NL2017101B1 - Thermoforming device, mold assembly, mold, and method - Google Patents

Thermoforming device, mold assembly, mold, and method Download PDF

Info

Publication number
NL2017101B1
NL2017101B1 NL2017101A NL2017101A NL2017101B1 NL 2017101 B1 NL2017101 B1 NL 2017101B1 NL 2017101 A NL2017101 A NL 2017101A NL 2017101 A NL2017101 A NL 2017101A NL 2017101 B1 NL2017101 B1 NL 2017101B1
Authority
NL
Netherlands
Prior art keywords
stretcher
calibration element
thermoforming device
mold
actuator
Prior art date
Application number
NL2017101A
Other languages
Dutch (nl)
Original Assignee
Bosch Sprang Beheer B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Sprang Beheer B V filed Critical Bosch Sprang Beheer B V
Priority to NL2017101A priority Critical patent/NL2017101B1/en
Priority to EP16002415.4A priority patent/EP3266588B1/en
Priority to PL16002415T priority patent/PL3266588T3/en
Priority to US15/594,097 priority patent/US9840036B1/en
Priority to US15/594,172 priority patent/US9931782B2/en
Priority to EP17745980.7A priority patent/EP3481618B1/en
Priority to PCT/EP2017/000789 priority patent/WO2018007005A1/en
Priority to US16/315,252 priority patent/US20190160725A1/en
Priority to DE112017000056.4T priority patent/DE112017000056T5/en
Application granted granted Critical
Publication of NL2017101B1 publication Critical patent/NL2017101B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • B29C51/087Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts with at least one of the mould parts comprising independently movable sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/428Heating or cooling of moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7132Bowls, Cups, Glasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a thermoforming device. It further relates to a mold assembly comprising a first and second mold, and to a mold that can be used in a thermoforming device. It also relates to a method for thermoforming 5 a product. The invention is characterized in that the thermoforming device comprises a second prestretcher, in addition to a first pre-stretcher and a calibration element, and that the second prestretcher is at least partially and moveably arranged in a second mold body. A movement relative to the second mold body and towards the same forming cavity of the 10 first pre-stretcher, the second pre-stretcher, and the calibration element, can be individually controlled, and the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element.

Description

OctrooicentrumPatent center

NederlandThe Netherlands

Figure NL2017101B1_D0001

© 2017101 (21) Aanvraagnummer: 2017101 © Aanvraag ingediend: 05/07/2016© 2017101 (21) Application number: 2017101 © Application submitted: 05/07/2016

BI OCTROOI @ Int. CL:BI PATENT @ Int. CL:

B29C 51/04 (2016.01)B29C 51/04 (2016.01)

(4^ Aanvraag ingeschreven: (4 ^ Request registered: (73) Octrooihouder(s): (73) Patent holder (s): 11/01/2018 11/01/2018 Bosch Sprang Beheer B.V. te Sprang-Capelle. Bosch Sprang Beheer B.V. in Sprang-Capelle. (43) Aanvraag gepubliceerd: (43) Application published: - - (72) Uitvinder(s): (72) Inventor (s): Uitvinder ziet af van tenaamstelling. Inventor refrains from being registered. (F) Octrooi verleend: (F) Patent granted: 11/01/2018 11/01/2018 (74) Gemachtigde: (74) Agent: ir. P.J. Hylarides c.s. te Den Haag. ir. P.J. Hylarides et al. In The Hague. (45) Octrooischrift uitgegeven: (45) Patent issued: 06/02/2018 06/02/2018

© Thermoforming device, mold assembly, mold, and method © The present invention relates to a thermoforming device. It further relates to a mold assembly comprising a first and second mold, and to a mold that can be used in a thermoforming device. It also relates to a method for thermoforming a product.© Thermoforming device, mold assembly, mold, and method © The present invention relates to a thermoforming device. It further relates to a mold assembly including a first and second mold, and to a mold that can be used in a thermoforming device. It also relates to a method for thermoforming a product.

The invention is characterized in that the thermoforming device comprises a second prestretcher, in addition to a first pre-stretcher and a calibration element, and that the second prestretcher is at least partially and moveably arranged in a second mold body.The invention is characterized in that the thermoforming device comprises a second prestretcher, in addition to a first pre-stretcher and a calibration element, and that the second prestretcher is at least partially and movably arranged in a second mold body.

A movement relative to the second mold body and towards the same forming cavity of the first pre-stretcher, the second pre-stretcher, and the calibration element, can be individually controlled, and the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element.A movement relative to the second mold body and towards the same forming cavity of the first pre-stretcher, the second pre-stretcher, and the calibration element, can be individually controlled, and the second pre-stretcher at least partially surrounds the first pre stretcher and the calibration element.

NL BI 2017101NL BI 2017101

Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het octrooischrift wijkt af van de oorspronkelijk ingediende stukken. Alle ingediende stukken kunnen bij Octrooicentrum Nederland worden ingezien.This patent has been granted regardless of the attached result of the research into the state of the art and written opinion. The patent differs from the documents originally submitted. All submitted documents can be viewed at the Netherlands Patent Office.

Thermoforming device, mold assembly, mold, and methodThermoforming device, mold assembly, mold, and method

The present invention relates to a thermoforming device. It further relates to a mold assembly and mold that can be used in a thermoforming device. It also relates to a method for thermoforming a product.The present invention relates to a thermoforming device. It further relates to a mold assembly and mold that can be used in a thermoforming device. It also relates to a method for thermoforming a product.

Thermoforming is a known technique by which a heated plastic foil can be shaped using a mold assembly. Generally, the mold assembly comprises two molds that can be moved relative to each other for clamping the heated plastic foil. At least one of these molds is provided with one or more forming cavities. The other mold is provided, for each forming cavity, with a pre-stretcher that can be moved into the forming cavity thereby stretching the plastic foil. Thereafter, an overpressure will be generated on one side of the plastic foil to force the plastic foil against the wall of the forming cavity. There, the plastic foil cools down and the shape of the product is defined.Thermoforming is a known technique by which a heated plastic foil can be shaped using a mold assembly. Generally, the mold assembly comprises two molds that can be moved relative to each other for clamping the heated plastic foil. At least one of these molds is provided with one or more forming cavities. The other mold is provided, for each forming cavity, with a pre-stretcher that can be moved into the forming cavity, stretching the plastic foil. Thereafter, an overpressure will be generated on one side of the plastic foil to force the plastic foil against the wall of the forming cavity. There, the plastic foil cools down and the shape of the product is defined.

For some applications, wall thickness of the final product, both in terms of size and variation among different products, is an important parameter. For instance, the thermoformed product may be required to cooperate with another product or device, wherein the latter product or device imposes size restraints on the thermoformed product. Typically, the size restraints only apply to certain parts of the product. As an example, a particular region of the bottom wall of the product may need to have a thickness within a predefined range.For some applications, wall thickness or the final product, both in terms of size and variation among different products, is an important parameter. For instance, the thermoformed product may be required to cooperate with another product or device, the latter product or device imposes size restraints on the thermoformed product. Typically, the size restraints only apply to certain parts of the product. As an example, a particular region of the bottom wall of the product may need to have a thickness within a predefined range.

DE 10 2007 023 301 Al presents a solution to address this problem. In this known system, an upper mold of the mold assembly of the thermoforming apparatus is provided with a calibration element in the form of a pen that is either fixedly attached to the upper mold or it is moveably attached thereto. In this known system, the pen is partially arranged in the pre-stretcher. During operation, the pen is moved downward to engage the plastic foil before pre-stretching the plastic foil using the pre-stretcher. By clamping the plastic foil in between the pen and a wall of the forming cavity, it becomes possible to accurately define the wall thickness of the product at the position where the plastic foil is clamped.DE 10 2007 023 301 Already presenting a solution to address this problem. In this known system, an upper mold or the mold assembly of the thermoforming apparatus is provided with a calibration element in the form of a pen that is either fixedly attached to the upper mold or it is moveably attached thereto. In this known system, the pen is partially arranged in the pre-stretcher. During operation, the pen is moved downward to engage the plastic foil before pre-stretching the plastic foil using the pre-stretcher. By clamping the plastic foil in between the pen and a wall of the forming cavity, it becomes possible to accurately define the wall thickness of the product at the position where the plastic foil is clamped.

There is a continuing demand for increasing the throughput of thermoforming apparatuses while at the same time allowing smaller variations in product geometry. The applicant has found that although the abovementioned known system provides a solution for products having a particular geometry, it may still show wall thickness variations for some product geometries that may be unacceptable for some applications.There is a continuing demand for increasing the throughput or thermoforming apparatus while at the same time allowing smaller variations in product geometry. The applicant has found that although the abovementioned known system provides a solution for products having a particular geometry, it may still show wall thickness variations for some product geometries that may be unacceptable for some applications.

It is an object of the present invention to provide a solution for this problem. According to the invention, this object has been achieved using a thermoforming device that comprises a first mold comprising a first mold body and a forming cavity arranged in the first mold body, and a second mold comprising a second mold body, a first pre-stretcher, and a calibration element, wherein the first pre-stretcher and the calibration element are at least partially and moveably arranged in the second mold body. According to the invention, the first and second mold can be moved relative to each other for clamping a plastic foil there between, and the calibration element is configured to locally clamp the plastic foil in between the calibration element and a wall and/or bottom of the forming cavity.It is an object of the present invention to provide a solution to this problem. According to the invention, this object has been achieved using a thermoforming device that comprises a first mold including a first mold body and a forming cavity arranged in the first mold body, and a second mold including a second mold body, a first pre-stretcher , and a calibration element, the first pre-stretcher and the calibration element are at least partially and movably arranged in the second mold body. According to the invention, the first and second mold can be moved relative to each other for clamping a plastic foil between, and the calibration element is configured to locally clamp the plastic foil in between the calibration element and a wall and / or bottom of the forming cavity.

The invention is characterized in that the thermoforming device further comprises a second pre-stretcher that is at least partially and moveably arranged in the second mold body, and wherein a movement relative to the second mold body and towards the same forming cavity of at least one of the first pre-stretcher, the second pre-stretcher, and the calibration element, can be individually controlled, and wherein the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element.The invention is characterized in that the thermoforming device further comprises a second pre-stretcher that is at least partially and moveably arranged in the second mold body, and in a movement relative to the second mold body and towards the same forming cavity or at least one or the first pre-stretcher, the second pre-stretcher, and the calibration element, can be individually controlled, and the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element.

Preferably at least two, and more preferably each of the first pre-stretcher, the second prestretcher, and the calibration element can be individually controlled. In case one or more of the first pre-stretcher, the second pre-stretcher, and the calibration element cannot be individually controlled, the movement of that component or those components will depend on the movement of one or more of the controllable components. For instance, the controllable component may be driven by an actuator. When this component is driven, the movement thereof may cause the movement of another non-controllable component by means of a mechanical coupling.Preferably at least two, and more preferably each of the first pre-stretchers, the second prestretcher, and the calibration element can be individually controlled. In case one or more of the first pre-stretcher, the second pre-stretcher, and the calibration element cannot be individually controlled, the movement of that component or those components will depend on the movement of one or more of the controllable components. For instance, the controllable component may be driven by an actuator. When this component is driven, the movement may cause the movement or another non-controllable component by means of a mechanical coupling.

The applicant has found that by using two or more individually controllable pre-stretchers in combination with a calibration element, it becomes possible to better control the wall thickness of the thermoformed product, in particular at positions where the calibration element engages the plastic foil. Control of wall thickness is further improved because the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element. This allows proper control of the outer regions of the product.The applicant has found that using two or more individually controllable pre-stretchers in combination with a calibration element, it becomes possible to better control the wall thickness of the thermoformed product, in particular at positions where the calibration element engages the plastic foil. Control of wall thickness is further improved because the second pre-stretcher at least partially surrounds the first pre-stretcher and the calibration element. This allows proper control of the outer regions of the product.

The first and second pre-stretchers are each configured to stretch the heated plastic foil that is clamped between the first and second molds in a direction towards a wall and/or bottom of the forming cavity.The first and second pre-stretchers are each configured to stretch the heated plastic foil that is clamped between the first and second molds in a direction towards a wall and / or bottom of the forming cavity.

The calibration element can be arranged at least partially around the first pre-stretcher. In an embodiment, the second pre-stretcher completely surrounds the calibration element, and the calibration element completely surrounds the first pre-stretcher. In this case, a bottom edge of the calibration element may have a ring shape, wherein other shapes are not excluded.The calibration element can be arranged at least partially around the first pre-stretcher. In an embodiment, the second pre-stretcher completely surrounds the calibration element, and the calibration element completely surrounds the first pre-stretcher. In this case, a bottom edge of the calibration element may have a ring shape, other shapes are not excluded.

It should be noted that the second pre-stretcher need not fully surround the calibration element over the full length of the second pre-stretcher or calibration element. The same holds for the first pre-stretcher and the calibration element.It should be noted that the second pre-stretcher need not fully surround the calibration element over the full length or the second pre-stretcher or calibration element. The same holds for the first pre-stretcher and the calibration element.

The second pre-stretcher and the calibration element may be essentially hollow structures, wherein the calibration element is at least partially arranged inside the second pre-stretcher, and wherein the first pre-stretcher is at least partially arranged inside the calibration element. In this case, the first pre-stretcher can be configured to move relative to the second pre-stretcher or relative to the calibration element, and the calibration element can be configured to move relative to the second pre-stretcher.The second pre-stretcher and the calibration element may be essentially hollow structures, the calibration element is at least partially arranged inside the second pre-stretcher, and the first pre-stretcher is at least partially arranged inside the calibration element. In this case, the first pre-stretcher can be configured to move relative to the second pre-stretcher, and the calibration element can be configured to move relative to the second pre-stretcher.

Alternatively, the second pre-stretcher and the first pre-stretcher can be essentially hollow structures, wherein the first pre-stretcher is at least partially arranged inside the second prestretcher, and wherein the calibration element is at least partially arranged in the first pre-stretcher. In this case, the calibration element can be configured to move relative to the second pre-stretcher or relative to the first pre-stretcher, and the first pre-stretcher can be configured to move relative to the second pre-stretcher.Alternatively, the second pre-stretcher and the first pre-stretcher can be essentially hollow structures, the first pre-stretcher is at least partially arranged inside the second prestretcher, and the calibration element is at least partially arranged in the first pre- stretcher. In this case, the calibration element can be configured to move relative to the second pre-stretcher or relative to the first pre-stretcher, and the first pre-stretcher can be configured to move relative to the second pre-stretcher.

The first and second pre-stretchers and the calibration element can be elongated in a direction perpendicular to the second and first mold bodies. The longitudinal axis of the first and second pre-stretchers and of the calibration element can be arranged in parallel. Additionally or alternatively, the first pre-stretcher, the second pre-stretcher, and the calibration element are coaxially arranged.The first and second pre-stretchers and the calibration element can be elongated in a direction perpendicular to the second and first mold bodies. The longitudinal axis of the first and second pre-stretchers and the calibration element can be arranged in parallel. Additionally or alternatively, the first pre-stretcher, the second pre-stretcher, and the calibration element are coaxially arranged.

At least one of the first pre-stretcher, the second pre-stretcher, and the calibration element can be shaped as a sleeve, a jacket, or a bush, preferably having a square, rectangular, or circular cross section. Because the calibration element cooperates with a segment of the wall and/or bottom of the forming cavity, it is advantageous if the shape of the lower edge of the calibration element is complementary to the shape of the aforementioned segment. As an example, both the segment and the lower edge of the calibration element may be essentially flat.At least one of the first pre-stretchers, the second pre-stretchers, and the calibration element can be shaped as a sleeve, a jacket, or a bush, preferably having a square, rectangular, or circular cross section. Because the calibration element cooperates with a segment of the wall and / or bottom of the forming cavity, it is advantageous if the shape of the lower edge of the calibration element is complementary to the shape of the aforementioned segment. As an example, both the segment and the lower edge of the calibration element may be essentially flat.

The thermoforming device may further comprise a heating element configured for heating the calibration element relative to the second mold body. Heating the calibration element prevents early solidification of heated plastic foil when engaged by the calibration element. By controlling the amount of heating, the cooling down process of the plastic foil at the position of the calibration element can be controlled in correspondence of the cooling down process in other parts of the plastic foil.The thermoforming device may further comprise a heating element configured for heating the calibration element relative to the second mold body. Heating the calibration element prevents early solidification or heated plastic foil when engaged by the calibration element. By controlling the amount of heating, the cooling down process of the plastic foil at the position of the calibration element can be controlled in correspondence or the cooling down process in other parts of the plastic foil.

In an embodiment, only a lower part of the calibration element is heated. This part can be thermally isolated from a remainder of the calibration element by a thermal isolator.In an embodiment, only a lower part of the calibration element is heated. This part can be thermally isolated from a remainder of the calibration element by a thermal insulator.

At least one of a stroke length, a stroke duration, a stroke speed, and a stroke starting time for the first pre-stretcher, the second pre-stretcher, and/or the calibration element can be individually controlled. Here, a stroke length can be defined as the maximum distance that the relevant component moves during the thermoforming process. Alternatively, the stroke length can be defined as the penetration depth of the relevant component in the forming cavity. The stroke duration can be defined as the time that the relevant component is held at its lowest position inside the forming cavity. The stroke speed can be defined as the maximum speed of the relevant component during the movement of the component towards the forming cavity or the time that is required for performing the stroke motion.At least one of a stroke length, a stroke duration, a stroke speed, and a stroke starting time for the first pre-stretcher, the second pre-stretcher, and / or the calibration element can be individually controlled. Here, a stroke length can be defined as the maximum distance that the relevant component moves during the thermoforming process. Alternatively, the stroke length can be defined as the penetration depth of the relevant component in the forming cavity. The stroke duration can be defined as the time that the relevant component is hero at its lowest position inside the forming cavity. The stroke speed can be defined as the maximum speed of the relevant component during the movement of the component towards the forming cavity or the time that is required for performing the stroke motion.

As the first pre-stretcher, the second pre-stretcher, and the calibration element can be controlled individually, for instance meaning that the movement of one component can be controlled separate from the controlling of the movement of another component, it is advantageous if the starting time of such motion can be set independently. This allows an order to be set for the thermoforming process. For example, it can be decided to first clamp the plastic foil using the calibration element and to then pre-stretch the foil. In this case, the calibration element also provides a stretching effect. Alternatively, it can be decided to first pre-stretch the plastic foil and to clamp the plastic foil using the calibration element only after the pre-stretching is partially or fully completed.As the first pre-stretcher, the second pre-stretcher, and the calibration element can be controlled individually, for instance meaning that the movement of one component can be controlled separately from the controlling of the movement or another component, it is advantageous if the starting time or such motion can be set independently. This allows an order to be set for the thermoforming process. For example, it can be decided to first clamp the plastic foil using the calibration element and then pre-stretch the foil. In this case, the calibration element also provides a stretching effect. Alternatively, it can be decided to first pre-stretch the plastic foil and to clamp the plastic foil using the calibration element only after the pre-stretching is partially or fully completed.

With respect to the calibration element, it is preferred if at least one of a starting time of clamping the plastic foil in between the calibration element and the wall and/or bottom of the forming cavity, a clamping duration, and a clamping strength, can be independently controlled.With respect to the calibration element, it is preferred if at least one of a starting time of clamping the plastic foil in between the calibration element and the wall and / or bottom of the forming cavity, a clamping duration, and a clamping strength, can be independently controlled.

The clamping strength generally refers to the force exerted by the calibration element in a direction towards the relevant part of the wall and/or bottom of the forming cavity.The clamping strength generally refers to the force exerted by the calibration element in a direction towards the relevant part of the wall and / or bottom of the forming cavity.

The thermoforming device may further comprise a forming air unit for generating an overpressure on a first side of the plastic foil that is clamped in between the first and second molds to urge the plastic foil to move towards the wall and/or bottom of the forming cavity. Here, the first side is directed away from the forming cavity.The thermoforming device may further comprise a forming air unit for generating an overpressure on a first side of the plastic foil that is clamped in between the first and second molds to urge the plastic foil to move towards the wall and / or bottom of the forming cavity . Here, the first side is directed away from the forming cavity.

An overpressure situation is generated when a higher pressure exists on the aforementioned side of the clamped plastic foil than on the other side of the plastic foil. For example, the second mold may comprise one or more second channels, wherein the forming air unit is configured to generate the overpressure by applying pressurized gaseous medium through the one or more second channels to the first side of the clamped plastic foil. Additionally or alternatively, the first mold may comprise one or more first channels, wherein the forming air unit is configured to generate the overpressure by evacuating a space in the forming cavity between the clamped plastic foil and the wall and/or bottom of the forming cavity through the one or more first channels.An overpressure situation is generated when a higher pressure exists on the aforementioned side of the clamped plastic foil than on the other side of the plastic foil. For example, the second mold may include one or more second channels, the forming air unit is configured to generate the overpressure by applying pressurized gaseous medium through the one or more second channels to the first side of the clamped plastic foil. Additionally or alternatively, the first mold may include one or more first channels, the forming air unit is configured to generate the overpressure by evacuating a space in the forming cavity between the clamped plastic foil and the wall and / or bottom of the forming cavity through the one or more first channels.

The thermoforming device may be configured, for the purpose of forming a product out of the plastic foil clamped by the first and second molds, to generate the overpressure only after at least partially completing the stretching of the plastic foil using the first and second pre-stretchers. Additionally or alternatively, the thermoforming device may be configured, for the purpose of forming a product out of the clamped plastic foil, to cause the clamping of the plastic foil by the calibration element only after having started the application of the overpressure by the forming air unit.The thermoforming device may be configured, for the purpose of forming a product from the plastic foil clamped by the first and second molds, to generate the overpressure only after at least partially completing the stretching of the plastic foil using the first and second pre- stretchers. Additionally or alternatively, the thermoforming device may be configured, for the purpose of forming a product out of the clamped plastic film, to cause the clamping of the plastic film by the calibration element only after having started the application of the overpressure by the forming air unit.

The thermoforming device may comprise a first actuator for moving the first pre-stretcher relative to the second mold body, a second actuator for moving the second pre-stretcher relative to the second mold body, and/or a third actuator for moving the calibration element relative to the second mold body. The thermoforming device may further comprise a control system for controlling the first, second, and/or third actuator. As an example, the first actuator, the second actuator, and/or the third actuator may comprise a respective pneumatic or hydraulic cylinder, for moving the first pre-stretcher, the second pre-stretcher, and the calibration element, respectively. Alternatively, at least one of the first actuator, the second actuator, and the third actuator may comprise an electric motor for moving the first pre-stretcher, the second pre-stretcher, and the calibration element, respectively.The thermoforming device may include a first actuator for moving the first pre-stretcher relative to the second mold body, a second actuator for moving the second pre-stretcher relative to the second mold body, and / or a third actuator for moving the calibration element relative to the second mold body. The thermoforming device may further comprise a control system for controlling the first, second, and / or third actuator. As an example, the first actuator, the second actuator, and / or the third actuator may include a respective pneumatic or hydraulic cylinder, for moving the first pre-stretcher, the second pre-stretcher, and the calibration element, respectively. Alternatively, at least one of the first actuator, the second actuator, and the third actuator may include an electric motor for moving the first pre-stretcher, the second pre-stretcher, and the calibration element, respectively.

The first and second pre-stretcher may each comprise a respective plastic foil contacting part that is made of a different material than a remainder of the pre-stretcher. The plastic foil contacting part may for instance be made of a material having a relatively low thermal conductivity to prevent or limit the cooling of the plastic foil by the pre-stretchers. The respective plastic foil contacting part may be releaseably connected to the remainder of the pre-stretcher.The first and second pre-stretcher may each include a respective plastic foil contacting part that is made of a different material than a remainder of the pre-stretcher. The plastic foil contacting part may for instance be made of a material with a relatively low thermal conductivity to prevent or limit the cooling or the plastic foil by the pre-stretchers. The respective plastic foil contacting part may be releasably connected to the remainder or the pre-stretcher.

Similarly, the calibration element may comprise a plastic foil contacting part that is thermally isolated from a remainder of the calibration element. As stated before, the heating element may be configured to heat the plastic foil contacting part relative to said remainder of the calibration element. Moreover, the heating element may be controlled by the aforementioned control system.Similarly, the calibration element may include a plastic foil contacting part that is thermally isolated from a remainder of the calibration element. As stated before, the heating element may be configured to heat the plastic foil contacting part relative to said remainder of the calibration element. Moreover, the heating element may be controlled by the aforementioned control system.

The thermoforming device may comprise a mechanical stop that limits an outward stroke of at least one of the first pre-stretcher, the second pre-stretcher, and the calibration element. The mechanical stop can be formed by or can be coupled to the second mold body. The mechanical stop may define a stop position for the at least one of the first pre-stretcher, the second prestretcher, and the calibration element, wherein the stop position is adjustable by increasing or decreasing the effective thickness of the mechanical stop.The thermoforming device may include a mechanical stop that limits an outward stroke or at least one of the first pre-stretcher, the second pre-stretcher, and the calibration element. The mechanical stop can be formed by or can be coupled to the second mold body. The mechanical stop may define a stop position for the least one of the first pre-stretcher, the second prestretcher, and the calibration element, the stop position is adjustable by increasing or decreasing the effective thickness of the mechanical stop.

Generally, the first mold may comprise a plurality of forming cavities. In this case, the second mold may comprise, for each forming cavity, a respective first pre-stretcher, a respective second pre-stretcher, and a respective calibration element. The control system may be configured to control the first pre-stretchers, the second pre-stretchers, and the calibration element as a respective single unit. This can be achieved by simultaneously controlling the actuators of such unit such that, for example, every first pre-stretcher performs the same motion.Generally, the first mold may include a variety or forming cavities. In this case, the second mold may include, for each forming cavity, a respective first pre-stretcher, a respective second pre-stretcher, and a respective calibration element. The control system may be configured to control the first pre-stretchers, the second pre-stretchers, and the calibration element as a respective single unit. This can be achieved by simultaneously controlling the actuators or such unit such that, for example, every first pre-stretcher performs the same motion.

In other embodiments, a single first, second, or third actuator may be used to actuate several first pre-stretchers, second pre-stretchers, or calibration elements, respectively.In other variants, a single first, second, or third actuator may be used to actuate several first pre-stretchers, second pre-stretchers, or calibration elements, respectively.

According to a second aspect, the present invention provides a mold assembly for thermoforming a product comprising the first and second mold as defined above.According to a second aspect, the present invention provides a mold assembly for thermoforming a product including the first and second mold as defined above.

According to a third aspect, the present invention provides a mold for thermoforming a product comprising the second mold as defined above.According to a third aspect, the present invention provides a mold for thermoforming a product including the second mold as defined above.

According to a fourth aspect, the present invention provides a method for thermoforming a product using the thermoforming device as described above, comprising the steps of:According to a fourth aspect, the present invention provides a method for thermoforming a product using the thermoforming device as described above, including the steps of:

clamping a heated plastic foil in between the first and second mold;clamping a heated plastic foil in between the first and second mold;

individually stretching the plastic foil in a direction towards a wall and/or bottom of a forming cavity in the first mold using the first and second pre-stretcher;individually stretching the plastic foil in a direction towards a wall and / or bottom of a forming cavity in the first mold using the first and second pre-stretcher;

generating an overpressure on a side of the clamped plastic foil directed away from the forming cavity to urge the plastic foil to move towards the wall and/or bottom of the forming cavity; and locally clamping the heated plastic foil between the calibration element and a wall and/or bottom of the forming cavity after having started the application of the overpressure.generating an overpressure on a side of the clamped plastic foil directed away from the forming cavity to urge the plastic foil to move towards the wall and / or bottom of the forming cavity; and locally clamping the heated plastic foil between the calibration element and a wall and / or bottom of the forming cavity after having started the application of the overpressure.

The method preferably further comprises the step of allowing the shaped plastic foil to cool down while keeping it locally clamped using the calibration element.The method preferably further comprises the step of allowing the shaped plastic foil to cool down while keeping it locally clamped using the calibration element.

Next, the present invention will be described in more detail referring to the appended drawings, wherein:Next, the present invention will be described in more detail referring to the appended drawings,

Figure 1 schematically illustrates an embodiment of the present invention;Figure 1 schematically illustrates an embodiment of the present invention;

Figure 2 illustrates a cross section of a mold assembly according to the present invention;Figure 2 illustrates a cross section of a mold assembly according to the present invention;

andand

Figures 3A and 3B present different detailed views of the assembly of figure 2.Figures 3A and 3B present different detailed views of the assembly of figure 2.

Figure 1 illustrates an embodiment of the present invention. This embodiment comprises a control system 1 that is configured to control a first actuator 2, a second actuator 3, a third actuator 4, and a mold actuator 5, which actuators are configured to actuate the first pre-stretcher, the second pre-stretcher, the calibration element, and the first and/or second mold, respectively.Figure 1 illustrates an embodiment of the present invention. This embodiment comprises a control system 1 that is configured to control a first actuator 2, a second actuator 3, a third actuator 4, and a mold actuator 5, which actuators are configured to actuate the first pre-stretcher, the second pre-stretcher , the calibration element, and the first and / or second mold, respectively.

Control system 1 can further be configured to control heating element 5 in dependence of a temperature sensed by temperature sensor 6.Control system 1 can be further configured to control heating element 5 in dependence or a temperature sensed by temperature sensor 6.

In one mode of operation, control system 1 may control mold actuator 5 to cause the first mold and the second mold to move relative to each other for the purpose of clamping a heated plastic foil there between. Next, control system 1 may control second actuator 3 to cause the second pre-stretcher to move downward towards to the forming cavity, thereby performing a primary stretching of the plastic foil. Depending on the configuration of the calibration element and the first pre-stretcher, the calibration element and the first pre-stretcher may remain stationary with respect to the second pre-stretcher during the motion of the latter.In one mode of operation, control system 1 may control mold actuator 5 to cause the first mold and the second mold to move relative to each other for the purpose of clamping a heated plastic foil there between. Next, control system 1 may control second actuator 3 to cause the second pre-stretcher to move downward towards the forming cavity, performing performing a primary stretching or the plastic foil. Depending on the configuration of the calibration element and the first pre-stretcher, the calibration element and the first pre-stretcher may remain stationary with respect to the second pre-stretcher during the motion of the latter.

As a next step, control system 1 may control first actuator 2 to cause the first pre-stretcher to move downward towards to the forming cavity, thereby performing a secondary stretching of the plastic foil. Here, the secondary stretching may be performed simultaneous with or after the primary stretching.As a next step, control system 1 may control first actuator 2 to cause the first pre-stretcher to move downward towards the forming cavity, performing a secondary stretching or the plastic foil. Here, the secondary stretching may be performed simultaneously with or after the primary stretching.

Once the primary and secondary stretching are completed, or substantially completed, control system 1 may control third actuator 4 to cause the calibration element to move downward towards to the forming cavity for the purpose of locally clamping the pre-stretched plastic foil against a wall and/or bottom of the forming cavity. During and/or before this clamping, the temperature of the calibration element may be controlled using heating element 5 that is controlled by control system 1 preferably in dependence of a temperature sensed by temperature sensor 6.Once the primary and secondary stretching are completed, or substantially completed, control system 1 may control third actuator 4 to cause the calibration element to move downward towards the forming cavity for the purpose of locally clamping the pre-stretched plastic foil against a wall and / or bottom of the forming cavity. During and / or before this clamping, the temperature of the calibration element may be controlled using heating element 5 that is controlled by control system 1 preferably in dependence of a temperature sensed by temperature sensor 6.

It is noted that the present invention is not limited to the order of the steps mentioned above.It is noted that the present invention is not limited to the order of the steps mentioned above.

Figure 2 illustrates a cross section of an embodiment of a mold assembly according to the invention. Figures 3A and 3B present detailed views of this assembly.Figure 2 illustrates a cross section of an embodiment or a mold assembly according to the invention. Figures 3A and 3B present detailed views of this assembly.

Now referring to figure 2, second pre-stretcher 10 is coupled to a mechanical drive. This drive comprises an at least partially hollow pen 11 that is capable of moving up and down relative to second mold body 12. Second pre-stretcher 10 comprises a first part 13 and a foil engaging part 14, wherein foil engaging part 14 can be fixedly or releasably connected to first part 13.Now referring to figure 2, second pre-stretcher 10 is coupled to a mechanical drive. This drive comprises at least partially hollow pen 11 that is capable of moving up and down relative to second mold body 12. Second pre-stretcher 10 comprises a first part 13 and a foil engaging part 14, foil engaging part 14 can be fixedly or releasably connected to first part 13.

Second mold body 12 defines a mechanical stop 15 that defines a maximum position of second pre-stretcher 10, although the mechanical drive may be configured such that second prestretcher 10 stops its downward movement before it engages mechanical stop 15.Second mold body 12 defines a mechanical stop 15 that defines a maximum position or second pre-stretcher 10, although the mechanical drive may be configured such that second prestretcher 10 stops its downward movement before it engages mechanical stop 15.

First part 13 of second pre-stretcher 10 comprises a bore in which on the top side thereof a guiding element 16, in the form of a piston, is arranged, which guiding element 16 is provided with a sealing ring 17. Guiding element 16 is provided with a through hole in which a rod 18 corresponding to first pre-stretcher 19 is moveably arranged.First part 13 or second pre-stretcher 10 comprises a bore in which on the top side a guiding element 16, in the form of a piston, is arranged, which guiding element 16 is provided with a sealing ring 17. Guiding element 16 is provided with a through hole in which a rod 18 corresponding to first pre-stretcher 19 is moveably arranged.

Calibration element 20 is moveably arranged inside the bore of second pre-stretcher 10. Calibration element 20 comprises a foil engaging part 21 which is thermally isolated, using a thermal isolator 22, from a second part 23. Here, parts 21 and 23 are fixedly connected to each other via isolator 22. At a top side, second part 23 is provided with a sealing ring 24. Moreover, second part 23 is fixedly arranged with respect to guiding element 16.Calibration element 20 is moveably arranged inside the bore or second pre-stretcher 10. Calibration element 20 comprises a foil engaging part 21 which is thermally insulated, using a thermal insulator 22, from a second part 23. Here, parts 21 and 23 are fixedly connected to each other via isolator 22. At a top side, second part 23 is provided with a sealing ring 24. Moreover, second part 23 is fixedly arranged with respect to guiding element 16.

Second part 23 is able to move up and down in the space defined by an inside wall of first part 13. A mechanical stop 25 is fixedly arranged with respect to first part 13 to limit the upward motion of second part 23 and a further mechanical stop 26 is formed by first part 13.Second part 23 is able to move up and down in the space defined by an inside wall or first part 13. A mechanical stop 25 is fixedly arranged with respect to first part 13 to limit the upward motion or second part 23 and a further mechanical stop 26 is formed by first part 13.

First pre-stretcher 19 comprises a foil engaging part 29, rod 18, and a cylinder 30 that is moveably arranged inside a chamber 31 inside a part 32 that is fixedly coupled to first part 13.First pre-stretcher 19 comprises a foil engaging part 29, rod 18, and a cylinder 30 that is movably arranged inside a chamber 31 inside a part 32 that is fixedly coupled to first part 13.

Cylinder 30 comprises a sealing ring 34. Part 32 is fixedly connected to a mechanical stop 35 that provided a first limit to the upward motion of first pre-stretcher 19. Similarly, a mechanical stop 36 is formed by part 32. Moreover, cylinder 30 is connected to a rod 37 that is provided with a T-like element 38 at its top. Here, rod 37 is guided through an opening in mechanical stop 39, which stop 39 is attached stationary relative to second mold body 12. Hence, the downward motion of prestretcher 19 is limited due to cylinder 30 engaging stop 36 or due to T-like element 38 engaging stop 39.Cylinder 30 comprises a sealing ring 34. Part 32 is fixedly connected to a mechanical stop 35 that is a first limit to the upward motion of first pre-stretcher 19. Similarly, a mechanical stop 36 is formed by part 32. Moreover, cylinder 30 is connected to a rod 37 that is provided with a T-like element 38 at its top. Here, rod 37 is guided through an opening in mechanical stop 39, which stop 39 is attached stationary relative to second mold body 12. Hence, the downward motion of prestretcher 19 is limited due to cylinder 30 engaging stop 36 or due to T-like element 38 engaging stop 39.

At a bottom side, second mold body 12 is provided with a cutting plate 40 that is configured to cooperate with a cutting nipple 41 that is arranged in a top plate 42 of first mold body 43.At a bottom side, second mold body 12 is provided with a cutting plate 40 that is configured to cooperate with a cutting nipple 41 that is arranged in a top plate 42 or first mold body 43.

Inside cutting nipple 41, a forming cavity is formed using a forming jacket 44 and a forming bottom 45.Inside cutting nipple 41, a forming cavity is formed using a forming jacket 44 and a forming bottom 45.

The space defined by the inside wall of first part 13 is divided in two chambers 27, 28. To move second part 23 downward, pressurized air can be applied in between guiding element 16 and part 32. At the same time, pressurized air can be applied in between second part 23 and mechanical stop 25. To enable a downward motion of second part 23, chambers 27, 28 are vented through conduits (not shown)The space defined by the inside wall of first part 13 is divided into two chambers 27, 28. To move second part 23 downward, pressurized air can be applied in between guiding element 16 and part 32. At the same time, pressurized air can be applied in between second part 23 and mechanical stop 25. To enable a downward motion of second part 23, chambers 27, 28 are vented through conduits (not shown)

To move second part 23 upward, pressurized air is applied to chamber 27 in between mechanical stop 25 and guiding element 16. At the same time, the space in between guiding element 16 and part 32 is vented, preferably using the conduits (not shown) through which the pressurized gas was transported for the downward motion. The same holds for the space in between second part 23 and mechanical stop 25, and chamber 28.To move second part 23 upward, pressurized air is applied to chamber 27 in between mechanical stop 25 and guiding element 16. At the same time, the space in between guiding element 16 and part 32 is vented, preferably using the conduits (not shown) through which the pressurized gas was transported for the downward motion. The same holds for the space in between second part 23 and mechanical stop 25, and chamber 28.

Figure 2 illustrates a situation wherein first pre-stretcher 19 is at its most downward position relative to second pre-stretcher 10 and wherein calibration element 20 is at its most upward position relative to second pre-stretcher 10.Figure 2 illustrates a situation where first pre-stretcher 19 is at its most downward relative to second pre-stretcher 10 and calibration element 20 is at its most upward position relative to second pre-stretcher 10.

Although the present invention is not limited to a particular order of controlling prestretchers 10, 19 and calibration element 20, an exemplary mode of operation will be described next.Although the present invention is not limited to a particular order or controlling prestretchers 10, 19 and calibration element 20, an exemplary mode or operation will be described next.

As a starting position, first pre-stretcher 19 will be in its most upward position, in which cylinder 30 lies against stop 35. Moreover, calibration element 19 will also be in its most upward position, in which the top of part 23 lies against stop 25. Moreover, second pre-stretcher 10 will be in its most upward position.As a starting position, first pre-stretcher 19 will be in its most upward position, in which cylinder 30 lies against stop 35. Moreover, calibration element 19 will also be in its most upward position, in which the top of part 23 lies against stop 25. Moreover, second pre-stretcher 10 will be in its most upward position.

As a first step, first and second molds will be brought together for clamping a plastic foil in between them. More in particular, a plastic foil will be clamped in between a down-holding element 46, which is received in a bore of cutting plate 40, and cutting nipple 41.As a first step, first and second molds will be brought together for clamping a plastic foil in between them. More in particular, a plastic foil will be clamped in between a down-holding element 46, which is received in a bore or cutting plate 40, and cutting nipple 41.

As a second step, the mechanical drive will be actuated for moving pen 11 downward. This will cause foil engaging part 14 of second pre-stretcher 10 to engage the clamped plastic foil, thereby pre-stretching the latter. During this primary pre-stretching, first pre-stretcher 19 and calibration element 20 do not move relative to second pre-stretcher 10.As a second step, the mechanical drive will be actuated for moving pen 11 downward. This will cause foil engaging part 14 or second pre-stretcher 10 to engage the clamped plastic foil, pre-stretching the latter. During this primary pre-stretching, first pre-stretcher 19 and calibration element 20 do not move relative to second pre-stretcher 10.

As a next step, pressurized air will be supplied to chamber 31 via channels (not shown) to press cylinder 30 downward, thereby causing a secondary pre-stretching to occur as foil engaging part 29 engages the clamped plastic foil. During this motion, calibration element 20 does not move relative to second pre-stretcher 10.As a next step, pressurized air will be delivered to chamber 31 via channels (not shown) to press cylinder 30 downward, causing a secondary pre-stretching to occur as foil engaging part 29 engages the clamped plastic foil. During this motion, calibration element 20 does not move relative to second pre-stretcher 10.

Next, pressurized forming air will be supplied from inside the second mold to engage the plastic foil from an upper side thereof. This will cause the plastic foil to be pressed against the inside walls of forming jacket 44 and forming bottom 45.Next, pressurized forming air will be supplied from inside the second mold to engage the plastic foil from an upper side thereof. This will cause the plastic foil to be pressed against the inside walls of forming jacket 44 and forming bottom 45.

As a next step, pressurized air will be supplied to cause a downward motion of second part 23 as described above, thereby causing a local clamping of the pre-stretched plastic foil in between foil engaging part 21 and forming bottom 45.As a next step, pressurized air will be supplied to cause a downward motion of second part 23 as described above, causing a local clamping of the pre-stretched plastic foil in between foil engaging part 21 and forming bottom 45.

The shaped product will now be allowed to cool down, preferably while keeping it clamped using calibration element 20.The shaped product will now be allowed to cool down, preferably while keeping it clamped using calibration element 20.

As a next step, the forming air will be vented and pressurized air will be supplied to chamber 27 to move calibration element 20 back to its initial position relative to second prestretcher 10. Additionally, pressurized air will be supplied to chamber 36 on another side of cylinder 30 to move first pre-stretcher 19 upward to its initial position relative to second prestretcher 10. In addition, second pre-stretcher 10 will be moved upward by driving pen 11.As a next step, the forming air will be vented and pressurized air will be supplied to chamber 27 to move calibration element 20 back to its initial position relative to second prestretcher 10. Additional, pressurized air will be supplied to chamber 36 on another side of cylinder 30 to move first pre-stretcher 19 upward to its initial position relative to second prestretcher 10. In addition, second pre-stretcher 10 will be moved upward by driving pen 11.

In this embodiment, calibration element 20 is moved using a double-acting configuration, wherein pressurized air is supplied to move calibration element 20 up and down. Alternatively, a single-acting configuration can be used wherein calibration element 20 is pre-biased to move in a given direction, and wherein pressurized air can be used to cause calibration element 20 to move in the other direction.In this embodiment, calibration element 20 is moved using a double-acting configuration, while pressurized air is supplied to move calibration element 20 up and down. Alternatively, a single-acting configuration can be used in the other direction, used calibration element 20 is pre-biased to move in a given direction, and pressurized air can be used to cause calibration element 20 in the other direction.

The first and second molds may make a slight movement towards each other such that cutting plate 46 and cutting nipple 41 may pass each other thereby cutting through the plastic foil in between them. In this manner, the formed product can be separated from the remainder of the plastic foil.The first and second molds may make a slight movement towards each other such that cutting plate 46 and cutting nipple 41 may pass each other cutting through the plastic foil in between them. In this manner, the formed product can be separated from the remainder of the plastic foil.

Next, the second and first molds may move away from each other. As a last step, the forming bottom 45 can be moved upward for pushing out the formed product.Next, the second and first molds may move away from each other. As a last step, the forming bottom 45 can be moved upward for pushing out the formed product.

It should be noted that a mold assembly may comprise a plurality of forming cavities as illustrated in figure 2. For each cavity, a first pre-stretcher 19, a calibration element 20, and a second pre-stretcher 10 can be arranged.It should be noted that a mold assembly may include a variety of forming cavities as illustrated in Figure 2. For each cavity, a first pre-stretcher 19, a calibration element 20, and a second pre-stretcher 10 can be arranged.

Although the present invention has been described using a detailed embodiment thereof, the skilled person readily understands that the present invention is not limited thereto but that various modifications can be made without departing from the scope of the invention which is defined by the appended claims.Although the present invention has been described using a detailed explanation, the skilled person easily understands that the present invention is not limited thereto but that various modifications can be made without departing from the scope of the invention which is defined by the appended claims.

For example, the order of movement of the first and second pre-stretchers, and of the calibration element, can be varied as well as the moment in time when the forming air is applied. The forming air may for instance be applied only after the calibration element has started to clamp the plastic foil. By using the mold assembly of the present invention a great variety of thermoforming processes can therefore be realized.For example, the order of movement of the first and second pre-stretchers, and of the calibration element, can be varied as well as the moment in time when the forming air is applied. The forming air may for instance be applied only after the calibration element has started to clamp the plastic foil. By using the mold assembly or the present invention a great variety of thermoforming processes can therefore be realized.

Claims (25)

CONCLUSIESCONCLUSIONS 1. Thermovorminrichting, omvattende:A thermoforming device comprising: een eerste matrijs omvattende een eerste matrijslichaam en een vormholte gerangschikt in het genoemde eerste matrijslichaam;a first mold comprising a first mold body and a mold cavity arranged in said first mold body; een tweede matrijs omvattende een tweede matrijslichaam, een eerste voorstrekker, en een kalibratie-element, waarbij de eerste voorstrekker en het kalibratie-element ten minste ten dele en beweegbaar gerangschikt zijn in het tweede matrijslichaam;a second mold comprising a second mold body, a first pre-stretcher, and a calibration element, the first pre-stretcher and the calibration element being arranged at least partially and movably in the second mold body; waarbij de eerste en tweede matrijs ten opzichte van elkaar bewogen kunnen worden voor het daartussen klemmen van een kunststof folie;wherein the first and second molds can be moved relative to each other for clamping a plastic film between them; waarbij het kalibratie-element ingericht is om de kunststof folie lokaal te klemmen tussen het kalibratie-element en een wand en/of bodem van de vormholte;wherein the calibration element is adapted to locally clamp the plastic film between the calibration element and a wall and / or bottom of the mold cavity; waarbij de thermovorminrichting verder een tweede voorstrekker omvat welke ten minste ten dele en beweegbaar gerangschikt is in hel tweede matrijslichaam, en waarbij een beweging ten opzichte van het tweede matrijslichaam en richting dezelfde vormholte van ten minste één van de eerste voorstrekker, de tweede voorstrekker, en het kalibratie-element individueel kan worden aangestuurd, en waarbij de tweede voorstrekker de eerste voorstrekker en het kalibratie-element ten minste ten dele omgeeft;wherein the thermoforming device further comprises a second pre-stretcher which is arranged at least partially and movably in the second mold body, and wherein a movement relative to the second mold body and direction the same mold cavity of at least one of the first pre-stretcher, the second pre-stretcher, and the calibration element can be driven individually, and wherein the second precursor surrounds the first precursor and the calibration element at least in part; de thermovorminrichting verder omvattende een verwarmingselement ingericht voor het verwarmen van het kalibratie-element ten opzichte van het tweede matrijslichaam, waarbij het kalibratie-element een kunststof folie-contactdeel omvat dat thermisch geïsoleerd is van een rest van het kalibratie-element;the thermoforming device further comprising a heating element adapted to heat the calibration element with respect to the second mold body, the calibration element comprising a plastic foil contact part thermally insulated from a remainder of the calibration element; waarbij het verwarmingselement ingericht is voor hel verwarmen van het kunststof foliecontactdeel ten opzichte van de genoemde rest van hel kalibratie-element.wherein the heating element is adapted to heat the plastic foil contact part with respect to the said rest of the calibration element. 2. Thermovorminrichting volgens conclusie 1, waarbij ten minste twee van de eerste voorstrekker, de tweede voorstrekker, en het kalibratie-element individueel kunnen worden aangestuurd.A thermoforming device according to claim 1, wherein at least two of the first pre-stretcher, the second pre-stretcher, and the calibration element can be controlled individually. 3. Thermovorminrichting volgens conclusie 1 of 2, waarbij elk van de eerste voorstrekker, de tweede voorstrekker, en het kalibratie-element individueel kan worden aangestuurd.A thermoforming device according to claim 1 or 2, wherein each of the first pre-stretcher, the second pre-stretcher, and the calibration element can be controlled individually. 4. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij het kalibratie-element gerangschikt is ten minste ten dele rond de eerste voorstrekker.A thermoforming device according to any one of the preceding claims, wherein the calibration element is arranged at least partially around the first pre-stretcher. 5. Thermovorminrichting volgens conclusie 4, waarbij de tweede voorstrekker en hel kalibratie-element hoofdzakelijk holle structuren zijn, waarbij het kalibratieelement ten minste ten dele gerangschikt is in de tweede voorstrekker, en waarbij de eerste voorstrekker ten minste ten dele gerangschikt is in het kalibratie-element.A thermoforming device according to claim 4, wherein the second pre-trigger and the calibration element are substantially hollow structures, the calibration element being arranged at least partially in the second pre-stretcher, and wherein the first pre-stretcher is arranged at least partly in the calibration stretch element. 6. Thermovorminrichting volgens conclusie 5, waarbij de eerste voorstrekker ingericht is om te bewegen ten opzichte van de tweede voorstrekker of ten opzichte van het kalibratie-element, en waarbij het kalibratie-element ingericht is om te bewegen ten opzichte van de tweede voorstrekker.A thermoforming device according to claim 5, wherein the first pre-stretcher is adapted to move relative to the second pre-stretcher or relative to the calibration element, and wherein the calibration element is adapted to move relative to the second pre-stretcher. 7. Thermovorminrichting volgens conclusie 4, waarbij de tweede voorstrekker en de eerste voorstrekker hoofdzakelijk holle structuren zijn, waarbij de eerste voorstrekker ten minste ten dele gerangschikt is in de tweede voorstrekker, en waarbij het kalibratie-element ten minste ten dele gerangschikt is in de eerste voorstrekker.A thermoforming device according to claim 4, wherein the second pre-stretcher and the first pre-stretcher are substantially hollow structures, the first pre-stretcher being arranged at least partially in the second pre-stretcher, and wherein the calibration element is at least partly arranged in the first forerunner. 8. Thermovorminrichting volgens conclusie 5, waarbij het kalibratie-element ingericht is om te bewegen ten opzichte van de tweede voorstrekker of ten opzichte van de eerste voorstrekker, en waarbij de eerste voorstrekker ingericht is om te bewegen ten opzichte van de tweede voorstrekker.A thermoforming device according to claim 5, wherein the calibration element is adapted to move relative to the second pre-stretcher or relative to the first pre-stretcher, and wherein the first pre-stretcher is adapted to move relative to the second pre-stretcher. 9. Thermovorminrichting volgens een van de conclusies 5-8, waarbij de eerste voorstrekker, de tweede voorstrekker en het kalibratie-element coaxiaal gerangschikt zijn.A thermoforming device according to any one of claims 5-8, wherein the first pre-stretcher, the second pre-stretcher and the calibration element are arranged coaxially. 10. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij ten minste één van de eerste voorstrekker, de tweede voorstrekker en het kalibratie-element gevormd is als een huls, een mof, of een bus, bij voorkeur met een vierkante, rechthoekige, of een cirkelvormige doorsnede.A thermoforming device according to any one of the preceding claims, wherein at least one of the first pre-stretcher, the second pre-stretcher and the calibration element is formed as a sleeve, a sleeve, or a sleeve, preferably with a square, rectangular, or a circular cross section. 11. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij ten minste één van een slaglengte, een slagduur, een slagsnelheid en een slagstarttijd voor de eerste voorstrekker, de tweede voorstrekker en/of het kalibratie-element individueel aangestuurd kan worden.A thermoforming device according to any one of the preceding claims, wherein at least one of a stroke length, a stroke duration, a stroke speed and a stroke start time for the first pre-stretcher, the second pre-stretcher and / or the calibration element can be controlled individually. 12. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij ten minste één van een starttijd van het klemmen van de kunststof folie tussen het kalibratie13 element en de genoemde wand en/of bodem van de vormholte, een klemduur, en een klemsterkte, individueel aangestuurd kan worden.A thermoforming device according to any one of the preceding claims, wherein at least one of a start time of clamping the plastic film between the calibration 13 element and said wall and / or bottom of the mold cavity, a clamping duration, and a clamping strength can be individually controlled turn into. 13. Thermovorminrichting volgens een van de voorgaande conclusies, verder omvattende een vormlucht eenheid voor het genereren van een overdruk aan een eerste zijde van de kunststof folie welke geklemd wordt tussen de eerste en tweede matrijzen, om de kunststof folie aan te sporen te bewegen richting de wand en/of bodem van de vormholte, waarbij de genoemde eerste zijde van de vormholte af gericht is.A thermoforming device according to any one of the preceding claims, further comprising a forming air unit for generating an overpressure on a first side of the plastic film which is clamped between the first and second molds, to urge the plastic film to move towards the wall and / or bottom of the mold cavity, said first side facing away from the mold cavity. 14. Thermovorminrichting volgens conclusie 13, waarbij de tweede matrijs één of meer tweede kanalen omvat, en waarbij de vormlucht eenheid ingericht is om de genoemde overdruk te genereren door het toepassen van gasachtig medium onder druk via de één of meer tweede kanalen aan de genoemde eerste zijde van de geklemde kunststof folie.A thermoforming device according to claim 13, wherein the second mold comprises one or more second channels, and wherein the forming air unit is adapted to generate said excess pressure by applying gaseous medium under pressure via the one or more second channels to said first side of the clamped plastic film. 15. Thermovorminrichting volgens conclusie 13 of 14, waarbij de eerste matrijs een of meer eerste kanalen omvat, en waarbij de vormende luchteenheid ingericht is om de genoemde overdruk te genereren door het evacueren van een ruimte in de vormholte tussen de geklemde kunststof folie en de wand en/of bodem van de vormholte via de een of meer eerste kanalen.A thermoforming device according to claim 13 or 14, wherein the first mold comprises one or more first channels, and wherein the forming air unit is adapted to generate said excess pressure by evacuating a space in the mold cavity between the clamped plastic film and the wall and / or bottom of the mold cavity via the one or more first channels. 16. Thermovorminrichting volgens een van de conclusies 13-15, waarbij de thermovorminrichting ingericht is, teneinde een product te vormen uit de door de eerste en tweede matrijzen geklemde kunststof folie, de genoemde overdruk enkel te genereren na het ten minste ten dele voltooien van hel strekken van de kunststof folie met gebruik van de eerste en tweede voorstrekkers.A thermoforming device according to any of claims 13-15, wherein the thermoforming device is adapted to form a product from the plastic film clamped by the first and second molds, to generate said excess pressure only after at least partially completing the whole stretching the plastic film using the first and second stretchers. 17. Thermovorminrichting volgens een van de conclusies 13-16, waarbij de thermovorminrichting ingericht is, teneinde een product te vormen uil de geklemde kunststof folie, om het klemmen van de kunststof folie door het kalibratie-element enkel te veroorzaken nadat het toepassen van de overdruk door de vormlucht eenheid gestart is.A thermoforming device according to any of claims 13-16, wherein the thermoforming device is adapted to form a product from the clamped plastic film, to cause the plastic film to be clamped by the calibration element only after applying the excess pressure started by the forming air unit. 18. Thermovorminrichting volgens een van de voorgaande conclusies, omvattende:A thermoforming device according to any one of the preceding claims, comprising: een eerste actuator voor het bewegen van de eerste voorstrekker ten opzichte van het tweede matrijslichaam, een tweede actuator voor het bewegen van de tweede voorstrekker ten opzichte van het tweede matrijslichaam, en/of een derde actuator voor het bewegen van het kalibratie-element ten opzichte van het tweede matrijslichaam, waarbij de thermovorminrichting verder een aansturingssysteem omvat voor het aansturen van de eerste, tweede en/of derde actuator.a first actuator for moving the first pre-stretcher relative to the second mold body, a second actuator for moving the second pre-stretcher relative to the second mold body, and / or a third actuator for moving the calibration element relative to the second mold body of the second mold body, wherein the thermoforming device further comprises a control system for controlling the first, second and / or third actuator. 19, Thermovorminrichting volgens conclusie 18, waarbij de eerste actuator, de tweede actuator en/of de derde actuator een respectievelijke pneumatische of hydraulische cilinder omvat voor hel bewegen van respectievelijke de eerste voorstrekker, de tweede voorstrekker en het kalibratie-element.A thermoforming device according to claim 18, wherein the first actuator, the second actuator and / or the third actuator comprises a respective pneumatic or hydraulic cylinder for moving the first pre-stretcher, the second pre-stretcher and the calibration element, respectively. 20. Thermovorminrichting volgens conclusie 18, waarbij ten minste één van de eerste actuator, de tweede actuator en de derde actuator een elektrische motor omvat voor het bewegen van respectievelijk de eerste voorstrekker. de tweede voorstrekker en het kalibratieelement.A thermoforming device according to claim 18, wherein at least one of the first actuator, the second actuator and the third actuator comprises an electric motor for moving the first pre-stretcher, respectively. the second precursor and the calibration element. 21. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij de eerste en tweede voorstrekker elk een respectievelijk kunststof folie-contactdeel omvatten welke gemaakt is van een ander materiaal dan een rest van de voorstrekker.A thermoforming device according to any one of the preceding claims, wherein the first and second pre-stretcher each comprise a respective plastic foil contact part which is made of a material other than a rest of the pre-stretcher. 22. Thermovorminrichting volgens conclusie 21, waarbij het respectievelijke kunststof folie-contactdeel losmaakbaar verbonden is met de rest van de voorstrekker.A thermoforming device according to claim 21, wherein the respective plastic film contact part is releasably connected to the rest of the pre-stretcher. 23. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij een slag naar buiten van ten minste één van de eerste voorstrekker, de tweede voorstrekker en het kalibratie-element beperkt is door een mechanische stop welke gevormd is door of gekoppeld is aan het tweede matrijs lichaam.A thermoforming device according to any one of the preceding claims, wherein an outward stroke of at least one of the first pre-stretcher, the second pre-stretcher and the calibration element is limited by a mechanical stop formed by or coupled to the second mold body . 24. Thermovorminrichting volgens conclusie 23, waarbij de mechanische slop een sloppositie definieert voor de ten minste één van de eerste voorstrekker, de tweede voorstrekker en het kalibratie-element, waarbij de stoppositie aanpasbaar is door het vergroten of verkleinen van de effectieve dikte van de mechanische stop.The thermoforming device of claim 23, wherein the mechanical slop defines a slit position for the at least one of the first preload, the second preload, and the calibration element, the stop position being adjustable by increasing or decreasing the effective thickness of the mechanical Stop. 25. Thermovorminrichting volgens een van de voorgaande conclusies, waarbij de eerste matrijs een veelvoud aan vormholtes omvat, en waarbij de tweede matrijs voor elke vormholte een respectievelijke eerste voorstrekker, een respectievelijke tweede voorstrekker, en een respectievelijk kalibratie-element omvat.A thermoforming device according to any one of the preceding claims, wherein the first mold comprises a plurality of mold cavities, and wherein the second mold comprises for each mold cavity a respective first pre-stretcher, a respective second pre-stretcher, and a respective calibration element.
NL2017101A 2016-07-05 2016-07-05 Thermoforming device, mold assembly, mold, and method NL2017101B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NL2017101A NL2017101B1 (en) 2016-07-05 2016-07-05 Thermoforming device, mold assembly, mold, and method
EP16002415.4A EP3266588B1 (en) 2016-07-05 2016-11-14 Thermoforming machine, mold assembly, mold, and method
PL16002415T PL3266588T3 (en) 2016-07-05 2016-11-14 Thermoforming machine, mold assembly, mold, and method
US15/594,097 US9840036B1 (en) 2016-07-05 2017-05-12 Thermoforming machine, mold assembly, mold, and method of thermoforming
US15/594,172 US9931782B2 (en) 2016-07-05 2017-05-12 Thermoforming device, mold assembly, mold, and method
EP17745980.7A EP3481618B1 (en) 2016-07-05 2017-07-05 Thermoforming machine and method
PCT/EP2017/000789 WO2018007005A1 (en) 2016-07-05 2017-07-05 Thermoforming machine and method
US16/315,252 US20190160725A1 (en) 2016-07-05 2017-07-05 Thermoforming machine and method
DE112017000056.4T DE112017000056T5 (en) 2016-07-05 2017-07-05 HEAT REGULATOR, CONSTRUCTION, FORM, METHOD AND HEATING MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2017101A NL2017101B1 (en) 2016-07-05 2016-07-05 Thermoforming device, mold assembly, mold, and method

Publications (1)

Publication Number Publication Date
NL2017101B1 true NL2017101B1 (en) 2018-01-11

Family

ID=57530744

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2017101A NL2017101B1 (en) 2016-07-05 2016-07-05 Thermoforming device, mold assembly, mold, and method

Country Status (1)

Country Link
NL (1) NL2017101B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1967245A (en) * 1931-02-20 1934-07-24 American Can Co Art of drawing
US5879612A (en) * 1995-12-12 1999-03-09 Alusuisse Technology & Management Ltd. Process for manufacturing shaped forms of packaging
US20070063385A1 (en) * 2005-09-22 2007-03-22 Carsley John E Apparatus and method for sheet material forming
WO2007143514A2 (en) * 2006-06-01 2007-12-13 Advanced Plastics Technologies Luxembourg S.A. Plastic multi-piece containers and methods and systems of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1967245A (en) * 1931-02-20 1934-07-24 American Can Co Art of drawing
US5879612A (en) * 1995-12-12 1999-03-09 Alusuisse Technology & Management Ltd. Process for manufacturing shaped forms of packaging
US20070063385A1 (en) * 2005-09-22 2007-03-22 Carsley John E Apparatus and method for sheet material forming
WO2007143514A2 (en) * 2006-06-01 2007-12-13 Advanced Plastics Technologies Luxembourg S.A. Plastic multi-piece containers and methods and systems of making same

Similar Documents

Publication Publication Date Title
AU698516B2 (en) Composite molding device applied for stretch blow molding
KR102427842B1 (en) A sintering press and sintering method for sintering electronic components on a substrate
US4243620A (en) Method of manufacturing an object in plastics material and object obtained thereby
KR102326753B1 (en) Molding system and molding method
NL2017101B1 (en) Thermoforming device, mold assembly, mold, and method
US9931782B2 (en) Thermoforming device, mold assembly, mold, and method
US4308086A (en) Apparatus for the preparation of hollow plastic articles with a base cup
US4207134A (en) Apparatus for the preparation of hollow plastic articles
AU2015233334B2 (en) Machine for blow-moulding articles such as containers
US4234302A (en) Apparatus for the preparation of hollow plastic articles
JP3767465B2 (en) Method for producing thin-walled molded product and molding die apparatus used therefor
JP6034489B2 (en) Extrusion die preheating apparatus and method
US4230298A (en) Apparatus for the preparation of hollow plastic articles
ES2420586T3 (en) Press for hot pressing billets and the like
US4225304A (en) Apparatus for the preparation of hollow plastic articles
US20210146594A1 (en) Method and device for producing containers from preforms
JPH11348110A (en) Manufacture of resin molded product having tank shape
JP2017533132A (en) Method and apparatus for creating a neck profile optimum for a preform
JPH06126820A (en) Mold clamping device of blow mold
EP4067052B1 (en) Sealing tool of a packaging machine
JPH0976338A (en) Temperature conditioning apparatus for preform and blow molding method using the same
ITBO20060445A1 (en) HYDRAULIC PRESS
US20190315028A1 (en) Method for manufacturing an injection device with a bypass channel and tool for this purpose
JP2013184175A (en) Heat/pressure forming apparatus
DE102017009700A1 (en) Method and system for producing thermoformed components by means of active, local cooling of the semifinished product

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20200801