NL2014887B1 - Method for coupling a photon or light source to an optical fiber. - Google Patents

Method for coupling a photon or light source to an optical fiber. Download PDF

Info

Publication number
NL2014887B1
NL2014887B1 NL2014887A NL2014887A NL2014887B1 NL 2014887 B1 NL2014887 B1 NL 2014887B1 NL 2014887 A NL2014887 A NL 2014887A NL 2014887 A NL2014887 A NL 2014887A NL 2014887 B1 NL2014887 B1 NL 2014887B1
Authority
NL
Netherlands
Prior art keywords
photon
light source
substrate
semiconductor substrate
optical fiber
Prior art date
Application number
NL2014887A
Other languages
Dutch (nl)
Other versions
NL2014887A (en
Inventor
Bulgarini Gabriele
Gilles Zwiller Valery
Esmaeil Zadeh Iman
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2014887A priority Critical patent/NL2014887B1/en
Priority to PCT/NL2016/050354 priority patent/WO2016195483A1/en
Publication of NL2014887A publication Critical patent/NL2014887A/en
Application granted granted Critical
Publication of NL2014887B1 publication Critical patent/NL2014887B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Aligning an arbitrary light source with reference to an optical fiber by including the light source in a circular disk shaped substrate with the light source in the middle, wherein the carrier is subsequently attached to the end of the optical 5 fiber, which carrier and fiber are together placed in an alignment sleeve.

Description

Method for coupling a photon or light source to an optical fiber
The invention relates to a method for coupling a photon or light source to an optical fiber. WO2006/135789 discloses such a method that provides a new avenue for creating smaller and potentially more powerful computers. In such devices light particles, or photons, are used to convey information. A photon may represent a single quantum bit of information. The instant invention is however not restricted to this application but generally applies to the fast developing field of quantum technologies, especially involving quantum communication and quantum cryptography.
The doctors thesis "Nanowire-based Quantum Photonics" by Gabriele Bulgarini, 2014, ISBN 978-90-8593-185-0 discloses such a method comprising the steps of: • identifying the photon or light source from plural photon or light sources., said photon or light sources being embedded in an embedding material; • isolating the identified photon or light source with at least part of the embedding material surrounding it; • centering the identified photon or light source exactly in the center of the embedding material, wherein the embedding material is given an external diameter that matches an internal diameter of an alignment sleeve wherein the optical fiber is received; and • placing the identified photon or light source surrounded by the embedding material in said alignment sleeve.
More specifically according to this doctor's thesis nanowire waveguides are first grown in ordered arrays on a substrate. Subsequently a layer of positive resist for photolithography is spun on the sample substrate. The resist covers the entire length of the nanowires. In a micro-photoluminescence setup, the nanowires are then investigated at low temperature in order to select the best candidate for connecting to a fiber to provide a plug and play single-photon generator. Criteria applied for the selection are the brightness of the source, purity of single-photon statistics and the linewidth of the emission spectrum. Once the best candidate is selected, a UV laser will be utilized for photolithography at cryogenic temperatures. The resist is exposed around the selected nanowire with a resolution up to 50 nm diameter wherein the nanowire is exactly located in the center of the exposed resist. After lift-off of the remaining unexposed resist, the exposed positive resist will protect the nanowire in the subsequent dry etching step. Then a disk is etched in the substrate, surrounding the nanowire, with dimensions defined during the photolithography step. The disk diameter is precisely set to 1.25 mm, that is the diameter of commercial alignment sleeves hosting single-mode fibers inside fiber cables. Hence, the processed nanowire chip thus fits exactly the dimensions of fiber sleeves and self-aligns to the optical fiber for maximizing the collection of single photon's.
It is an object of the invention to provide an alternative, stable, robust and reliable manner for coupling a photon or light source to an optical fiber.
It is a further object of the invention to make it possible that more flexibility is provided in selecting the type of photon source that may be used for coupling to an optical fiber.
These and other objects of the invention which may become apparent from the following disclosure are provided in a method having the features of one or more of the appended claims .
The method of the invention comprises the following steps : • providing a first semiconductor substrate comprising one or more, preferably microscopic, sources of photons or light; • shaping the first semiconductor substrate to predefined dimensions; • providing a second substrate with a cutout with dimensions capable to receive therein said first semiconductor substrate shaped into said predefined dimensions; • placing the first semiconductor substrate in the cutout of the second substrate; • selecting a photon or light source comprised in the first semiconductor substrate; • centering said selected photon or light source in the middle of the second substrate, by removing such second substrate material that extends beyond an external diameter of a disk of such material having the selected photon or light source in the middle, which external diameter matches an internal diameter of the alignment sleeve wherein the optical fiber is received.
In the step of selecting a photon or light source it is in one embodiment of the method according to the invention preferable to provide markers on the second substrate with the first semiconductor substrate with the microscopic sources of photons or light received in said second substrate, followed by selecting a photon or light source and identifying its location with reference to said markers. This makes the subsequent step of centering the selected photon or light source in the middle of the second substrate relatively easy.
As will be clear from the foregoing the said disk of the second substrate is made to measure to the internal diameter of the alignment sleeve, and contains the photon or light source precisely in the middle. This position corresponds to the core of the optical fiber, which is the part where photons are guided and propagated to guarantee the best photon or light transmission across optical networks.
The invention is also embodied in said disk shaped second substrate which is embodied as a carrier provided with the semiconductor substrate comprising one or more photon or light sources, and wherein the disk is provided with a diameter matching an internal diameter of an alignment sleeve for aligning a photon or light source of said semiconductor substrate with an optical fiber received in said alignment sleeve.
Preferably further the disk is provided with a tail for handling the carrier.
It is important to note that the method of the invention is universal and therefore applies for photon or light sources of any material (quantum sources, diodes, micro-lasers). The required alignment of the photon or light source with the optical fiber comes automatic with implementation of the method of the invention and does not require any further manual intervention.
The method of the invention preferably makes use of the universally applicable anisotropic etching method as known from US 7,479,461 (said document herein incorporated by reference) which is applied to silicon and silicon oxide layers simultaneously, and which is capable to define very precise structures .
Preferably shaping the first semiconductor substrate is done to dimensions of approximately lxl mm, and the second substrate is preferably provided with a cutout having dimensions wherein the first semiconductor substrate can be snugly fitted.
Suitably shaping the first semiconductor substrate is executed with a dicer, and providing a cutout in the second substrate is executed with lithography and etching of the substrate. Operating a dicer and litography and etching are as such known to the skilled person and require no further elucidation.
Further it is preferred to fix the first semiconductor substrate to the second substrate by bonding or gluing the shaped first semiconductor substrate in the cutout of the second substrate .
It is further preferred to provide metallic markers on the second substrate with the first semiconductor substrate received therein, by lithography and subsequent metallic marker deposition. These process steps are as such also known to the skilled person and require no further elucidation.
Selecting a suitable photon or light source preferably employs luminescence spectroscopy.
Finally making use of the above mentioned anisotropic etching is preferably carried out in the process of centering the selected photon or light source exactly in the middle of the second substrate. This is done by lithography followed by etching for removal of such material that extends beyond an external diameter of a disk of such material having the selected photon or light source in the middle, which external diameter then is made to match an internal diameter of the alignment sleeve wherein the optical fiber is received so as to align the selected photon or light source with the fiber.
The invention will hereinafter be further elucidated with reference to the drawing of a single figure showing a nonlimiting exemplary embodiment of a substrate carrier according to the invention. It is believed that the method of the invention is in the above clearly elucidated enabling a skilled person to work according to the invention. A further clarification of the method of the invention with reference to a drawing is therefore believed to be superfluous.
In the drawing reference A denotes a semiconductor substrate containing one of more photon sources, preferably microscopic. Typical dimensions of the semiconductor substrate A can be 1 mm x 1 mm.
Reference B denotes a substrate carrier wherein semi- conductor substrate A can be placed. The substrate carrier B is designed to have an external diameter slightly less than the internal diameter of the mating sleeve depicted with reference C. Said mating sleeve C can be used for tight connection and mutual alignment of two' optical fibers.
The figure shows further that substrate carrier B is provided with an extended part (which can be called 'the tail') that serves for the handling of the substrate carrier B and its positioning inside the mating sleeve C. The alignment method of the invention as disclosed herein enables to align the center of the optical fiber, which is used as a waveguide for photons, to the photon source(s) located in the semiconductor substrate A.
Although the invention has been discussed in the foregoing with reference to an exemplary embodiment of the method of the invention, the invention is not restricted to this particular embodiment which can be varied in many ways without departing from the gist of the invention. The discussed exemplary embodiment shall therefore not be used to construe the appended claims strictly in accordance therewith. On the contrary the embodiment is merely intended to explain the wording of the appended claims without intent to limit the claims to this exemplary embodiment. The scope of protection of the invention shall therefore be construed in accordance with the appended claims only, wherein a possible ambiguity in the wording of the claims shall be resolved using this exemplary embodiment.

Claims (10)

1. Werkwijze voor het koppelen van een foton of lichtbron met een optische fiber omvattende de volgende stappen: • identificeren van genoemde foton of lichtbron onder een veeltal foton of lichtbronnen, welke foton of lichtbronnen zijn ingebed in een inbeddingsmateriaal; • centreren van de geïdentificeerde foton of lichtbron in het midden van het inbeddingsmateriaal, waarbij het inbeddingsmateriaal een externe diameter wordt gegeven die overeenkomt met een interne diameter van een uitlijnhuls waarin de optische fiber is opgenomen; • plaatsen van de geïdentificeerde foton of lichtbron omgeven door het inbeddingsmateriaal in genoemde uitlijnhuls voor het uitlijnen van de foton of lichtbron met de optische fiber; gekenmerkt door de volgende stappen: • verschaffen van een eerste half-geleider substraat omvattende één of meer microscopische bronnen van fotonen of licht; • vormen van het eerste half-geleider substraat tot vooraf bepaalde afmetingen; • verschaffen van het tweede substraat met een uitsnede die afmetingen bezit om daarin genoemde eerste half-geleider substraat te ontvangen dat gevormd is naar bedoelde vooraf bepaalde afmetingen; • plaatsen van het eerste half-geleider substraat in de uitsnede van het tweede substraat; • selecteren van een foton of lichtbron die opgenomen is in het eerste half-geleider substraat; • centreren van genoemde foton of lichtbron in het midden van het tweede substraat, door verwijdering van dergelijk tweede substraatmateriaal dat zich uitstrekt voorbij een externe diameter van een schijf van dergelijk materiaal met de geselecteerde foton of lichtbron in het midden, welke externe diameter overeenkomt met een interne diameter van de uitlijnhuls waarin de optische fiber is opgenomen.A method for coupling a photon or light source with an optical fiber comprising the following steps: • identifying said photon or light source among a plurality of photon or light sources, which photon or light sources are embedded in an embedding material; Centering the identified photon or light source in the center of the embedding material, wherein the embedding material is given an external diameter corresponding to an internal diameter of an alignment sleeve in which the optical fiber is incorporated; Placing the identified photon or light source surrounded by the embedding material in said alignment sleeve for aligning the photon or light source with the optical fiber; characterized by the following steps: • providing a first semiconductor substrate comprising one or more microscopic sources of photons or light; Forming the first semiconductor substrate to predetermined dimensions; Providing the second substrate with a cutout having dimensions to receive therein said first semiconductor substrate formed to said predetermined dimensions; Placing the first semiconductor substrate in the cutout of the second substrate; • selecting a photon or light source included in the first semiconductor substrate; Centering said photon or light source in the center of the second substrate, by removing such second substrate material extending beyond an external diameter of a disc of such material with the selected photon or light source in the center, which external diameter corresponds to a internal diameter of the alignment sleeve in which the optical fiber is included. 2. Werkwijze volgens conclusie 1, gekenmerkt door, het verschaffen van markers op het tweede substraat met het daarin opgenomen eerste half-geleider substraat, en het selecteren van een proton of lichtbron en identificeren van haar plaats ten opzichte van genoemde markers.A method according to claim 1, characterized by providing markers on the second substrate with the first semiconductor substrate included therein, and selecting a proton or light source and identifying its location relative to said markers. 3. Werkwijze volgens conclusie 1 of 2, gekenmerkt door, het vormen van het eerste half-geleider substraat tot afmetingen van ongeveer 1 bij 1 mm, en bewerkstelligen dat het tweede substraat voorzien wordt van een uitsnede met afmetingen waarin het eerste half-geleider substraat passend kan worden opgenomen.A method according to claim 1 or 2, characterized by forming the first semiconductor substrate to dimensions of about 1 by 1 mm, and causing the second substrate to be provided with a cut-out with dimensions in which the first semiconductor substrate can be included as appropriate. 4. Werkwijze volgens één der conclusies 1-3, gekenmerkt door, het vormen van het eerste half-geleider substraat met een snijmachine, en het aanbrengen van een uitsnede in het tweede substraat door middel van lithografie en etsen.The method according to any of claims 1-3, characterized by forming the first semiconductor substrate with a cutting machine, and applying a cut into the second substrate by lithography and etching. 5. Werkwijze volgens één der voorgaande conclusies 1- 4, gekenmerkt door, het verbinden of lijmen van het gevormde eerste half-geleider substraat in de uitsnede van het tweede substraat.A method according to any one of the preceding claims 1-4, characterized by connecting or gluing the formed first semiconductor substrate in the cut-out of the second substrate. 6. Werkwijze volgens één der voorgaande conclusies 1- 5, gekenmerkt door, het verschaffen van metalische markers op het tweede substraat met het eerste half-geleider substraat daarin opgenomen, door middel van lithografie en daaropvolgende depositie van metalische markers.A method according to any one of the preceding claims 1-5, characterized by providing metallic markers on the second substrate with the first semiconductor substrate included therein, by lithography and subsequent deposition of metallic markers. 7. Werkwijze volgens één der voorgaande conclusies 1- 6, gekenmerkt door, het selecteren van een foton of lichtbron door gebruikmaking van luminescentie spectroscopie.A method according to any one of the preceding claims 1-6, characterized by, selecting a photon or light source using luminescence spectroscopy. 8. Werkwijze volgens één der voorgaande conclusies 1- 7, gekenmerkt door, het centreren van de geselecteerde foton of lichtbron in het midden van het tweede substraatmateriaal door lithografie gevolgd door etsen voor het verwijderen van dergelijk materiaal dat zich uitstrekt voorbij een externe diameter van een cilinder van dergelijk materiaal met de geselecteerde foton of lichtbron in het midden, welke externe diameter overeenkomt met een interne diameter van de uitlijnhuls waarin de optische fiber is opgenomen.A method according to any one of the preceding claims 1-7, characterized by centering the selected photon or light source in the center of the second substrate material by lithography followed by etchings for removing such material extending beyond an external diameter of a cylinder of such material with the selected photon or light source in the center, which external diameter corresponds to an internal diameter of the alignment sleeve in which the optical fiber is incorporated. 9. Substraatdrager voorzien van een half-geleider substraat omvattende één of meer foton of lichtbronnen, met het kenmerk, dat deze in het algemeen gevormd is als een schijf met een diameter die overeenkomt met een interne diameter van een uitlijnhuls voor het uitlijnen van een foton of lichtbron van genoemd half-geleider substraat met een optische fiber opgenomen in genoemde uitlijnhuls.9. Substrate carrier provided with a semiconductor substrate comprising one or more photon or light sources, characterized in that it is generally formed as a disk with a diameter corresponding to an internal diameter of an alignment sleeve for aligning a photon or light source of said semiconductor substrate with an optical fiber incorporated in said alignment sleeve. 10. Substraatdrager volgens conclusie 9, met het kenmerk, dat de schijf voorzien is van een staart voor het hanteren van de drager.Substrate carrier according to claim 9, characterized in that the disc is provided with a tail for handling the carrier.
NL2014887A 2015-05-29 2015-05-29 Method for coupling a photon or light source to an optical fiber. NL2014887B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2014887A NL2014887B1 (en) 2015-05-29 2015-05-29 Method for coupling a photon or light source to an optical fiber.
PCT/NL2016/050354 WO2016195483A1 (en) 2015-05-29 2016-05-18 Method and substrate carrier for coupling a photon or light source to an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2014887A NL2014887B1 (en) 2015-05-29 2015-05-29 Method for coupling a photon or light source to an optical fiber.

Publications (2)

Publication Number Publication Date
NL2014887A NL2014887A (en) 2016-12-08
NL2014887B1 true NL2014887B1 (en) 2017-01-31

Family

ID=53540812

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2014887A NL2014887B1 (en) 2015-05-29 2015-05-29 Method for coupling a photon or light source to an optical fiber.

Country Status (2)

Country Link
NL (1) NL2014887B1 (en)
WO (1) WO2016195483A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333696A (en) * 2018-04-13 2018-07-27 南京大学 A kind of superconducting single-photon detector casing fill-in light alignment package device
FR3122503B1 (en) 2021-04-28 2024-05-10 Quandela METHOD FOR HIGH PRECISION COUPLING OF AN OPTICAL FIBER WITH A PHOTONIC DEVICE AND IMPLEMENTATION MICROSTRUCTURE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815616A (en) * 1997-01-02 1998-09-29 Lucent Technologies Inc. Optical packaging assembly for reflective devices
DE10344351A1 (en) 2003-09-24 2005-05-19 Infineon Technologies Ag Process for the anisotropic etching of silicon
US7492803B2 (en) 2005-06-10 2009-02-17 Hewlett-Packard Development Company, L.P. Fiber-coupled single photon source

Also Published As

Publication number Publication date
NL2014887A (en) 2016-12-08
WO2016195483A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
CN105428305B (en) Hanging LED light Waveguide electric explorer monolithic integrated device and preparation method thereof
US10353152B2 (en) Tapered photonic waveguide to optical fiber proximity coupler
US10197731B2 (en) Optical coupler
US9482816B2 (en) Radiation coupler
EP3091379B1 (en) Optical coupling scheme
KR101591847B1 (en) Efficient silicon-on-insulator grating coupler
US9316796B2 (en) Fiber pigtail with integrated lid
US7546013B1 (en) Nanoparticle coupled to waveguide
NL2014887B1 (en) Method for coupling a photon or light source to an optical fiber.
Ge et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide
CN103998961A (en) Vertical optical coupler for planar photonic circuits
JP2015508188A (en) Optical fiber connector, assembly of optical fiber connector and cable, and manufacturing method
EP3091381A1 (en) Method for realizing heterogeneous iii-v silicon photonic integrated circuits
EP1439578A2 (en) Method for dicing wafer
US9435949B2 (en) Optical integrated circuit and manufacturing method thereof
EP3357132B1 (en) Semiconductor light source and method for fabricating a semiconductor light source
CN105742383B (en) Hanging p n knot quantum well devices and fiber waveguide monolithically integrated system and preparation method thereof
TW201207455A (en) Optical grating coupler
KR20200060055A (en) Micro LED manufacturing and selective transferring method
US20180172935A1 (en) Photonic integrated circuit
CN105353461A (en) Large-tolerance coupling waveguide
US20080138017A1 (en) Butt coupling structure and method of photonic quantum ring hole emitter
JP2011077456A (en) Semiconductor optical element and semiconductor optical device
US20230104330A1 (en) Position controlled waveguides and methods of manufacturing the same
TWI252339B (en) Self-aligned optical waveguide to optical fiber connection system

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20210601