NL2017875B1 - Method and system for diagnosing open-circuit fault in a boost chopper micro-inverter for photovoltaic panels - Google Patents

Method and system for diagnosing open-circuit fault in a boost chopper micro-inverter for photovoltaic panels Download PDF

Info

Publication number
NL2017875B1
NL2017875B1 NL2017875A NL2017875A NL2017875B1 NL 2017875 B1 NL2017875 B1 NL 2017875B1 NL 2017875 A NL2017875 A NL 2017875A NL 2017875 A NL2017875 A NL 2017875A NL 2017875 B1 NL2017875 B1 NL 2017875B1
Authority
NL
Netherlands
Prior art keywords
current
branch
boost chopper
error
evaluated
Prior art date
Application number
NL2017875A
Other languages
Dutch (nl)
Other versions
NL2017875A (en
Inventor
Dong Mi
Wang Shuo
Yang Jian
Li Li
Li Yulin
Su Mei
Han Hua
Nie Yuwen
Tian Xiaoyu
Original Assignee
Univ Central South
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Central South filed Critical Univ Central South
Publication of NL2017875A publication Critical patent/NL2017875A/en
Application granted granted Critical
Publication of NL2017875B1 publication Critical patent/NL2017875B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention discloses a method and system for diagnosing open-circuit fault of a boost chopper micro-inverter for photovoltaic panels. According to the present invention, the current in any one branch can be evaluated through an observer, and the evaluated current is compared with an actual current so as to obtain a current residual. With the amount of the current residual, it can be timely determined whether the branch involves faults, so that the branch with faults can be cut off accordingly. Therefore, any fault can be handled in time, and the stableness of the system can be enhanced.

Description

METHOD AND SYSTEM FOR DIAGNOSING OPEN-CIRCUIT FAULT IN A BOOST CHOPPER MICRO-INVERTER FOR PHOTOVOLTAIC PANELS
Technical Field
The present invention relates to the field of circuit failure diagnosis, and in particular, to a method and a system for diagnosing open-circuit fault of a boost chopper micro-inverter for photovoltaic panels.
Technical Background
With a wide use of renewable energy, solar power becomes more and more important. To increase the efficiency of photovoltaic generation, a kind of micro-inverter assembly is proposed. Compared with traditional inverters, each micro-inverter in the micro-inverter assembly is separately connected to one photovoltaic panel of a photovoltaic panel array, so that each photovoltaic panel can be controlled by a separate maximum power point tracking control, as shown in Fig. 1. Moreover, modular design can be realized through integrating the micro-inverter with the photovoltaic component, thus achieving the surveillance of the whole system, which simplifies the structure of the system significantly.
The boost chopper converter for photovoltaic panels is an important part of the micro-inverter. When there is one failure in one switch circuit, other photovoltaic inverters will consume energy, resulting in loss of energy and simultaneously influencing stableness of the whole system. Accordingly, there is a need for providing a solution of detecting the photovoltaic boost chopper micro-inverter, so as to timely determine whether the failure in the micro-inverter occurs, and thus prolong life of the micro-inverter system.
Summary of the Invention
The present invention aims to provide a solution for timely detecting the failure occurring in the micro-inverter to prolong life of the inverter system.
In order to achieve the above objective, the present invention provides a method for diagnosing open-circuit failure occurred in the photovoltaic boost chopper micro-inverter for photovoltaic panels, wherein current of any one branch is estimated by an observer, and the estimated value of the current is compared with the actual value of the current so as to obtain a current residual. The amount of the current residual can be used to determine whether a fault occurred in the branch. In this manner, it can be timely determined whether a failure occurs in the branch, so that said branch can be cut off in time, thus improving stableness of the system.
Moreover, when there is a fault, the fault can be handled timely and thus the fault circuit can be cut off in time through using PLC control technology. In addition, the boost chopper micro-inverter for photovoltaic panels of the present invention has advantages of less switches, simple structure, and high efficiency. Therefore, the time required for diagnosing the fault is less than that in traditional inverters, and thus the fault point can be found in a short time.
Other features and advantages of the present invention will be further explained in the following description, and will partly become self-evident therefrom, or be understood through the implementation of the present invention. The objectives and advantages of the present invention will be achieved through the structures specifically pointed out in the description, claims, and the accompanying drawings.
Brief Description of the Drawings
The accompanying drawings, together with the embodiments, are provided for a further understanding of the present invention. The drawings constitute a part of the description, and are not intended to limit the present invention.
Fig. 1 shows a structure of a boost chopper micro-inverter for photovoltaic panels according to an embodiment of the present invention;
Fig. 2 shows an equivalent circuit of the boost chopper micro-inverter for photovoltaic panels according to the embodiment of the present invention;
Fig. 3 is a block diagram of a system for diagnosing open-circuit fault in the boost chopper micro-inverter for photovoltaic panels according to the embodiment of the present invention;
Fig. 4 is a wave graph of an actual current i,, an estimated current iL, and a current residual r of one branch when the boost chopper micro-inverter for photovoltaic panels operates normally; and
Fig. 5 is a wave graph of an actual current iL, an estimated current iL, and current residual r of one branch when the open-circuit fault occurs therein.
Detailed Description of the Embodiments
The present invention will be explained in detail below with reference to the accompanying drawings, so that the objective, technical solutions and advantages thereof can be understood more clearly.
Fig. 1 shows a structure of a boost chopper micro-inverter for photovoltaic panels according to an embodiment of the present invention. It should be noted that a converter according to the embodiment includes the structure of the micro-inverter with the high frequency part thereof being removed, and the diagnosis of the open-circuit fault in the micro-inverter mainly relates to switch fault in the converter.
Fig. 2 shows an equivalent circuit of one branch of the boost chopper micro-inverter for photovoltaic panels, wherein uac is voltage of power grid across output ends of the boost chopper micro-inverter, d is turn-on time in one duty cycle of each switch element, L is an inductor of the boost chopper circuit in one single branch of the boost chopper micro-inverter, VD is an after-flow diode, Ro, Lo, Co are respectively filter resistant, filter inductor, and filter capacitor on the output ends, io is current in the filter inductor, iL is current in the inductor of the boost chopper circuit, uo is voltage across the filter capacitor, and upyis voltage on the DC side of the photovoltaic panels in the boost chopper micro-inverter.
The following is an illustration on how to diagnose open-circuit fault in the boost chopper micro-inverter for photovoltaic panels, with reference to Fig. 3.
As shown in Fig. 3, the open-circuit fault diagnosis system 300 includes an observer 310, a current residual module 320, a comparison module 330, and a fault point cutting-off module 340.
The observer 310 is configured to evaluate current in a branch including any switch in the boost chopper micro-inverter for photovoltaic panels on line (in real time), so as to obtain an evaluated current. A branch current in the example is the current l/ in the inductor of the boost chopper circuit of the micro-inverter.
It is necessary to establish the observer in advance, which includes the following steps.
In step A, the boost chopper micro-inverter for photovoltaic panels is modeled through using average switching period method, so as to create a three-order non-linear model based on the average switching period with respect to one single branch of the converter, which is expressed as follows:
(1) wherein reference can be made to the above explanations on Fig. 2 for the meaning represented by each parameter.
In step B, small deviation at steady state points with respect to the three-order non-linear model are processed by linearization, so as to obtain linear small signal model of the single branch of the converter.
Assume that n , and are respectively current in the inductor of the boost chopper circuit, current in the filter inductor, and voltage on the filter capacitor, ^pv is voltage on the DC side of the photovoltaic panels of the steady boost chopper micro-inverter, D is steady state duty cycle, is voltage on the AC side of the steady state, and Δ//, Δ/'°, Δ^°, 9 Διίργ ^ Δuac are reSpectiveiy smaii disturbances introduced into state variables and input variables at steady state points, which will be expressed as follows:
(2)
Through combining equation (2) into equation (1), the following equation can be obtained:
(3)
By using steady relationship and approximating the two-order AC term to be zero, Equation (3) can be simplified as follows:
(4)
The linear small signal model of the single branch of the converter can be obtained as follows:
(5)
h Ί U JC — Iq U — U py wherein, Lw°-I, LMflCJ,and }’= [h] are respectively state variables, control inputs, and measurable outputs; 0 0 0 bn bn bl3 A = 0 a22 a23 5=0 0 b23 a3l a32 0 J ^ \_b3l 0 0 J ^ an(j C - [l 0 O] arc respectively state matrix, control matrix, and output matrix, and
..
) 9
)
diL / dt x= diQ / dt
I , wherein II is steady state current of inductor L at steady state, L 0 J is the first derivative of the state variables.
In step C the observer is established, which is expressed as follows:
Yx = (A-HC)x + Bu + Hy 1>· = 0 (6) wherein x , ^ are respectively the evaluated values of the state variables and measurable outputs, and H is error compensation matrix for output of the observer, and x is the evaluated value for x.
In step D, with respect to the linear small signal model for the boost chopper micro-inverter, if the evaluation error of the states is made to be e ~ x~x, then
(V) £ . £. wherein ‘L is evaluated error of the current in the inductor of the boost chopper circuit, £ is evaluated error of the current in the filter inductor, and is evaluated error of the voltage on the filter capacitor.
By subtracting the expression of the observer from the expression of the linear small signal model, the following equation can be obtained: • · x-x = (A-HC)(x-x) ^
By combining equation (7) and equation (8), the following error equation can be obtained: 'e = (A-HC)e (9)
The feedback gain matrix H of output error of the observer is selected to enable (A-HC) to be steady, so as to determine the observer.
In this example, if the feedback gain matrix H of output error of the observer is made to H_\h Η Η T 1 1 2 ’ J , wherein Hl, H2, and H3 are respectively ratios of output error feedback values to input values, then
(10)
Subsequently, the evaluated current l/ can be calculated according to equation (6).
The current residual module 320 is configured to create the current residual based on the evaluated current and the actual current measured at the same point.
Specifically, the current residual can be calculated by using the following equation, r(t) = v*(iL-iL) wherein v= 1.2, ll is the actual current in the inductor of the boost chopper circuit, >L is the evaluated current in the inductor of the boost chopper circuit, and t is the time. The robustness of the system can be increased by using equation (11), thus the system is more sensitive to the fault.
The comparison module 330 is configured to compare norm H2 of the current residual with the residual threshold, determining whether the branch including the switch involves open-circuit faults.
Firstly, the residual threshold is calculated, which is ^th ~SUPH ? wherein IIr^) II2 is H2 norm of the current residual ' ^, and ^ ^ ^ ° ^ ^ ^ , wherein T is transposition of the matrix. In this example, ^,h =0.5.
If H2 norm of the current residual is less than ^jh, there is no open-circuit fault occurred, and continuing to monitor the circuit is performed. If H2 norm of the current residual is larger than or equal to ^,h, it is determined that the branch involves an open-circuit fault.
The fault point cutting-off module 340 is connected with comparison module 330 and configured to cut off the fault branch including the switch by using PLC technology where there is a fault.
In practice, by using PLC technology, the open-circuit position can be determined by the parameter resulted in diagnosis of the fault position. Therefore, the fault can be timely handled, and the switch is turn off.
The following provides an example of an actual circuit. The actual parameters are listed in Table 1.
Tablet Actual parameters
In the simulation diagram as shown in Fig. 4, waves of the actual current ll in the inductor of the boost chopper circuit, the evaluated current 1l in the inductor of the boost chopper circuit, and the current residual r thereof are shown from top to bottom. From Fig. 4 it can be seen that the evaluated current can follow the actual current closely, thus implementing better evaluation.
In Fig. 5, waves of the actual current 1l , the evaluated current 1l in the inductor of the boost chopper circuit, and the current residual r when there is a fault occurred in one branch of micro-inverter are shown in order from top to bottom. According to these waves, the branch which involves faults can be determined by comparing the current residual with the residual threshold.
According to the present invention, the current in any one branch can be evaluated through an observer, and the evaluated current is compared with the actual current so as to obtain the current residual. With the amount of the current residual, it can be timely determined whether the branch involves faults, so that the branch with faults can be cut off accordingly. Therefore, any fault can be handled in time, and the stableness of the system can be enhanced.
It should be noted that the above embodiments are described only for better understanding, rather than limit the present invention. Anyone skilled in the art can make any amendments to improvements on the implementing forms or details without departing from the scope of the present invention. The protection scope of the present invention shall still be determined by the claims.

Claims (10)

CLAIMS 1 .Werkwijze voor het diagnosticeren van een open-ketenfout in een boost chopper micro-inverter voor fotovoltaïsche panelen, omvattende de stappen: tot stand brengen van een observator voor het evalueren van een stroom in een tak van de boost chopper micro-inverter omvattende een schakelaar in een on-line wijze voor het verkrijgen van een geëvalueerde stroom; verkrijgen van een stroomrest op basis van de geëvalueerde stroom en een werkelijke bij genoemde tak gemeten stroom; vergelijken van een H2-norm van de stroomrest met een restdrempelwaarde voor het bepalen of er een open-ketenfout optreedt in de tak die de schakelaar bevat; en afsnijden van de tak die de schakelaar bevat door gebruik te maken van PLC-technologie wanneer de open-ketenfout in genoemde tak optreedt.Method for diagnosing an open-circuit error in a boost chopper micro-inverter for photovoltaic panels, comprising the steps of: establishing an observer for evaluating a current in a branch of the boost chopper micro-inverter comprising a switch in an on-line manner for obtaining an evaluated current; obtaining a current residue based on the evaluated current and an actual current measured at said branch; comparing an H 2 standard of the current remainder with a residual threshold value for determining whether an open circuit error occurs in the branch containing the switch; and cutting off the branch containing the switch by using PLC technology when the open chain error occurs in said branch. 2. Werkwijze volgens conclusie 1, waarbij indien de H2-norm van de stroomrest minder is dan de restdrempelwaarde, wordt bepaald dat er geen open-ketenfout optreedt; in andere gevallen wordt bepaald dat een open-ketenfout optreedt.The method of claim 1, wherein if the H 2 standard of the current remainder is less than the residual threshold value, it is determined that no open chain error occurs; in other cases, it is determined that an open chain error occurs. 3. Werkwijze volgens conclusie 1 of 2, waarbij de stap van het tot stand brengen van de observator verder sub-stappen omvat van: uitvoeren van modelvorming voor de boost chopper micro-inverter voor fotovoltaïsche panelen, voor het verkrijgen van een derde-orde niet-lineair model op basis van gemiddelde schakelperiode met betrekking tot een enkele convertortak; verwerken van kleine afwijking op punten met stabiel bedrijf met betrekking tot het derde-orde niet-lineaire model via linearisatie, voor het verkrijgen van een lineair kleinsignaalmodel van de enkele tak van de convertor; construeren van een uitdrukking voor de observator, en verkrijgen van een foutberekeningsuitdrukking op basis van het lineaire kleinsignaalmodel van de enkele tak van de convertor en de uitdrukking voor de observator; en selecteren van een terugkoppelversterkingsmatrix van uitgangsfout van de observator die de fout stabiel maakt, voor het bepalen van de observator.The method according to claim 1 or 2, wherein the step of establishing the observer further comprises sub-steps of: performing modeling for the boost chopper microinverter for photovoltaic panels, for obtaining a third order not -linear model based on average switching period with regard to a single converter branch; processing small deviation at points of stable operation with respect to the third-order non-linear model via linearisation, to obtain a linear small signal model of the single branch of the converter; constructing an expression for the observer, and obtaining an error calculation expression based on the linear small signal model of the single branch of the converter and the expression for the observer; and selecting a feedback gain matrix of output error from the observer that makes the error stable for determining the observer. 4. Werkwijze volgens conclusie 3, waarbij een uitdrukking voor het derde-orde niet-lineaire model van de enkele tak van de convertor als volgt is:The method of claim 3, wherein an expression for the third-order non-linear model of the single branch of the converter is as follows: ti waarbij ac een netspanning over uitgangseinden van de boost chopper micro-inverter is, Xi Pr een spanning aan een gelijkstroomzijde van de fotovoltaïsche panelen in de boost chopper micro-inverter is, d een inschakeltijd van elke schakelaar tijdens één cyclus is, L een zelfinductie van een boost chopper-keten in één enkele tak van de boost chopper micro-inverter is, RL C 0, 0, en 0 respectievelijk een filterweerstand en filterzelfinductie, en een filtercapaciteit van de uitgangseinden zijn, *° een stroom in een filterinductor is, lp een stroom in een inductor van de boost chopper-keten is, en li 0 een spanning op een filtercondensator is.ti where ac is a mains voltage across output ends of the boost chopper microinverter, Xi Pr is a voltage on a DC side of the photovoltaic panels in the boost chopper microinverter, d is a switch-on time of each switch during one cycle, L is a self-induction of a boost chopper chain in a single branch of the boost chopper microinverter, RL is C 0, 0, and 0, respectively, a filter resistor and filter self-induction, and a filter capacity of the output ends, * ° is a current in a filter inductor, lp is a current in an inductor of the boost chopper circuit, and li is a voltage on a filter capacitor. 5. Werkwijze volgens conclusie 4, waarbij de uitdrukking voor het lineaire kleinsignaalmodel van de enkele tak van de convertor als volgt is: < x = Ax + Bu y = Cx h d X = 1q U — ^ρν waarbij -u°-, pU'“: ^, en y ~ W respectievelijk een toestandsvariabele, een besturingsinvoer en een meetbare uitvoer zijn; 0 0 0 bn bl2 bu A= 0 a22 α23 B = 0 0 b23 α31 a32 0 b3l 0 0 _ en C-\l 0 reSpectjeve|jjkeen toestandsmatrix, een besturingsmatrix en een uitgangsmatrix zijn,The method of claim 4, wherein the expression for the linear small signal model of the single branch of the converter is as follows: <x = Ax + Bu y = Cx hd X = 1q U - ^ ρν where -u ° -, pU ' ": ^, And y ~ W are respectively a state variable, a control input and a measurable output; 0 0 0 bn b12 bu A = 0 a22 α23 B = 0 0 b23 α31 a32 0 b3l 0 0 _ and C- 1 0 are a state matrix, a control matrix and an output matrix, 55 JJ JJ diL / dt x= di0/dt -du°/ dt] een eerste afgeleide van de toestandsvariabele is, D een arbeidsfactor in stabiel bedrijf is, ^'ac een spanning aan een wisselstroomzijde in stabiel bedrijf is, IL een stroom in stabiel bedrijf in de inductor bij stabiel bedrijf is.diL / dt x = di0 / dt -du ° / dt] is a first derivative of the state variable, D is a power factor in stable operation, ac is a voltage on an alternating current side in stable operation, IL is a current in stable operation in the inductor is in stable operation. 6. Werkwijze volgens conclusie 4 of 5, waarbij de uitdrukking voor de observator als volgt is: < x = (A - HC)x + Bu + Hy y = Cx waarbij x , y respectievelijk geëvalueerde waarden van de toestandsvariabele en de meetbare uitvoer zijn, Heen foutcompensatiematrix voor uitvoer van de observator is, en x een geëvalueerde waarde voor x is.A method according to claim 4 or 5, wherein the expression for the observer is as follows: <x = (A - HC) x + Bu + Hy y = Cx where x, y are evaluated values of the state variable and the measurable output respectively , Is an error compensation matrix for observer output, and x is an evaluated value for x. 7. Werkwijze volgens een van de conclusies 4-6, waarbij fout ^ kan worden berekend door de volgende vergelijking: e = 04 - HC)e waarbijA method according to any of claims 4-6, wherein error ^ can be calculated by the following equation: e = 04 - HC) e where lL een geëvalueerde fout van de stroom in de inductor van de boost chopper-keten is, een geëvalueerde fout van de stroom in de filterinductor is, en een geëvalueerde fout van de spanning in de filtercondensator is. 8. werkwijze volgens conclusie 7, waarbij indien de geselecteerde M = \h m m "F terugkoppelversterkingsmatrixHvan uitgangsfout van de observator L 1 2 3j is, waarbij H\, H2, en Ht, respectievelijk verhoudingen van uitgangsfoutterugkoppelwaarden tot ingangswaarden zijn, dan11 is an evaluated error of the current in the inductor of the boost chopper circuit, is an evaluated error of the current in the filter inductor, and is an evaluated error of the voltage in the filter capacitor. A method according to claim 7, wherein if the selected M = \ h m m "F is feedback amplification matrix H of the output error of the observer L 1 2 3 j, wherein H 1, H 2, and Ht, respectively, are ratios of output error feedback values to input values, then 9. Werkwijze volgens een van de conclusies 4-8, waarbij de stroom rest wordt berekend door de volgende vergelijking: r(t) = v*(iL-ïL) waarbij r(t) de stroomrest is, v = 1.2, ÏL een werkelijke stroom in de inductor van de boost chopper-keten is, 1l een geëvalueerde stroom in de inductor van de boost chopper-keten is, en t tijd is.The method according to any of claims 4-8, wherein the current remainder is calculated by the following equation: r (t) = v * (iL-LL) where r (t) is the current residue, v = 1.2, ÏL a actual current in the inductor of the boost chopper chain, 11 is an evaluated current in the inductor of the boost chopper chain, and t is time. 10. Werkwijze volgens een van de conclusies 4-9, waarbij de restdrempelwaarde wordt berekend door de volgende vergelijking: Jth =sup||r(f)||2 waarbij Jth de restdrempelwaarde is, H ^ een H2-norm van de stroomrest is, Κ0ΙΙ2=(Γ r(t)T r(t)dt)112 en J-° , waarbij T de transpositie van de matrix is.A method according to any of claims 4-9, wherein the residual threshold value is calculated by the following equation: Jth = sup || r (f) || 2 where Jth is the residual threshold value, H ^ is an H2 standard of the current residue , Κ0ΙΙ2 = (Γ r (t) T r (t) dt) 112 and J- °, where T is the transposition of the matrix. 11. Systeem voor het diagnosticeren van een open-ketenfout in een boost chopper micro-inverter voor fotovoltaïsche panelen, omvattende: een observator, geconfigureerd voor het evalueren van een stroom in een tak van de boost chopper micro-inverter omvattende een schakelaar op een on-line wijze voor het verkrijgen van een geëvalueerde stroom, een stroomrestmodule, geconfigureerd voor het verkrijgen van een stroomrest op basis van de geëvalueerde stroom en een werkelijke bij genoemde tak gemeten stroom, een vergelijkingsmodule, geconfigureerd voor het vergelijken van de H2-norm van de stroomrest met een restdrempelwaarde voor het bepalen of er een open-ketenfout optreedt in de tak die de schakelaar bevat, en een foutpuntafsnijmodule, geconfigureerd voor het afsnijden van de tak die de schakelaar bevat door gebruik te maken van PLC-technologie wanneer de open-ketenfout in genoemde tak optreedt.A system for diagnosing an open-circuit error in a boost chopper microinverter for photovoltaic panels, comprising: an observer configured to evaluate a current in a branch of the boost chopper microinverter comprising a switch on an -line method for obtaining an evaluated current, a current residual module, configured to obtain a current residual based on the evaluated current and an actual current measured at said branch, a comparison module configured for comparing the H2 standard of the current remainder with a residual threshold value for determining whether an open chain error occurs in the branch containing the switch, and an error point cut module configured to cut off the branch containing the switch by using PLC technology when the open chain error occurs in that branch.
NL2017875A 2016-09-22 2016-11-28 Method and system for diagnosing open-circuit fault in a boost chopper micro-inverter for photovoltaic panels NL2017875B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610841041 2016-09-22

Publications (2)

Publication Number Publication Date
NL2017875A NL2017875A (en) 2017-03-29
NL2017875B1 true NL2017875B1 (en) 2017-05-23

Family

ID=57583418

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2017875A NL2017875B1 (en) 2016-09-22 2016-11-28 Method and system for diagnosing open-circuit fault in a boost chopper micro-inverter for photovoltaic panels

Country Status (1)

Country Link
NL (1) NL2017875B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445340A (en) * 2018-02-28 2018-08-24 江苏大学 The detection method of five-phase PMSM inverter open fault
CN110635686B (en) * 2019-11-14 2021-10-01 东北电力大学 Control and fault detection method of boost circuit based on switching system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977963B2 (en) * 2009-07-21 2011-07-12 GM Global Technology Operations LLC Methods, systems and apparatus for detecting abnormal operation of an inverter sub-module
CN103378603B (en) * 2012-04-24 2017-03-01 通用电气公司 Open-circuit fault detection device, inverter controller, energy conversion system and method
CN103208815B (en) * 2013-04-02 2014-11-26 清华大学 d-q axis parameter identification method for grid-connected inverter of photovoltaic power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445340A (en) * 2018-02-28 2018-08-24 江苏大学 The detection method of five-phase PMSM inverter open fault
CN110635686B (en) * 2019-11-14 2021-10-01 东北电力大学 Control and fault detection method of boost circuit based on switching system

Also Published As

Publication number Publication date
NL2017875A (en) 2017-03-29

Similar Documents

Publication Publication Date Title
Dehghanzadeh et al. Model predictive control design for DC-DC converters applied to a photovoltaic system
Harb et al. Ripple-port module-integrated inverter for grid-connected PV applications
Zammit et al. Comparison between PI and PR current controllers in grid connected PV inverters
Lopez et al. Leakage current evaluation of a singlephase transformerless PV inverter connected to the grid
Kotsopoulos et al. Predictive DC voltage control of single-phase PV inverters with small DC link capacitance
Cherati et al. Design of a current mode PI controller for a single-phase PWM inverter
Aourir et al. Nonlinear control and stability analysis of single stage grid-connected photovoltaic systems
NL2017875B1 (en) Method and system for diagnosing open-circuit fault in a boost chopper micro-inverter for photovoltaic panels
Rajeev et al. Closed loop control of novel transformer-less inverter topology for single phase grid connected photovoltaic system
Liu et al. A novel switching boost inverter applied to photovoltaic power generation system
CN102611297B (en) Control method for suppressing fluctuation of maximum power point of photovoltaic grid-connected inverter
Seo et al. Performance analysis and evaluation of a multifunctional grid-connected PV system using power hardware-in-the-loop simulation
Trabelsi et al. High performance voltage-sensorless model predictive control for grid integration of packed U ceils based PV system
Kumar et al. A SEPIC derived single stage buck-boost inverter for photovoltaic applications
CN104037802B (en) A kind of photovoltaic combining inverter control method based on LPRC-NLPI composite controller
Liang et al. Night operation, analysis, and control of single‐phase quasi‐Z‐source photovoltaic power system
Hofreiter et al. Single-stage boost inverter reliability in solar photovoltaic applications
Thakur et al. Automatic Observation and Detection of Faults for Solar Photovoltaic Systems with Multilevel Inverter Topology
Zammit et al. Pr current control with harmonic compensation in grid connected pv inverters
CN102868174B (en) Photovoltaic grid-connected system for restraining chaos based on DSP (Digital Signal Processor) as well as working method thereof
Sher et al. Performance enhancement of a flyback photovoltaic inverter using hybrid maximum power point tracking
Choe et al. The characteristic analysis of grid frequency variation under islanding mode for utility interactive PV system with reactive power variation scheme for anti-islanding
Bakeer et al. Grid connection quasi Z-Source Inverter based on model predictive control with less sensors count
Aliaga et al. A single phase hybrid multiport microinverter for photovoltaic energy controlled by exact linearization
Pinheiro et al. Modeling, simulation and comparison analysis of an installed photovoltaic system using RTDS

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: CHANGSHA VICTORY ELECTRICITY TECH CO LTD; CN

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: CENTRAL SOUTH UNIVERSITY

Effective date: 20210716