle grabs with the second manipulator arm 302, the ROV handle 202 on the subsea structure 200. The underwater vehicle (i.e. its manipulator arm 301) grabs the front handle 116 on the actuator tool and removes the tool e.g. from a deployment basket (not shown). The actuator tool 100 is deployed in the armed configuration “A” - for example, three fingers are sprung closed and nine fingers are fully open. The underwater vehicle flies the tool into approximate alignment position with the valve interface 210.
In the embodiment as illustrated by FIGs 7A and 7B the actuator tool 100 is snapped onto the connection interface 210. For example, the embodiment comprises one or more of the following steps. The underwater vehicle while still holding the front handle 116 moves the actuator tool 100 forward and engages the three tapered sprung closed fingers and the alignment guide (not visible here) onto the connection interface 210. It will be appreciated that, at this point, the underwater vehicle can release the front, handle 116 on the actuator tool 100 and position the manipulator on the rear handle 117.
In the embodiment as illustrated by FIGs 8A and 8B the actuator tool 100 is locked onto the connection interface 210. For example, the embodiment comprises one or more of the following steps. With the underwater vehicle manipulator gripping the rear handle 117 of the actuator tool 100, the underwater vehicle moves the manipulator arm 301 forward to slide the runner ring or collar forward from the armed configuration to the locked configuration “L”.
In the embodiment as illustrated by FIGs 9A and 9B the actuator tool 100 is being removed but still in the armed configuration “A” . For example, the embodiment comprises one or more of the following steps. Following some time in operation the actuator tool 100 is removed from the connection interface 210. The underwater vehicle moves the manipulator arm 301 backwards holding the rear handle 117 to slide the runner ring from the locked position to the armed configuration “A”.
In the embodiment as illustrated by FIGs 10A and 10B the actuator tool 100 is unlocked and removed from the connection interface 210 For example, the embodiment comprises one or more of the following steps. The underwater vehicle now removes the tool from the client interface. The underwater vehicle releases the rear handle 117 and moves the first manipulator arm 301 to grab the front handle 116. The underwater vehicle now rotates the front handle 116, e.g. forty-five degrees which actuates the cam mechanism and moves the runner ring from the armed configuration to the unlocked configuration “U” releasing the three sprung fingers. The actuator tool 100 is now completely removed from the connection interface 210.
FIGs 12A and 12B illustrate side and perspective views of a combination of one actuator tool embodied as a Linear Actuator Override Tool (LOAT) attached to another actuator tool embodied as a Linear Lockout Tool (LLT). It will be appreciated that the actuator tool as described herein can be configured to directly or indirectly actuate a valve of a subsea tree. Typically, the LOAT comprises a hydraulically actuated piston rod 121 that is actuated by hydraulic pressure to extend from the tool. Typically, the LLT comprises a mechanically actuated rod (not visible) which can extend from the tool. For example, a backside of the LLT is open allowing the rod to be actuated by a LOAT connected to the backside having a similar profile as the connection interface of the subsea structure.
FIG 13A illustrate a sided view of another combination of a LOAT and LLT. FIG 13B illustrates a close-up view of a locking mechanism of the LLT. In some embodiments, the LLT comprises a mechanical locking mechanism 12 IL to lock the extended rod in the actuated position. In this way hydraulic pressure does not need to be maintained on the tool. For example, the LLT has a locking mechanism similar to door or a gate bolt, e.g. the mechanism is pushed and then rotated into a locked position. In a preferred embodiment, the LLT has a female interface matching the mail interface of the LAOT at the front of it and a corresponding male interface at front of the tool. As illustrated, the LLT can be engaged onto a linear valve interface and the LAOT can in turn be engaged onto the LLT. The LAOT piston is e.g. stroked out under hydraulic pressure, e.g. supplied by an ROV, which pushes against the actuation shaft in the LLT. Once the piston and shaft are fully stroked, the ROV can rotate the actuator shaft into a slot and then removes hydraulic pressure from the LAOT allowing the linear valve spring to force the LLT’s shaft back against a shoulder, keeping the valve locked open. The LAOT can then be removed and is available for some other ROV operation.
For the purpose of clarity and a concise description, features are described herein as part of the same or separate embodiments, however, it will be appreciated that the scope of the invention may include embodiments having combinations of all or some of the features described. In interpreting the appended claims, it should be understood that the word comprising does not exclude the presence of other elements or acts than those listed in a given claim; the word a or an preceding an element does not exclude the presence of a plurality of such elements; any reference signs in the claims do not limit their scope; several means may be represented by the same or different item(s) or implemented structure or function; any of the disclosed devices or portions thereof may be combined together or separated into further portions unless specifically stated otherwise. Where one claim refers to another claim, this may indicate synergetic advantage achieved by the combination of their respective features. But the mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot also be used to advantage. The present embodiments may thus include all working combinations of the claims wherein each claim can in principle refer to any preceding claim unless clearly excluded by context.

Claims (15)

ConclusiesConclusions 1. Een actuatorgereedschap (100) voor het actueren van een component (220) van een onderzeestructuur (200), waarbij het actuatorgereedschap (100) een verbindingsmechanisme (110) omvat voor het vastzetten van het actuatorgereedschap (100) aan een verbindingsinterface (210) van de onderzeestructuur (200) tijdens het actueren van de component, waarbij het verbindingsmechanisme (110) een veelheid vingers (111,112) omvat welke zich in omtrekrichting rond een centrale as (X) bevinden, waarbij elk van de vingers (111,112) is geconfigureerd voor het radiaal naar binnen of naar buiten zwenken voor het wisselen tussen een gesloten positie (“C”) waarbij de respectieve vingers (111,112) zijn geconfigureerd voor het aangrijpen aan de verbindingsinterface (210) voor het vormen van een respectieve verbinding daarmee, en een open positie (“O”) waarbij de respectieve vingers (111,112) zijn geconfigureerd voor het loslaten van hun respectieve verbinding met de verbindingsinterface (210).An actuator tool (100) for actuating a component (220) of a subsea structure (200), the actuator tool (100) comprising a connection mechanism (110) for securing the actuator tool (100) to a connection interface (210) of the subsea structure (200) during component actuation, the connecting mechanism (110) comprising a plurality of fingers (111, 112) circumferentially located around a central axis (X), each of the fingers (111, 112) being configured for pivoting radially inward or outward for switching between a closed position ("C") wherein the respective fingers (111, 112) are configured to engage the connection interface (210) to form a respective connection thereto, and an open position ("O") at which the respective fingers (111, 112) are configured to release their respective connection to the connection interface (210). 2. Het actuatorgereedschap (100) volgens conclusie 1, waarbij het actuatorgereedschap (100) is te opereren in een geladen configuratie (“A”) waarbij tenminste sommige van de vingers (111) zijn voorgespannen richting de gesloten positie (“C”).The actuator tool (100) according to claim 1, wherein the actuator tool (100) is operable in a loaded configuration ("A") wherein at least some of the fingers (111) are biased toward the closed position ("C"). 3. Het actuatorgereedschap (100) volgens conclusie 2, waarbij, in de geladen configuratie (“A”), het verbindingsmechanisme (110) is geconfigureerd voor het tijdelijk openen van de voorgespannen vingers (111) en vast te klikken aan de verbindingsinterface (210) wanneer het actuatorgereedschap (100) frontaal tegen de verbindingsinterface (210) wordt gedrukt.The actuator tool (100) according to claim 2, wherein, in the loaded configuration ("A"), the connection mechanism (110) is configured to temporarily open the biased fingers (111) and snap it to the connection interface (210) ) when the actuator tool (100) is pressed frontally against the connection interface (210). 4. Het actuatorgereedschap (100) volgens conclusie 3, waarbij tenminste de voorgespannen vingers (111) een taps frontaal profiel omvatten en waarbij de verbindingsinterface de voorgespannen vingers (111) tijdelijk opent wanneer het tapse frontaal profiel tegen de verbindingsinterface (210) wordt gedrukt.The actuator tool (100) according to claim 3, wherein at least the biased fingers (111) comprise a tapered frontal profile and wherein the connection interface temporarily opens the biased fingers (111) when the tapered frontal profile is pressed against the connection interface (210). 5. Het actuatorgereedschap (100) volgens conclusie 4, waarbij, wanneer in de geladen configuratie (“A”) de tapse frontaalprofielen van de voorgespannen vingers (111) tegen een flens van de verbindingsinterface (210) wordt gedrukt, de voorgespannen vingers (111) wordt toegestaan om naar de open positie (“O”) te zwenken; en wanneer frontale haakprofielen van de voorgespannen vingers (111) voorbij de rand van de verbindingsinterface (210) worden gedrukt, de voorgespannen vingers (111) terug zwenken naar de gesloten positie (“C”).The actuator tool (100) according to claim 4, wherein, in the loaded configuration ("A"), the tapered frontal profiles of the prestressed fingers (111) are pressed against a flange of the connection interface (210), the prestressed fingers (111 ) is allowed to swing to the open position ("O"); and when frontal hook profiles of the biased fingers (111) are pushed past the edge of the connection interface (210), the biased fingers (111) pivot back to the closed position ("C"). 6. Het actuatorgereedschap (100) volgens een der conclusies 2-5, waarbij, in de geladen configuratie (“A”), tenminste drie van de vingers zijn voorgespannen naar de gesloten positie (“C”) gedistribueerd op gelijke afstand rond een omtrek van de centrale as (X), en waarbij tenminste sommige van de andere vingers naar de open positie (“O”) worden geforceerd.The actuator tool (100) according to any of claims 2-5, wherein, in the loaded configuration ("A"), at least three of the fingers are pre-stressed to the closed position ("C") distributed at equal distances around a circumference from the central axis (X), and wherein at least some of the other fingers are forced to the open position ("O"). 7. Het actuatorgereedschap (100) volgens een der voorgaande conclusies waarbij het actuatorgereedschap (100) een wisselmechanisme omvat voor het wisselen van het actuatorgereedschap (100) tussen tenminste drie verschillende configuraties bevattende een geladen configuratie (“A”), een vergrendelde configuratie (“L”), en een ontgrendelde configuratie (“U”), waarbij in de geladen configuratie (“A”) tenminste sommige van de vingers (111) zijn voorgespannen richting de gesloten positie (“C”), waarbij in de vergrendelde configuratie (“L”) alle vingers (111) naar de gesloten positie (“C”) worden geforceerd; en waarbij in de ontgrendelde configuratie (“U”), alle vingers (111) naar de open positie (“O”) worden geforceerd.The actuator tool (100) according to any of the preceding claims, wherein the actuator tool (100) comprises a switch mechanism for changing the actuator tool (100) between at least three different configurations including a loaded configuration ("A"), a locked configuration (" L ”), and an unlocked configuration (“ U ”), where in the loaded configuration (“ A ”) at least some of the fingers (111) are biased toward the closed position (“ C ”), while in the locked configuration ( "L") all fingers (111) to the closed position ("C") are forced; and wherein in the unlocked configuration ("U"), all fingers (111) are forced to the open position ("O"). 8. Het actuatorgereedschap (100) volgens conclusie 7, waarbij het wisselmechanisme voor het wisselen tussen de geladen configuratie (“A”) en de vergrendelde configuratie (“L”) bedienbaar is door het bewegen van een eerste hendel (116), waarbij het wisselmechanisme voor het wisselen tussen de geladen configuratie (“A”) en de vergrendelde configuratie (“L”) bedienbaar is door het bewegen van een tweede hendel (117), waarbij de tweede hendel (117) is geconfigureerd voor het verplaatsen van een beweegbare ring (113) langs de centrale as (X).The actuator tool (100) of claim 7, wherein the switch mechanism for switching between the loaded configuration ("A") and the locked configuration ("L") is operable by moving a first handle (116), the switch mechanism for switching between the loaded configuration ("A") and the locked configuration ("L") is operable by moving a second handle (117), the second handle (117) being configured to move a movable ring (113) along the central axis (X). 9. Het actuatorgereedschap (100) volgens conclusie 8, waarbij het wisselmechanisme een nokkenmechanisme (118) omvat met een sleufprofiel (118s) geconfigureerd voor het geleiden van een nokvolger (118f), waarbij een eerste deel van het sleufprofiel (118s) zich parallel uitstrekt aan de centrale as (X) voor het geleiden van de nokvolger (1181) tussen een geladen configuratie (“A”) en een vergrendelde configuratie (“L”), waarbij een tweede deel van het sleufprofiel (118s) zich uitstrekt met een hoek ten opzichte van het eerste deel voor het gedeeltelijk naar binnen geleiden van de nokvolger (118f) terwijl deze ook verder beweegt langs de centrale as (X), waarbij de nokvolger (118f) is verbonden met de roteerbare eerste hendel (116) veroorzakend dat de nokvolger (118f) naar binnen wordt getrokken wanneer de hendel geroteerd wordt terwijl deze een beweegbare ring (113) verder terug drukt ten opzichte van de vingers (111,112) hetgeen de wisseling van de geladen configuratie (“A”) naar de ontgrendelde configuratie (“U”) veroorzaakt.The actuator tool (100) according to claim 8, wherein the switch mechanism comprises a cam mechanism (118) with a slot profile (118s) configured to guide a cam follower (118f), a first part of the slot profile (118s) extending parallel on the central axis (X) for guiding the cam follower (1181) between a loaded configuration ("A") and a locked configuration ("L"), a second part of the slot profile (118s) extending at an angle with respect to the first portion for partially guiding the cam follower (118f) in while also moving further along the central axis (X), the cam follower (118f) being connected to the rotatable first handle (116) causing the cam follower (118f) is pulled in when the handle is rotated while pushing a movable ring (113) further back with respect to the fingers (111, 112) which is the change of the loaded configuration ("A" ) to the unlocked configuration (“U”). 10. Het actuatorgereedschap (100) volgens een der voorgaande conclusies waarbij de vingers (111,112) zijn geconfigureerd voor het radiaal naar binnen zwenken naar de gesloten positie (“C”) en radiaal naar buiten zwenken naar de open positie (“O”), waarbij het actuatorgereedschap (100) een beweegbare ring (113) omvat die beweegbaar is langs de centrale as (X) en omvattende een binnen-profiel geconfigureerd om over een buiten profiel van de vingers (111,112) te gaan, waarbij de beweegbare ring (113) is geconfigureerd voor het wisselen van de vingers tussen de gesloten positie (“C”) en open positie (“O”) afhankelijk van een axiale positie van de beweegbare ring (113) ten opzichte van de vingers (111,112).The actuator tool (100) according to any one of the preceding claims wherein the fingers (111, 112) are configured to pivot radially inward to the closed position ("C") and pivot radially outward to the open position ("O"), wherein the actuator tool (100) comprises a movable ring (113) movable along the central axis (X) and including an inner profile configured to pass an outer profile of the fingers (111, 112), the movable ring (113) ) is configured to switch fingers between the closed position ("C") and open position ("O") depending on an axial position of the movable ring (113) relative to the fingers (111, 112). 11. Het actuatorgereedschap (100) volgens een der voorgaande conclusies waarbij het actuatorgereedschap (100) een vaste ring (114) omvat om aan te grijpen aan een binnen-profiel van de vingers (111,112), waarbij de vingers (111,112) zijn geconfigureerd voor het zwenken rond en/of radiaal drukken tegen de vaste ring (114), waarbij de vaste ring (114) een contactoppervlak vormt bij een voorkant van het actuatorgereedschap (100), waarbij de vingers (111,112) een frontaal haakprofiel omvatten welke in gebruik het contactoppervlak en de flens van de verbindingsinterface (210) bij elkaar houdt wanneer de vingers zijn voorgespannen of geforceerd in de gesloten positie (“C”).The actuator tool (100) according to any of the preceding claims, wherein the actuator tool (100) comprises a fixed ring (114) for engaging an inner profile of the fingers (111, 112), the fingers (111, 112) being configured for pivoting about and / or radially pressing against the fixed ring (114), the fixed ring (114) forming a contact surface at a front of the actuator tool (100), the fingers (111, 112) comprising a frontal hook profile which in use holds the contact surface and the flange of the connection interface (210) together when the fingers are biased or forced into the closed position (“C”). 12. Het actuatorgereedschap (100) volgens een der voorgaande conclusies, waarbij het actuatorgereedschap (100) een actuatormechanisme omvat voor het actueren van de component (220) terwijl het actuatorgereedschap (100) is vergrendeld aan de verbindingsinterface (210) wanneer de vingers in de gesloten positie zijn, waarbij het actuatorgereedschap (100) een actuatorstaaf (121) omvat die uit te strekken is langs de centrale as (X) vanuit een voorzijde van het actuatorgereedschap (100) relatief ten opzichte van de vingers (111,112), voor het actueren van de component (220), waarbij de actuatorstaaf (121) is geconfigureerd om hydraulisch bediend te worden.The actuator tool (100) according to any of the preceding claims, wherein the actuator tool (100) comprises an actuator mechanism for actuating the component (220) while the actuator tool (100) is locked to the connection interface (210) when the fingers are in the are closed position, the actuator tool (100) comprising an actuator rod (121) extending along the central axis (X) from a front side of the actuator tool (100) relative to the fingers (111, 112) for actuating of the component (220), wherein the actuator rod (121) is configured to be hydraulically operated. 13. Het actuatorgereedschap (100) volgens een der voorgaande conclusies, waarbij het actuatorgereedschap (100) een uitlijnbegeleider (115) omvat voor het centeren van de centrale as (X) ten opzichte van de verbindingsinterface (210), waarbij de uitlijnbegeleider (115) in een centrale opening van de verbindingsinterface (210) past, waarbij de uitlijnbegeleider (115) een taps profiel omvat dat taps toeloopt naar binnen richting de voorzijde van het actuatorgereedschap (100), waarbij de uitlijnbegeleider (115) een centrale opening omvat die toestaat dat een actuatorstaaf (121) van het actuatorgereedschap (100) uitstrekt vanuit de uitlijnbegeleider (115) naar binnen in de verbindingsinterface (210)The actuator tool (100) according to any of the preceding claims, wherein the actuator tool (100) comprises an alignment guide (115) for centering the central axis (X) relative to the connection interface (210), the alignment guide (115) fits into a central opening of the connection interface (210), the alignment guide (115) comprising a tapered profile tapered inward toward the front of the actuator tool (100), the alignment guide (115) including a central opening allowing an actuator rod (121) of the actuator tool (100) extending from the alignment guide (115) inwardly into the connection interface (210) 14. Een werkwijze voor het installeren van een actuatorgereedschap (100) aan een verbindingsinterface (210) van een onderzeestructuur (200), de werkwijze omvattende het verschaffen van een actuatorgereedschap (100) met een verbindingsmechanisme (110) omvattende een veelheid vingers (111,112) welke zich in omtrekrichting rond een centrale as (X) bevinden, waarbij elk van de vingers (111,112) is geconfigureerd voor het radiaal naar binnen of naar buiten zwenken voor het wisselen tussen een gesloten positie (“C”) waarbij de respectieve vingers (111,112) aan de verbindingsinterface (210) aangrijpen voor het vormen van een respectieve verbinding daarmee, en een open positie (“O”) waarbij de respectieve vingers (111,112) hun respectieve verbinding met de verbindingsinterface (210) loslaten;A method of installing an actuator tool (100) to a connection interface (210) of a submarine structure (200), the method comprising providing an actuator tool (100) with a connection mechanism (110) comprising a plurality of fingers (111, 112) which are circumferentially located around a central axis (X), each of the fingers (111, 112) being configured to pivot radially inward or outward for switching between a closed position ("C") with the respective fingers (111, 112) engaging the connection interface (210) to form a respective connection thereto, and an open position ("0") wherein the respective fingers (111, 112) release their respective connection to the connection interface (210); het instellen van het actuatorgereedschap (100) in een geladen configuratie (“A”) waarbij tenminste sommige van de vingers (111) naar de gesloten positie (“C”) worden gedrukt door een voorspanningskracht (Fb);setting the actuator tool (100) in a loaded configuration ("A") wherein at least some of the fingers (111) are pushed to the closed position ("C") by a biasing force (Fb); het drukken van een taps frontaal profiel van de voorgespannen vingers (111) tegen een flens van de verbindingsinterface (210) waarmee de voorspanningskracht (Fb) wordt tegengegaan en de voorgespannen vingers (111) naar de open positie (“O”) worden gedrukt; en het drukken van een frontaal haakprofiel van de voorgespannen vingers (111) voorbij de flens van de verbindingsinterface (210), waarbij de voorgespannen vingers (111) door de voorspanningskracht (Fb) terug naar de gesloten positie (“C”) worden gedrukt.pressing a tapered frontal profile of the prestressed fingers (111) against a flange of the connection interface (210) that counteracts the biasing force (Fb) and forces the biased fingers (111) to the open position ("O"); and pressing a frontal hook profile of the biased fingers (111) past the flange of the connection interface (210), the biased fingers (111) being pushed back to the closed position ("C") by the biasing force (Fb). 15. De werkwijze volgens conclusie 14, waarbij het actuatorgereedschap (100) wordt geïnstalleerd door een onderwatervoertuig omvattende een eerste manipulator arm (301) en een tweede manipulator arm (302), waarbij het installeren van het actuatorgereedschap (100) geheel wordt gedaan door de eerste manipulator arm (301) terwijl de tweede manipulator arm (302) het onderwatervoertuig verbonden houdt aan de onderzeestructuur (200), waarbij de eerste manipulator arm (301) het actuatorgereedschap (100) wisselt van de geladen configuratie (“A”) naar een vergrendelde configuratie (“L”) nadat het actuatorgereedschap (100) op de verbindingsinterface (210) is gedrukt waarmee alle vingers (111,112) worden gesloten, waarbij het onderwatervoertuig hydraulische druk verschaft aan het actuatorgereedschap (100) om de actuatorstaaf (121) te actueren terwijl het actuatorgereedschap (100) is vergrendeld aan de verbindingsinterface (210).The method of claim 14, wherein the actuator tool (100) is installed by an underwater vehicle comprising a first manipulator arm (301) and a second manipulator arm (302), wherein installing the actuator tool (100) is done entirely by the first manipulator arm (301) while the second manipulator arm (302) holds the underwater vehicle connected to the submarine structure (200), the first manipulator arm (301) switching the actuator tool (100) from the loaded configuration ("A") to a locked configuration ("L") after the actuator tool (100) is pressed on the connection interface (210) to close all fingers (111, 112), the underwater vehicle providing hydraulic pressure to the actuator tool (100) to actuate the actuator rod (121) while the actuator tool (100) is locked to the connection interface (210). 116116 1/131/13 100100 115 113115 113
NL2020082A 2017-12-13 2017-12-13 Subsea actuator tool NL2020082B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2020082A NL2020082B1 (en) 2017-12-13 2017-12-13 Subsea actuator tool
PCT/NL2018/050835 WO2019117718A1 (en) 2017-12-13 2018-12-12 Subsea actuator tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2020082A NL2020082B1 (en) 2017-12-13 2017-12-13 Subsea actuator tool

Publications (1)

Publication Number Publication Date
NL2020082B1 true NL2020082B1 (en) 2019-06-21

Family

ID=61224470

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2020082A NL2020082B1 (en) 2017-12-13 2017-12-13 Subsea actuator tool

Country Status (2)

Country Link
NL (1) NL2020082B1 (en)
WO (1) WO2019117718A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO346300B1 (en) * 2020-03-30 2022-05-30 Fmc Kongsberg Subsea As Single line quick connector, a fluid line insert and an associated method of engaging the single line quick connector
NL2029756B1 (en) * 2021-11-15 2023-06-09 B B A Participaties B V Portable fitting assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337971A (en) * 1980-08-07 1982-07-06 Halliburton Company Remote connector
US5947642A (en) * 1996-11-22 1999-09-07 Petroleo Brasileiro S.A. - Petrobras Method and apparatus for connecting an underwater flexible riser to a structure on the surface
US6062312A (en) * 1998-04-09 2000-05-16 Kvaerner Oilfield Products Tree running tool with emergency release
WO2006068873A1 (en) * 2004-12-22 2006-06-29 Fmc Technologies Inc. Modular actuator for subsea valves and equipment, and methods of using same
WO2015136234A1 (en) * 2014-03-12 2015-09-17 Neptune Subsea Engineering Limited A powered subsea tool assembly, to reinstate the intended functionality of a subsea tree valve actuator
WO2017042571A1 (en) * 2015-09-10 2017-03-16 Neptune Subsea Engineering Ltd Subsea tree override tool apparatus & method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20015954A (en) 2001-12-05 2003-03-17 Fmc Kongsberg Subsea As Pipe coupling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337971A (en) * 1980-08-07 1982-07-06 Halliburton Company Remote connector
US5947642A (en) * 1996-11-22 1999-09-07 Petroleo Brasileiro S.A. - Petrobras Method and apparatus for connecting an underwater flexible riser to a structure on the surface
US6062312A (en) * 1998-04-09 2000-05-16 Kvaerner Oilfield Products Tree running tool with emergency release
WO2006068873A1 (en) * 2004-12-22 2006-06-29 Fmc Technologies Inc. Modular actuator for subsea valves and equipment, and methods of using same
WO2015136234A1 (en) * 2014-03-12 2015-09-17 Neptune Subsea Engineering Limited A powered subsea tool assembly, to reinstate the intended functionality of a subsea tree valve actuator
WO2017042571A1 (en) * 2015-09-10 2017-03-16 Neptune Subsea Engineering Ltd Subsea tree override tool apparatus & method

Also Published As

Publication number Publication date
WO2019117718A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
NL2020082B1 (en) Subsea actuator tool
EP1375073B1 (en) Tensioning device for pretensioning a rod and tensioning method
AU2005258980B2 (en) Improved well servicing tool storage system for subsea well intervention
US20160376863A1 (en) Subsea collet connection system
US6793019B2 (en) Tapered ramp positive lock latch mechanism
EP2981751B1 (en) Quick coupling device for pressurised fluid
US20140094051A1 (en) Subsea electrical connector
CN109571220B (en) Tool and method for cleaning a valve body of a control valve
JP6618477B2 (en) Fluid transport connection
US9822901B2 (en) Actuator adapter for bonnet nub stem design
US10774945B2 (en) Compound express actuator connection
EP3390770A1 (en) Passively locking connector
US10442043B2 (en) Torque tool, socket selection mechanism, and methods of use
CN108086948B (en) Locking device of underwater valve operating tool
WO2009056839A2 (en) Tool storage assembly
GB2447530A (en) Pressure balanced coupling with flow insert to simplify production
EP2616210A1 (en) A rubber removal machine
AU688437B2 (en) Horizontal tree safety valve
US11614190B2 (en) Secondary unlock tool for subsea connectors
FR3050241A1 (en) INTEGRATED SAFETY DEPLOYMENT CHARACTERISTIC FOR ACTUATOR
FR3057334A1 (en) QUICK COUPLING
US20200124058A1 (en) Ball valve with pressure absorbing accumulator
EP1215018A1 (en) Device for connecting a tool on a robot arm using balls as locking members
US10125825B2 (en) Hydraulic tool
WO2016200864A1 (en) Compound express actuator connection

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20220101