NL2014750A - Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air. - Google Patents

Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air. Download PDF

Info

Publication number
NL2014750A
NL2014750A NL2014750A NL2014750A NL2014750A NL 2014750 A NL2014750 A NL 2014750A NL 2014750 A NL2014750 A NL 2014750A NL 2014750 A NL2014750 A NL 2014750A NL 2014750 A NL2014750 A NL 2014750A
Authority
NL
Netherlands
Prior art keywords
filter
air
climate system
climate
fan
Prior art date
Application number
NL2014750A
Other languages
Dutch (nl)
Other versions
NL2014750B1 (en
Inventor
Johan Van Der Sluis Martin
Original Assignee
Plasmamade B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasmamade B V filed Critical Plasmamade B V
Priority to NL2014750A priority Critical patent/NL2014750B1/en
Priority to EP16167717.4A priority patent/EP3088808B1/en
Priority to NO16167717A priority patent/NO3088808T3/no
Publication of NL2014750A publication Critical patent/NL2014750A/en
Application granted granted Critical
Publication of NL2014750B1 publication Critical patent/NL2014750B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2035Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • F24F8/26Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media using ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

The invention relates to a climate system, and building, vehicle or extractor hood provided therewith, and a method for filtering air. The climate system according to the invention comprises: a housing; a suction opening that is provided in the housing; a fan operatively connected to the suction opening for drawing in air through the suction opening; a drive that is operatively connected to the fan for driving the fan; an electrostatic filter configured for electrostatic filtering of the indrawn air; a plasma filter configured for generating ozone and providing the ozone to the indrawn air; a sensor for measuring characteristics of the indrawn airflow; and control means operatively connected to the sensor and configured for controlling the electrostatic and plasma filters on the basis of the measured characteristics of the indrawn airflow.

Description

CLIMATE SYSTEM, AND BUILDING, VEHICLE OR COOKING FACILITY PROVIDED THEREWITH, AND METHOD FOR FILTERING AIR
The present invention relates to a climate system. Such climate systems are for instance used in buildings, for instance in WTW systems, hospitals, production environments, cooking facilities, and so on.
Known climate systems make use of a fan to draw in air through a suction opening. The air is then conditioned in relation to temperature and/or humidity. The indrawn air is either discharged to the outside or recirculated. A problem with conventional climate systems is that they involve a number of components and/or require interaction with other systems. In addition, contaminations in the air are not sufficiently and/or efficiently removed.
The present invention has for its object to obviate or at least reduce one or more of the above problems with existing climate system.
The present invention provides for this purpose a climate system with a filter system comprising: a housing; a suction opening that is provided in the housing; a fan operatively connected to the suction opening for drawing in air through the suction opening; a drive that is operatively connected to the fan for driving the fan; an electrostatic filter configured for electrostatic filtering of the indrawn air; a plasma filter configured for generating ozone and providing the ozone to the indrawn air; a sensor for measuring characteristics of the indrawn airflow; and control means operatively connected to the sensor and configured for controlling the electrostatic and plasma filters on the basis of the measured characteristics of the indrawn airflow.
The filter system of the climate system according to the invention comprises an electrostatic filter and a so-called plasma filter.
The electrostatic filter preferably realizes a direct voltage of for instance 5 kV which is transmitted to a screen. A type of potential filter is hereby realized with which an electrostatic field is created. Contaminations, including particles such as smoke particles, fungi, odour particles and so on, can be captured by means of such a filter and thereby removed from the indrawn air.
Providing a plasma filter, with the plasma filter being capable of functioning as an ozone generator, achieves an additional air cleaning. The plasma filter generates ozone and/or radicals that react with contaminations, such as odours, in the indrawn air. Preferably, the ozone generator of the plasma filter is operatively connected to an ozone sensor. In practice, ozone is also referred to as plasma. For the purpose of this document ozone relates to ozone/plasma.
It has been found that in particular a combination of an electrostatic filter and a plasma filter achieves an effective cleaning due to the production and effective use of radical particles. These particles act on the cell walls and other parts of undesired particles/contaminations in the indrawn air.
An autonomous system is obtained by controlling the electrostatic filter and plasma filter with a controller using the measured characteristics of the indrawn air. These characteristics are determined with one or more sensors. The controller controls the fan with a drive. Preferably, the fan and the drive are both integrated in the housing of the climate system. Such an autonomous system provides the advantage that it can be operated independently. Application of the sensor according to the invention provides an optimal operation of the filter in relation to the actual extraction of air.
By providing the climate system with a sensor for measuring characteristics of the indrawn airflow, the control means, such as a process controller, receives information about the indrawn airflow. This information may include one or more of: air quantity, air speed, contamination including odours, etc. The controller may adjust frequencies and/or voltage levels of the electrostatic filter and/or plasma filter. This renders the climate system more effective as compared to conventional climate systems.
The one or more sensors can be provided in combination with the housing of the climate system. For example, the sensor can be attached to a grid or finishing/covering element or rosette. Also, one or more of the sensors can be provided in a room and/or building provided with the climate system according to the invention. This provides further information to the controller. The sensors may transmit and/or receive information to and/or from the controller with a wireless and/or wired protocol. This enables automatic climate control, for example enabling providing the most contaminated room in a building with the climate system according to the present invention with a filtered air flow.
Contaminations, particularly including odours, can be removed effectively from the indrawn air, thereby improving the climate in a building, room.
Furthermore, this filter control prevents unnecessary energy usage by over-treating the indrawn air. The controller may also control the drive of the fan, dependent on the type and amount of the contamination that is measured by a sensor in the indrawn air.
Preferably, the climate system is controlled on the basis of characteristics of the contaminations in the measured airflow, in particular including one or more of: smoke, pollen, bacteria, moisture, odours, viruses, fungi and so on. This information is provided to the controller that provides effective and efficient control of the climate system according to the invention.
In an advantageous preferred embodiment according to the present invention the filter comprises a carbon filter.
Providing a carbon filter or carbon mat achieves that excess ozone is captured. It is noted here that operation of the filter(s) is possible at a relatively low voltage with the filter according to the invention such that ozone production of the plasma filter is minimal.
An additional advantage of combining an electrostatic filter and carbon filter according to the invention is the increase in lifespan obtained for the carbon mat/filter as a result of an electric field being applied. A self-cleaning action of the filter according to the invention is hereby obtained. This renders the climate system according to the invention very effective. Also, the required maintenance and/or filter cleaning is significantly reduced, thereby rendering the system according to the invention effective.
In an advantageous preferred embodiment according to the present invention, the filter system comprises a glass fiber filter.
By providing a glass fiber filter, an improved filtering of contaminations out of the indrawn air is achieved. In particular, contaminations are trapped in the glass fiber filter. The glass fiber filter cooperates with the electrostatic filter such that an electric discharge eliminates the contaminations trapped in the glass fiber filter. This provides additional filtering of the indrawn air.
In an advantageous embodiment according to the present invention, the controller further comprises a user interface.
By providing a user interface an effective operation of the climate system is achieved. The user interface can be wireless and/or wired. The user interface renders the climate system flexible and adjustable to the specific conditions in which it is used. Preferably, the user interface comprises a touch screen, a tablet, mobile phone or other electronic device. By providing the user interface as a touch screen, tablet, mobile phone or similar electronic device, a user has easy access to the operating parameters of the climate system. This enables the user to control and/or adjust the filtering operation in an effective manner. For example, a so-called app can be downloaded to enable control via the electronic device of a specific climate system. Furthermore, this enable remote access for installing a software update, maintenance and the like. Also, the system can optionally send a warning signal to the user thereby achieving an interactive system.
In a further advantageous preferred embodiment according to the present invention a conical body is provided in or close to the suction opening.
By providing a conical body, the air drawn in using the fan is guided as optimally as possible through the electric filter. The surface area of the whole filter is hereby also utilized as fully as possible.
The conical body preferably provided with a shape such that a substantially uniform air distribution through the filter is realized during use. This further increases the effectiveness of the system.
The conical body is preferably provided with a number of ribs for better guiding of the airflow thereby. It has been found here that it is advantageous to provide the ribs in a spiral shape so as to thereby further improve the guiding of the airflow.
In the system according to a preferred embodiment of the invention, air with contamination enters a pre-chamber along with the indrawn contaminated air. The conical body preferably guides the air to the filter parts. Formed in a second chamber are radical particles with which the cleaning reactions take place substantially in a third chamber between the electrodes, preferably at the position of a glass fibre (nano)mat, which holds the particles. Following the reactions, discharge preferably takes place via an active carbon mat with which excess ozone is also captured. The outer casing of the system is shaped such that a further sound reduction is thereby realized.
Preferably, the housing comprises a plastic housing. A safer system is realized by providing a plastic housing when compared to a metal housing due to the insulating character of the housing. In addition, the overall weight of the filter system according to the invention is also reduced. This makes it easier to handle the system and assemble it on site.
The invention further also relates to a building, vehicle and/or a kitchen facility such as an extractor hood provided with a climate system as described above.
Such a building, vehicle and/or kitchen facility such as an extractor hood provides the same effects and advantages as described for the filter system. Examples of vehicles are a car, plane, bus, and train. The system preferably comprises one or more sensors in rooms, compartments or sub-spaces of a building or vehicle.
In one of the preferred embodiments according to the invention a filter system according to the invention is preferably applied in extractor hoods in kitchens wherein airflow is extracted at a flow rate of about 1-1500 m3/hour. A plurality of extraction systems according to the invention can otherwise be employed within the same kitchen, and even within one extractor hood. It is also possible according to the invention to apply the filter in other extraction systems, for instance in so-called WTW systems. In addition to kitchens and WTW systems it is possible here to envisage application of the climate and/or filter system in smoking areas, production environments and hospitals. A plurality of extraction systems can be provided here in series and/or parallel. The filter system is preferably placed above the suction opening of the motor of for instance an extractor hood.
The invention further also relates to a method for filtering air, comprising of: drawing in air through a suction opening using a fan and a drive, with the fan and the drive being provided in a housing integrated of a filter system as claimed in one or more of the foregoing claims; cleaning the indrawn air using the filter system; and controlling the filtering with a controller based on measured characteristics of the indrawn air.
The method according to the invention provides the same advantages and effects as described for the climate system, building, vehicle, kitchen facility, such as an extractor hood.
Preferably, the method further comprises the step of providing user input with a user interface. This enables flexible operation of a climate system. The user interface preferably comprises a touch screen, tablet, mobile phone or other electronic device. This enables user friendly adjustments of controller settings.
It has been found that a self-cleaning action of the filters is realized with the preferred combination of filters as described above. This preferably realized self-cleaning action has a positive effect on the lifespan of the system and/or the time interval between maintenance operations.
Further advantages, features and details of the invention are elucidated on the basis of a preferred embodiment thereof, wherein reference is made to the accompanying drawings, in which: Figure 1 shows a view of the climate system according to the invention that is applied to a building;
Figures 2 A and B show details of the system of Figure 1;
Figure 3 shows a view of the climate system provided in a kitchen facility with an extractor hood;
Figure 4 shows a view of the climate system in an open room such as in a vehicle; and
Figure 5 shows a building with a climate system.
Climate system 2 (figure 1) is placed in room 4 of building 6. Climate system 2 comprises ducts 8 for moving air in building 6 from and to filter system 10. Filter system 10 has suction opening 12 that is connected to connection 14 of duct 8.
Filter system 10 (Figure 2A) is further provided with a plastic outer casing 16 and an inner cone 18 for guiding the indrawn air. Filter 10 is further provided with a plastic cover 20 and connecting flange 22 which in the shown embodiment has a diameter of about 150 mm. In the shown embodiment filter 10 is further provided with an inner pre-filter 24, an electrostatic grid 26 and an outer carbon filter 28.
In the shown embodiment grid 26 comprises a grid assembly with an inner and outer grid between which a glass fibre mat is arranged. Cover 20 is optionally provided with an open collector output, LEDs for status indication, and so on.
Filter 10 makes use of an airflow detector or sensor 30 which measures whether an airflow is present. Power supply to the electronics is provided via connection 32 which in the shown embodiment is a 12 V connection, preferably provided with an adapter for a 220 V or 110 V connection. Alternatively, the power supply is provided directly at 220 V. In the shown embodiment the conical body 18 is further provided with encapsulated electronics 34. The outer side of body 18 is provided with spiral-shaped ribs 36 for the purpose of improving the guiding of air. Also provided on the inner side in the shown embodiment is controller 38, which is connected to sensor 30 and activates or deactivates the electric filter.
In the shown embodiment Filter 10 is provided with a diameter of about 210 mm, with an inlet diameter of about 150 mm and a height of about 300 mm. An ozone generator 40 is also provided for an additional cleaning action.
In an alternative embodiment, filter system 42 (figure 2B) is provided with an annular holder 44 on which cover 46 rests. Cover 46 is provided with connector 48, buttons 50 and a connection 52 for plug/adapter 54 which is connected to connector 56. Cone 58 is provided with printed circuit board 60 which is operatively connected to connector 56. Arranged on cone 58 is plasma generator 62 provided with ozone plate 64 which is arranged with clamping part 66 on generator 62. Printed circuit board 60 is provided with sensors 68 on the side directed downward during use. Outer casing 70 is provided with bracket 72 for mounting on for instance an extractor hood. The filter inlet is provided with grate 74.
Operation of system 2 (Figure 1) involves the use of control panel 76 with display 78.
When system 2 is activated, for instance with control 76, fan 78 will draw in air via opening 12. In the shown embodiment sensor 30 arranged on conical body 18 will detect the presence, and type and/or level of contamination, of the airflow. This detection signal is transmitted to controller 38 which in the shown embodiment is incorporated into the encapsulated electronics space 34. Controller 38 then activates ozone generator 40 and/or electrostatic filter, which is formed in the shown embodiment by the plastic outer casing 16, the inner pre-filter 24, the electrostatic grid 26, in combination with outer carbon filter 28. System 2 is hereby automatically activated using sensor 30 as soon as fan 78 becomes active.
In the shown embodiment of system 2 the voltage used preferably lies in the range of 0.05 Volt-10 kV, more preferably in the range of 0.5-2 kV in normal ambient conditions. A voltage of 2-4 kV is employed for the optionally provided ozone generator 40.
In the shown embodiment a standby mode is provided which can if desired be continuously “active”.
It will be apparent that combinations with other types of filter are also possible. Filter system 2 can also be utilized in applications other than in a building 6.
For example, climate system 2 (Figure 3) can be applied to kitchen facility, more specifically extractor hood 80. Alternatively, system 2 is provided in open room 82 (Figure 4).
Open room 82 can be provided in a vehicle, airplane, building, etc.
Assembly of filter system 10 begins with a grating or mesh, i.e. grid 26, following which a second grating or mesh, i.e. grid 26, is provided at a short distance, for instance 40 mm, such that an inner and an outer annular cross-section are provided. The grids are connected. A glass fibre mat is preferably arranged in the intermediate space. Carbon mat 28 is arranged on the outer side of grid assembly 26. An ozone element 40 is subsequently arranged in a housing which is then placed on conical element 34. Conical element 34 can then be placed in the interior of grid assembly 26, wherein the wiring can be connected. An end plate 20 can be arranged following placing. In a currently preferred embodiment a printed circuit board is then adhered fixedly in filter 10. The end plate with sensor can subsequently be arranged so that filter 10 is mounted and can be applied.
Filter 10 has been tested in an experiment in a kitchen. Recirculation was started at about 200 m3/hour about 10 minutes prior to the cooking process in order to bring about a good circulation. In the applied situation the ozone binds the undesired particles with an efficiency of about 95%. The noise reduction realized was about 25% compared to the conventional extraction.
Building or house 84 (figure 5) comprises so-called heat recovery system (“WTW”) 86 with filter 10. Inlets and/or outlets 88 are provided. Air ducts 90 are provided to relevant rooms 92 in house 84. Optionally, a kitchen can be provided with a separate filter 10. Sensors 94 provide climate information of room 92 to the controller of filter 10. Optionally, tablet 96 controls settings of filter 10 with an app using wireless signals 98, for example.
The present invention is by no means limited to the above described preferred embodiments thereof. The rights sought are defined by the following claims, within the scope of which many modifications can be envisaged. The filter according to the invention complies with the required standards, including the Dutch NEN 7120. The filter is quickly mountable, also when applied in existing and conventional extractor hoods. In a currently preferred embodiment settings are preferably provided in adjustable and re-adjustable manner, preferably on a printed circuit board of the filter.
CLAUSES 1. Climate system with a filter system, comprising: a housing; a suction opening that is provided in the housing; a fan operatively connected to the suction opening for drawing in air through the suction opening; a drive that is operatively connected to the fan for driving the fan; an electrostatic filter configured for electrostatic filtering of the indrawn air; a plasma filter configured for generating ozone and providing the ozone to the indrawn air; a sensor for measuring characteristics of the indrawn airflow; and control means operatively connected to the sensor and configured for controlling the electrostatic and plasma filters on the basis of the measured characteristics of the indrawn airflow. 2. Climate system according to clause 1, further comprising a carbon filter. 3. Climate system according to clause 1 or 2, further comprising a glass fiber filter. 4. Climate system as claimed in clause 1, 2 or 3, wherein the controller further comprises a user interface. 5. Climate system according to clause 4, wherein the user interface comprises a touch screen, tablet or mobile phone. 6. Climate system according to one or more of the foregoing clauses, wherein the characteristics of the indrawn air comprise the amount and type of contaminations. 7. Climate system according to one or more of the foregoing clauses, wherein a conical body is provided in or close to the suction opening. 8. Climate system as claimed in clause 7, wherein the conical body is provided with a shape such that a substantially uniform air distribution through the filter is realized during use. 9. Climate system as claimed in clause 7 or 8, wherein the conical body is provided with a number of ribs. 10. Climate system as claimed in clause 9, wherein the ribs provide a spiral shape. 11. Building or vehicle provided with a climate system as claimed in one or more of the foregoing clauses, further comprising one or more sensors in rooms, compartments or sub-spaces. 12. Extractor hood comprising a filter system as claimed in one or more of the foregoing clauses. 13. Method for filtering air, comprising of: drawing in air through a suction opening using a fan and a drive, with the fan and the drive being integrated in a housing of a climate system as claimed in one or more of the foregoing clauses; filtering the indrawn air; and controlling the filtering with a controller based on measured characteristics of the indrawn air. 14. Method as claimed in clause 13, further comprising the step of providing user input with a user interface. 15. Method as claimed in clause 13 or 14, wherein the filter system has a self-cleaning action during use.

Claims (15)

1. Klimaatsysteem met een filtersysteem, omvattende: een behuizing; een aanzuigopening die is voorzien in de behuizing; een ventilator werkzaam verbonden met de aanzuigopening voor het aanzuigen van lucht door de aanzuigopening; een aandrijving die werkzaam is verbonden met de ventilator voor het aandrijven van de ventilator; een elektrostatisch filter geconfigureerd voor elektrostatische filtering van de aangezogen lucht; een plasmafilter geconfigureerd voor het genereren van ozon en het voorzien van de ozon aan de aangezogen lucht; een sensor voor het meten van de karakteristieken van de aangezogen luchtstroom; en regelmiddelen werkzaam verbonden met de sensor en geconfigureerd voor het aansturen van het elektrostatisch en plasmafilters op basis van de gemeten karakteristieken van de aangezogen luchtstroom.A climate system with a filter system, comprising: a housing; a suction opening provided in the housing; a fan operatively connected to the suction port for sucking air through the suction port; a drive operatively connected to the fan for driving the fan; an electrostatic filter configured for electrostatic filtering of the aspirated air; a plasma filter configured to generate ozone and to supply the ozone to the aspirated air; a sensor for measuring the characteristics of the air flow drawn in; and control means operatively connected to the sensor and configured to control the electrostatic and plasma filters based on the measured characteristics of the aspirated air flow. 2. Klimaatsysteem volgens conclusie 1, verder omvattende een koolstoffilter.The climate system of claim 1, further comprising a carbon filter. 3. Klimaatsysteem volgens conclusie 1 of 2, verder omvattende een glasvezelfilter.A climate system according to claim 1 or 2, further comprising a glass fiber filter. 4. Klimaatsysteem volgens conclusie 1, 2 of 3, waarin de regelaar verder een gebruikersinterface omvat.The climate system according to claim 1, 2 or 3, wherein the controller further comprises a user interface. 5. Klimaatsysteem volgens conclusie 4, waarin de gebruikersinterface een touchscreen, tablet, of mobiele telefoon omvat.The climate system of claim 4, wherein the user interface comprises a touchscreen, tablet, or mobile phone. 6. Klimaatsysteem volgens één of meer van de voorgaande conclusies, waarin de karakteristieken van de aangezogen lucht het type en de hoeveelheid van de vervuiling omvat.A climate system according to one or more of the preceding claims, wherein the characteristics of the air drawn in include the type and amount of the pollution. 7. Klimaatsysteem volgens één of meer van de voorgaande conclusies, waarin een conisch lichaam is voorzien in of nabij de aanzuigopening.A climate system according to one or more of the preceding claims, wherein a conical body is provided in or near the suction opening. 8. Klimaatsysteem volgens conclusie 7, waarin het conisch lichaam is voorzien van een vorm zodanig dat in gebruik een in hoofdzaak uniforme luchtverdeling door het filter wordt gerealiseerd.A climate system according to claim 7, wherein the conical body is provided with a shape such that a substantially uniform air distribution through the filter is achieved in use. 9. Klimaatsysteem volgens conclusie 7 of 8, waarin het conische lichaam is voorzien van een aantal ribben.Climate system according to claim 7 or 8, wherein the conical body is provided with a number of ribs. 10. Klimaatsysteem volgens conclusie 9, waarin de ribben van een spiraalvorm zijn voorzien.The climate system according to claim 9, wherein the ribs are provided with a spiral shape. 11. Gebouw of voertuig voorzien van een klimaatsysteem volgens één of meer van de voorgaande conclusies, omvattende één of meer sensoren in ruimten, compartimenten, of deelvolumes.Building or vehicle provided with a climate system according to one or more of the preceding claims, comprising one or more sensors in rooms, compartments, or sub-volumes. 12. Afzuigkap omvattende een filtersysteem volgens één of meer van de voorgaande conclusies.12. Extractor hood comprising a filter system according to one or more of the preceding claims. 13. Werkwijze voor het filteren van lucht, omvattende: het aanzuigen van lucht door een aanzuigopening gebruik makend van een ventilator en een aandrijving, waarbij de ventilator en de aandrijving geïntegreerd zijn in een behuizing van het klimaatsysteem volgens één of meer van de voorgaande conclusies; het filteren van de aangezogen lucht; en het regelen van de filtering met een regelaar gebaseerd op gemeten karakteristieken van de aangezogen lucht.A method for filtering air, comprising: sucking air through a suction opening using a fan and a drive, wherein the fan and the drive are integrated in a housing of the climate system according to one or more of the preceding claims; filtering the intake air; and controlling the filtering with a controller based on measured characteristics of the air drawn in. 14. Werkwijze volgens conclusie 13, verder omvattende de stap van het voorzien van gebruikersinvoer met een gebruikersinterface.The method of claim 13, further comprising the step of providing user input with a user interface. 15. Werkwijze volgens conclusie 13 of 14, waarin het filtersysteem tijdens gebruik een zelfreinigende werking heeft.Method according to claim 13 or 14, wherein the filter system has a self-cleaning effect during use.
NL2014750A 2015-05-01 2015-05-01 Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air. NL2014750B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2014750A NL2014750B1 (en) 2015-05-01 2015-05-01 Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air.
EP16167717.4A EP3088808B1 (en) 2015-05-01 2016-04-29 Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air
NO16167717A NO3088808T3 (en) 2015-05-01 2016-04-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2014750A NL2014750B1 (en) 2015-05-01 2015-05-01 Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air.

Publications (2)

Publication Number Publication Date
NL2014750A true NL2014750A (en) 2016-11-07
NL2014750B1 NL2014750B1 (en) 2017-01-18

Family

ID=53783831

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2014750A NL2014750B1 (en) 2015-05-01 2015-05-01 Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air.

Country Status (1)

Country Link
NL (1) NL2014750B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368816A (en) * 1992-04-28 1994-11-29 Kesslertech Gmbh Conditioning air for human use
US6235090B1 (en) * 1998-12-29 2001-05-22 Gas Research Institute Kitchen hood filtration apparatus
US20130183214A1 (en) * 2007-01-22 2013-07-18 Karen Metteer Modular ductwork decontamination assembly
WO2014007626A1 (en) * 2012-07-06 2014-01-09 Martin Johan Van Der Sluis Filter system, extractor hood and kitchen provided therewith, and method for extracting air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368816A (en) * 1992-04-28 1994-11-29 Kesslertech Gmbh Conditioning air for human use
US6235090B1 (en) * 1998-12-29 2001-05-22 Gas Research Institute Kitchen hood filtration apparatus
US20130183214A1 (en) * 2007-01-22 2013-07-18 Karen Metteer Modular ductwork decontamination assembly
WO2014007626A1 (en) * 2012-07-06 2014-01-09 Martin Johan Van Der Sluis Filter system, extractor hood and kitchen provided therewith, and method for extracting air

Also Published As

Publication number Publication date
NL2014750B1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
EP2870413B1 (en) Filter system, extractor hood and kitchen provided therewith, and method for extracting air
EP3088808B1 (en) Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air
EP3532776B1 (en) Filter system for filtering a flow, extractor hood comprising such filter, and method for filtering air
CN113864958B (en) Air purifier with intelligent sensor and air flow
KR102242771B1 (en) Window type Air cleaner
US10900665B2 (en) Combination appliance having a cooktop and steam extraction device
KR101518624B1 (en) Air purifying apparatus for air ventilation
KR101700302B1 (en) Window type ventilator with filter
US20120083198A1 (en) Fluid cleaning system and method
KR101509060B1 (en) Air Cleaner For Elevator
KR20200000306U (en) Range hood with vent and glass window
US11808460B2 (en) Multipurpose vertical domestic extraction hood
NL2014750B1 (en) Climate system, and building, vehicle or cooking facility provided therewith, and method for filtering air.
US20160131366A1 (en) Oven range ventilator with microwave compartment
NL2020193B1 (en) Filter system for filtering a flow, extractor hood comprising such filter, and method for filtering air
CN106016481A (en) Air purification device
KR20180045570A (en) a purifier for vehicle
KR20180054193A (en) A kitchen hood equipped with air care apparatus using water
KR20200018061A (en) A structure equipped in ceiling
NL2017668B1 (en) Filter system for filtering a flow, extractor hood comprising such filter, and method for filtering air
WO2011080100A3 (en) Oven with a ventilating duct
CN203663135U (en) Air purifier
CN203147929U (en) Air purifier
CN205717439U (en) Range hood
CN106500300A (en) A kind of gas heater

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20190601