NL2012292C2 - Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water. - Google Patents

Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water. Download PDF

Info

Publication number
NL2012292C2
NL2012292C2 NL2012292A NL2012292A NL2012292C2 NL 2012292 C2 NL2012292 C2 NL 2012292C2 NL 2012292 A NL2012292 A NL 2012292A NL 2012292 A NL2012292 A NL 2012292A NL 2012292 C2 NL2012292 C2 NL 2012292C2
Authority
NL
Netherlands
Prior art keywords
air
channel
condenser
gas
auxiliary
Prior art date
Application number
NL2012292A
Other languages
Dutch (nl)
Inventor
Igor Kogan
Viktor Vartovoi
Original Assignee
Vitality Vector B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitality Vector B V filed Critical Vitality Vector B V
Priority to NL2012292A priority Critical patent/NL2012292C2/en
Priority to PCT/NL2014/050477 priority patent/WO2015005791A1/en
Application granted granted Critical
Publication of NL2012292C2 publication Critical patent/NL2012292C2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Drying Of Gases (AREA)

Description

Title: Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water
FIELD OF THE INVENTION
The present invention relates to a method and device for extracting various components from ambient air or from vapor-gas mixture. The device is configured to operate alternately in adsorption mode and desorption mode.
One of the substances which may be removed from air or from a gas is carbon dioxide. Carbon dioxide is known to be a greenhouse gas. The continuous exhaust of carbon dioxide is having effects on our climate and will continue to do so. For that reason, it is preferable not to discharge carbon dioxide into the surroundings. There is a need for improved devices for reducing carbon dioxide.
The present invention further relates to the field of air-conditioning, heating of air, water purification and/or desalination.
The present invention may be used to provide drinking water. Many areas on the planet experience severe shortages or a complete lack of drinking water. Therefore, there is a need for improved devices for providing drinking water.
BACKGROUND OF THE INVENTION
Devices for extracting moisture from air with the assistance of a desiccant are known. The present invention is based on the insight that these known devices have several drawbacks. US4285702 discloses a device for extracting moisture from the air having an adsorber bed 5. In the invention, it was recognized that this device has several drawbacks. Solar energy is required during the desorption phase. This makes the device dependent on the day/night cycle and also on the cycle of the seasons of the year. The apparatus only works in the summer time when there is enough solar power.
Further, apart from the solar energy, cold air from the night is required to cool the cold storage. This creates a second dependency on the day/night cycle. The cold storage further makes the apparatus large and heavy. It was further recognized that the device requires a lot of energy to pump the air or gas through the bed 5. Furthermore, a large volume of adsorption material is required.
Furthermore, during the adsorption phase, a part of the air or gas is fed through the cold storage without being fed through the adsorption material. This flow, indicated as A2 in figure 1 of US4285702, is released straight into the atmosphere from the cold storage without passing the adsorption material. This is disadvantageous if substances are to be removed which should not enter the atmosphere.
Further, it was recognized that the device of US4285702 is not suitable for extracting moisture from combustion gasses, because it cannot be operated at the relatively high temperatures which are generally required for the processing of combustion gasses. The device of US4285702 is only capable to extract moisture from ambient air, which is a serious drawback.
Another device for extracting moisture from air is disclosed by W02008/018071, which discloses an apparatus for extracting water from air. It was recognized in the present invention that this device has several drawbacks, which are discussed below.
One of the drawbacks of W02008/018071 which was recognized in the present invention is that during the desorption phase, air or gas is continuously discharged from the vessel into the surroundings. In order to prevent underpressure in the vessel, a one-directional air intake 16 is provided. The air that enters the vessel through the air intake needs to be heated in order to let the desorption process continue. This requires substantial heating during the desorption phase, which is energy-inefficient.
This drawback is connected with another disadvantageous feature of W02008/018071, namely that a heat pump 8 is used to cool the condenser. This is a complicated and cumbersome process, and makes the air in the condenser too cold to be recirculated back into the vessel. The heat pump is also used to cool the condenser with heat formed in the adsorption process, see page 4, lines 1-2. To this end, a heat collector 5 is provided inside the cassette 4. This heat collector 5 is complicated. Moreover, the heat collector 5 does not really work, since the amount of energy which is collected during the adsorption is minimal in comparison with the amount of energy required for cooling of the condenser during the desorption process.
Further, the solar heat collector 12 of W02008/018071 makes this system dependent from the day/night cycle and the seasons of the year, which is a disadvantage when processing combustion gasses.
All in all, W02008/018071 provides a complex and cumbersome system that does not meet the demands.
Air conditioners which use a compressor and a refrigerant are also known. These air conditioners are widely applied. A known drawback of these air conditioners is the large quantity of energy which is consumed and the environmental problems associated with the refrigerant.
Devices for conditioning air without a compressor or a refrigerant are also known. US5460004 discloses a system for cooling air (or more generally gas) comprising a desiccant module and a heat exchanger. In the present invention the insight was developed that a drawback of the device of US5460004 is that it a refrigerant in the form of water, see figure 2. Water may lead to corrosion, which is disadvantageous. The system of US5460004 further requires extra steps to heat the desiccant which is not very efficient. US6338258B1 discloses an indirect regenerative air cooling device. Although the device of US6338258B1 appears to work, it was recognized that this device does not use the full potential of air cooling at atmospheric pressure. It is also quite complex.
OBJECT OF THE INVENTION
It is an object of the invention to provide an improved method and device for extracting various components from vapor-gas mixtures. The invention relates in particular to a method and device for removing moisture and other substances, in particular carbon dioxide, from air or from a gas, in particular from an exhaust gas.
It is a further object of the invention to use this method and device in a system and method for cooling air, for heating of air, for desalination of water and/or for water purification.
SUMMARY OF THE INVENTION
The invention provides a device for removing moisture and/or another substance, from ambient air or from a gas, the device being configured to operate alternately in an adsorption phase and a desorption phase, the device comprising: a vessel comprising an entry and an exit which comprise valves allowing the exit and entry to be opened and closed, a body of adsorption material positioned inside the vessel, the body having a substantially tubular shape, wherein the vessel has an upstream region which is located upstream from the body of adsorption material and wherein the vessel has a downstream region which is located downstream from the body of adsorption material, wherein the device further comprises: a fan for blowing air or gas through the body of adsorption material from the upstream region to the downstream region, wherein the device is configured to create a main flow during the adsorption phase, the main flow entering the vessel via the entry, subsequently flowing through the body of adsorption material and exiting the vessel via the exit, wherein moisture and/or another substance is adsorbed by the adsorption material, the device further comprising: a heating unit for heating the air or gas inside the device during the desorption phase, at least one main return conduit for returning a main return flow of air or gas from the downstream region to the upstream region during the desorption phase, creating a main loop of repeated flow through the body of adsorption material during the desorption phase, a condenser loop for extracting moisture during the desorption phase, the condenser loop comprising: o a condenser, o a branch conduit which extends from the vessel to the condenser and which allows a branch flow to flow from the vessel to the condenser, o a condenser return conduit (10A) which extends from the condenser to the vessel and in use returns the branch flow from the condenser to the vessel.
The present invention may be used to remove particular carbon dioxide from a gas, for instance an exhaust gas. The present invention may be used in mobile and stationary power plants, gas and oil processing plants. The device of the invention may be used for processing exhaust gasses from combustion of combustible gas, gasoline and heavy fuels. The device according to the invention is capable of protecting the environment by reducing the emission of harmful gases into the atmosphere. In a separate or simultaneous application, the device according to the invention can extract clean drinking water in most regions of the world.
As will be explained further below, the device according to the invention may be used for different purposes, for instance in a larger system for air-conditioning, for heating air, for water purification or air and/or for water desalination. The system may combine these functions in a single system or be a dedicated system, which is oriented at performing one of these functions only.
The air or gas generally comprises vapor and can be regarded as a gas-vapor mixture.
Simplicity is one of the key advantages of the present invention. The simplicity makes the device very practical.
The body may have a tubular shape. The tubular shape may have a uniform or non-uniform diameter. The tubular shape may be conical. The vessel may comprise multiple tubular bodies of adsorption material.
In a combination with a source of gas and a source of residual energy, the operational costs of the present invention are very low.
The present invention may be used for extracting various components from ambient air or from vapor-gas mixture. The device is configured to operate alternately in adsorption mode and desorption mode.
One of the substances which may be removed from air or from a gas is carbon dioxide. Carbon dioxide is known to be greenhouse gas. The continuous exhaust of carbon dioxide is having effects on our climate and will continue to do so. For that reason, it is preferable not to discharge carbon dioxide into the surroundings. There is a need for improved devices for reducing carbon dioxide.
In another field of use, the present invention may be used to provide drinking water. Many areas on the planet experience severe shortages or a complete lack of drinking water. Therefore, there is a need for improved devices for providing drinking water.
The present invention may be provided in a dual arrangement, i.e. with two vessels, which alternately operate in adsorption phase and desorption phase. The condenser may be shared by the two vessels and alternately take in air from one vessel or from the other vessel. In this way only a single condenser needs to be present and the condenser may function full time.
In an embodiment, the condenser loop is closed, i.e. no air or gas is discharged into the surroundings from the condenser loop.
The substantially tubular shape of the body of adsorption material results in a lower volume of adsorption material which is required, and also results in a greater surface area and lower resistance to flow.
The air or gas in the vessel is circulated through the condenser loop. The dry air or gas coming from the condenser re-enters the vessel each time and requires relatively little heating for the desorption process to continue. In an embodiment, no extra air or gas needs to be entered into the vessel during the desorption phase. In an embodiment, both the main return flow and the branch flow are driven by a single fan. W02008/018071 cannot be modified in order to recirculate the air or gas from the condenser 9 back into the vessel of D1 without a complete redesign. The condensing plate 9 is so cold as a result of the heat pump 8 that the air or gas which exits the condenser 9 is colder than the ambient air entering the vessel via valve 16. This is clear from the fact that the air coming from the condenser is used to cool the ambient air, see page 14, lines 19-20 of W02008/018071. If the air or gas leaving the condenser would be recirculated back into the vessel, the required heat for the desorption would be increased, making the device less energy efficient.
In an embodiment, the present invention uses a condenser which operates on ambient air. This results in a simpler and more cost-effective device which uses less energy. Also, the condenser is suitable to be operated at relatively high temperatures which facilitates processing of exhaust gases.
Hence, in the present invention the combination of: 1) a simple condenser cooled by ambient air, and 2) the recirculation of the air or gas back into the vessel provides the benefit of a simple device having an easier construction and a lower energy consumption, in particular during the desorption phase.
In an embodiment, a condenser is used which operates on ambient air in cooperation with the tubular body of adsorption material. It was found in practice that a very good result is obtained with this configuration.
In an embodiment, an outside heat source is used to heat the air or gas inside the vessel during the desorption phase. In a very useful application, the present invention is used in combination with a source which provides both an exhaust gas and residual heat. In this application, the residual heat can be used for heating the contents of the vessel during the desorption phase. The source may be a power plant, hydrocarbon processing plant or other kind of installation.
In an embodiment, the body of adsorption material has a length and a diameter which is uniform over said length. This further simplifies the system according to the invention.
In an embodiment, the upstream region is located outside the substantially tubular body and at least a part of the downstream region, named the inner region, is located inside the substantially tubular body. It was found that this is a very efficient configuration and allows a further simplification of the device.
In an embodiment, the device comprises a downstream chamber and an adsorption/desorption chamber. The downstream chamber being separated from the adsorption/desorption chamber by a partition wall, and being fluidly connected to the inner region of the tubular body of adsorption material via an opening in the partition wall, wherein the fan is provided in said opening. At least one branch conduit starts in said downstream chamber.
The downstream chamber may be provided at one end of a cylindrical vessel, and be defined by a partition wall from the rest of the cylindrical vessel.
In an embodiment, the branch conduit has an entry opening which is provided in the wall of the downstream chamber.
In an embodiment, the device comprises a plurality of main return conduits, wherein the main return conduits start at the downstream region and extend parallel to a main axis of the tubular body of adsorption material, wherein the return conduits have discharge openings which are located near an end of the tubular body of adsorption material.
In an embodiment, the exit is provided in an outer wall of the downstream chamber.
In an embodiment, the device further comprises a movable partition wall which is positioned within the tubular body of adsorption material, the movable partition wall comprising openings, wherein the movable partition wall is movable between a closed position and an open position, wherein in the closed position the movable partition wall substantially divides the inner region inside the tubular body in a first part and a separate second part. The first and second part being connected via openings in the movable partition wall, and wherein in the open position the first part and second part are united and together form the inner region.
In an embodiment, the condenser comprises a condenser entry for ambient air, a fan, an exchange surface for exchanging heat between a branch flow arriving through the branch channel and a flow of ambient air entering the condenser through the condenser entry, and a condenser discharge for discharging the heated ambient air.
In an embodiment, the device comprises at least a first layer of a first adsorption material for adsorbing a first substance and a second layer of a second, different adsorption material for adsorbing a second substance, wherein the first and second layer form a multilayer tubular body, the device further comprising a docking station for a container, wherein the docking station is connected to the vessel via a discharge conduit and comprises a pump for pumping the contents of the vessel, in particular air or gas which comprises one or more undesired substances such as carbon dioxide, into the container.
The present invention is in particular suitable to adsorb moisture and another substance during the adsorption phase, followed by a desorption phase which comprises: first desorbing the moisture and the other substance from the desorption material and condensing the moisture, and subsequently pumping out the remaining gas or air including the other substance into the container.
The other substance may in particular be carbon dioxide.
In another embodiment, the body of adsorption material comprises materials to adsorb moisture, carbon dioxide and monoxide.
In an embodiment, the heating unit comprises a closed conduit system which is connected to a source of heated fluid, wherein the conduit is physically separated from the body of adsorption material.
In an embodiment, the entry of the device is connected to a gas source, and the heat source of the heating system and said gas source form part of a common source device.
The common source device may in particular be a power plant, a heat plant, a hydrocarbon processing plant, or a factory.
In an embodiment, the condenser does not comprise any heat pump. In an embodiment, the device does not comprise any cold storage. The absence of a heat pump and/or cold storage may further simplify the present invention.
In an embodiment, the device does not comprise any pre-cooling device for cooling the air or gas which enters the vessel via the entry. The absence of a pre-cooling device further simplifies the present invention.
In an embodiment, the condenser return channel of the condenser loop branches into a water channel for discharging the water from the device and a condenser gas return channel which ends in the vessel. The water may be captured in a reservoir and re-used.
In an embodiment, the upstream region extends around the tubular body of adsorption material. It was found that this results in a simple construction in combination with an efficient flow pattern.
In an embodiment, a cooling device is provided upstream of the entry, in order to cool the incoming gas flow during adsorption and facilitate the adsorption process. A filter may also be provided upstream of the entry in order to clean the incoming gas flow.
In an embodiment, the device comprises a vortex tube which is provided in the condenser loop and positioned downstream from the condenser. The vortex tube comprises a vortex tube entry where air or gas under pressure coming from the condenser is fed into, a cold air exit for cold air and a hot air exit for hot air, wherein the cold air exit is connected to the air entry of the condenser. The cold air is discharged after being fed through the condenser. The hot air exit merges with the return channel and exits into the vessel.
The vortex tube improves the performance in particular when the ambient air has a relatively low moisture content. The cold air from the vortex tube may be mixed with ambient air prior to entering the condenser.
The present invention further relates to a method of removing moisture or another substance from ambient air or from a gas, in particular an exhaust gas, the method comprising: providing a device according to claim 1, during the adsorption phase: o feeding ambient air or gas into the entry and through the tubular body of adsorption material, o adsorbing moisture and/or another substance from the air or gas by the adsorption material, and o discharging the air or gas through the exit, when the adsorption material is saturated, switching the device to desorption phase and: o closing the entry and the exit, o repeatedly circulating the air or gas inside the vessel through the body of adsorption material while heating the air or gas, thereby desorbing the one or more substances from the adsorption material, and o circulating a portion of the air or gas from the vessel through the condenser loop for removing moisture and returning the dried air or gas into the vessel after the condensation.
The method provides substantially the same advantages as the device according to the invention.
In an embodiment of the method, the entry of the device is connected to a gas source, wherein in the desorption phase residual heat is used from a heat source and wherein the heat source and the gas source form part of a common source device in particular a power plant, a heat plant, a hydrocarbon processing plant, or a factory and wherein during adsorption phase gas from the gas source is fed into the vessel, and wherein during desorption phase heat, in particular residual heat, from the heat source is used to heat the air or gas inside the vessel.
In an embodiment, the method comprises providing a movable partition wall having openings in said wall, the movable partition wall being positioned within the tubular body of adsorption material, wherein in the desorption phase the movable partition wall is moved to a closed position in which it divides the space inside the tubular body in a first part and a second part which are in connection with one another via the openings in the movable partition wall, and wherein in the adsorption phase the movable partition wall is moved to an open position in which the first part and second part are united.
The movable partition wall distributes the flow over the surface area of the body of adsorption material and provides for a relatively even distribution.
In an embodiment, the body of adsorption material comprises a first layer of adsorption material for adsorbing a first substance and a second layer of a second, different adsorption material for adsorbing a second substance, wherein the first and second layer form a multi-layer tubular body. The device further comprises a docking station for a container, wherein the docking station is connected to the vessel via a discharge conduit and comprises a pump for pumping the contents of the vessel, in particular air or gas which comprises one or more undesired substances such as carbon dioxide, into the container. The method comprises: at the end of the desorption stage, pumping the air or gas which is inside the vessel into the container. In an embodiment the first material is chosen to absorb moisture. The desorption stage comprises first removing the moisture from the air or gas inside the vessel and subsequently pumping the air or gas into the container.
In this way, exhaust of substances such as carbon dioxide into the atmosphere can be substantially reduced.
In an embodiment, the device comprises a vortex tube positioned downstream from the condenser in the condenser loop, wherein during the desorption phase at last a part of the air or gas from the condenser is fed into the vortex tube and split into a cold flow and a warm or hot flow, the cold flow being returned as coolant to the condenser and the hot flow being returned to the vessel.
The device of the invention may be used in mobile and stationary power plants, and in plant for processing hydrocarbons such as oil and gas.
The device is capable of extracting clean water from ambient air or gases, and can reduce the exhaust of harmful gases into the atmosphere. The device according to the invention does so with simple means and configuration.
The present invention further relates to a system for cooling air, heating air, desalination of water and/or water purification, the system comprising: a device according to claim 1, the device being configured as a dehumidifier and comprising: o a primary air inlet and a primary air outlet, o at least two vessels which are arranged in parallel and are constructed to operate alternately in adsorption mode and de-adsorption mode, each compartment comprising a substantially tubular body of a moisture absorbing material for adsorbing moisture from a primary air flow during the adsorption mode, an air cooling device arranged downstream of the dehumidifier and connected to the primary air outlet of the dehumidifier, wherein the air cooling device comprises: o a first, indirect evaporative air cooler in which the dried primary air from the dehumidifier is cooled indirectly, and o a second, direct evaporative air cooler, the direct evaporative air cooler device being arranged downstream from the indirect evaporative air cooler and coupled to the indirect evaporative air cooler.
In an embodiment, the present invention provides a simple and cost-efficient system with which air can be cooled without a compressor or refrigerant. In an embodiment, the device may be configured for heating air, desalination of water and/or water purification.
In an embodiment, the indirect evaporative air cooler comprises: a primary air inlet and a primary air outlet: a regenerative air channel which is fed with a regenerative air flow to be used as a coolant, wherein the regenerative air channel is branched off from the primary air channel at a branch off point, an evaporative water distribution system for distributing an evaporative water in the regenerative air channel for cooling the regenerative air flow, a heat exchange surface placed between the primary air channel and the regenerative air channel for conducting heat from the primary air flow to the regenerative airflow.
In an embodiment, the system comprises a third, auxiliary air cooler for cooling the regenerative air flow with an auxiliary air flow, wherein the third, auxiliary air cooler comprises: an auxiliary air inlet for the auxiliary air flow, an auxiliary air channel and an auxiliary air outlet for the auxiliary air flow, an auxiliary evaporative water distribution system for distributing an evaporative water in the auxiliary air channel for cooling the auxiliary air flow, a heat exchange surface placed between the auxiliary air channel and the regenerative air channel for conducting heat from the regenerative air flow to the auxiliary air flow, wherein the regenerative air flow cools the primary air flow and is simultaneously cooled itself by the auxiliary air flow. It was found that the auxiliary air cooler allows a more effective cooling, and in the end lower temperatures of the air and/or a better energy efficiency
In an embodiment, the system comprises: a return channel returning from the space which is to be air-conditioned, and an intake for ambient air, wherein the intake merges with the return channel from the space for creating a mixture of ambient air and return air, wherein the return channel is connected to the auxiliary air inlet of the auxiliary air cooler, wherein the auxiliary air flow comprises ambient air, air from the space to be cooled or a mixture thereof. The possibility of mixing creates a versatile system which can be adapted to varying circumstances.
In an embodiment, the system comprises a regenerative air outlet which discharges into the auxiliary air channel, wherein the regenerative air flow merges with the auxiliary air flow. It was found that in this way the cooled regenerative air flow may still be used and does not need to be discarded.
In an embodiment, the first air cooler, second air cooler and third air cooler form an integrated device. The integrated device is easy to install and operate and very efficient.
In an embodiment, at least a substantial part of the regenerative air channel is located between a primary air channel of the first, indirect evaporative air cooler and an auxiliary air channel of the third, auxiliary air cooler. In an embodiment, the primary air channel of the first, indirect evaporative air cooler, the regenerative air flow channel and the auxiliary air flow channel are arranged concentrically. It was found that this configuration is very effective for cooling.
In an embodiment, the system comprises: an air filter positioned upstream of the dehumidifier, and downstream of an intake of ambient air, an evaporator positioned upstream of the dehumidifier and downstream of the air filter, a direct return channel which extends from the space to be air-conditioned to the primary air channel at a merge point upstream of the dehumidifier, a bypass channel which bypasses the dehumidifier from a point in the primary air channel upstream of the dehumidifier to a point downstream of the dehumidifier, the bypass channel comprising a valve for opening and closing the bypass channel, and at least one fan in the primary air channel for driving the primary air flow through the primary air channel.
The components provide the benefit that the system can be used for cooling dry air, for heating air, and for desalination and water purification.
In an embodiment, the system comprises a heat exchanger comprising: a heat exchanger air inlet which is connected to the auxiliary air flow outlet of the third, auxiliary air cooler, a heat exchanger air outlet which is connected via a return channel to the primary air channel at a return point upstream of the dehumidifier, a heat exchanger coolant inlet which branches off from the primary air channel downstream of the second, direct evaporative air cooler.
The extra heat exchanger may increase the efficiency during cooling and/or may increase the recovery of water during desalination and water purification.
In an embodiment, the system comprises: a water collecting tank for collecting water from the dehumidifier and the heat exchanger, and a water channel extending between the water collecting tank and respectively the air cooling device for transporting water from the water collecting tank to the first, second and third air coolers.
The recovered water can advantageously be put to use in the evaporative cooler device.
It will be understood that the dehumidifier may comprise any of the features according to claims 2-18.
In an embodiment, a branch off point for the regenerative air flow is located in the direct evaporative cooler, in particular downstream of a first region of direct evaporative cooling and upstream of a second region of direct evaporative cooling. Advantageously, the branch off flow is cooled by direct evaporation prior to being branched off and will be cooler as a result.
In an embodiment, the device is free of any compressor and free of the use of a refrigerant.
The present invention further relates to a method of cooling air, heating air, desalination of water and/or water purification, the method comprising: providing a system according to claim 26, cooling the dried primary air flow which exits the dehumidifier with an air cooling device arranged downstream of the dehumidifier and connected to the primary air outlet of the dehumidifier, wherein the cooling device comprises: o a first, indirect evaporative air cooler in which the dried primary air flow from the dehumidifier is cooled indirectly, and o a second, direct evaporative air cooler, the direct evaporative air cooler device being arranged downstream from the indirect evaporative air cooler and coupled to the indirect evaporative air cooler.
The method has substantially the same advantages as the device.
In an embodiment of the method, the first, indirect evaporative air cooler is an indirect regenerative air cooler using a regenerative air flow which is branched off from the primary air flow, and wherein the regenerative air flow is simultaneously cooled with a third auxiliary air flow which comprises ambient air, air from a space to be cooled or a mixture thereof.
In an embodiment of the method, the system is configured to switch between the following operating modes: an air cooling mode of warm humid air, wherein a primary air flow is taken from the space to be cooled via an air return opening, guided through the dehumidifier and through the first air cooler and second air cooler, an air cooling mode for warm dry air, wherein the primary air flow is taken from the space to be cooled, bypasses the dehumidifier via a bypass channel and is guided through the first and second air cooler, an air heating mode, wherein outside air which enters the device via an air intake is supplied to an evaporator, wherein the evaporator is fed with warm water which is recovered in a desorption cycle of the dehumidifier, and wherein the heated and humidified primary air flow from the evaporator is dehumidified and heated in an desorption step in the dehumidifier, a desalinisation or purification mode, wherein saline water is supplied to the evaporator where it is evaporated in a primary air flow, thereby moistening the primary air flow, and wherein the moistened primary air flow is dried in a compartment of the dehumidifier by adsorption of the moisture to the adsorption material, and wherein subsequently the compartment is switched to desorption mode, wherein during the desorption mode the moisture is recovered in a condenser of the dehumidifier and discharged into a tank.
The present invention further relates to an air cooling device comprising: a first, regenerative indirect evaporative air cooler comprising: o a primary air channel for conveying a primary air flow between a primary air inlet and a primary air outlet, o a regenerative air channel which is fed with a regenerative air flow to be used as a coolant, wherein the regenerative air channel is branched off from the primary air channel at a branch off point, o an evaporative water distribution system for distributing an evaporative water in the regenerative air channel for cooling the regenerative air flow, o a heat exchange surface placed between the primary air channel and the regenerative air channel for conducting heat from the primary air flow to the regenerative air flow. a second, direct evaporative air cooler, the direct evaporative air cooler device being arranged downstream from the indirect evaporative air cooler and coupled to the primary air outlet of the indirect evaporative air cooler, a third, auxiliary air cooler for cooling the regenerative air flow with an auxiliary air flow, wherein the third, auxiliary air cooler comprises: o an auxiliary air inlet for the auxiliary air flow, an auxiliary air channel, and an auxiliary air outlet for the auxiliary air flow, o an auxiliary evaporative water distribution system for distributing an evaporative water in the auxiliary air channel for cooling the auxiliary air flow, o a heat exchange surface placed between the auxiliary air channel and the regenerative air channel for conducting heat from the regenerative air flow to the auxiliary air flow.
The air cooling device is a component of the system which in itself was found to be very efficient in cooling the primary air flow and moreover a very practical device.
In an embodiment of the air cooling device, the first air cooler, second air cooler and third air cooler form an integrated air cooling device.
In an embodiment of the air cooling device, at least a substantial part of the regenerative air channel is located between a primary air channel of the first, indirect evaporative air cooler and an auxiliary air channel of the third, auxiliary air cooler.
In an embodiment of the air cooling device, the primary air channel of the first, indirect evaporative air cooler, the regenerative air flow channel and the auxiliary air flow channel are arranged concentrically.
These and other aspects of the invention will be more readily appreciated as the same becomes better understood by reference to the following detailed description and considered in connection with the accompanying drawings in which like reference symbols designate like parts.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 shows a cross section in side view of a first embodiment of the invention in adsorption phase.
Figure 2 shows a top view of the first embodiment.
Figure 3 shows a cross section in side view of the first embodiment in desorption phase.
Figure 4 shows a top view of the first embodiment.
Figure 5 shows a cross section in side view of a second embodiment of the invention in desorption phase.
Figure 6 shows a top view of the second embodiment.
Figure 7 shows a diagrammatic configuration of the device according to the invention with a source.
Figure 8 shows a schematic view of another embodiment of the invention.
Figure 9 shows a schematic cross sectional side view of a part of the embodiment of figure 8.
Figure 10 shows a schematic cross sectional top view of a part of the embodiment of figure 8.
Figure 11 shows a schematic isometric view of an embodiment of a cooling device according to the invention.
Figure 12 shows a psychometric chart of a first operating mode of the embodiment of figure 8.
Figure 13 shows a psychometric chart of a second operating mode of the embodiment of figure 8.
Figure 14 shows a psychometric chart of a third operating mode of the embodiment of figure 8.
DETAILED DESCRIPTION OF THE FIGURES
Turning to figures 1, 2, 3 and 4, a device 1 according to the invention is shown. The device is intended for removing moisture or another substance from ambient air or from a vapor-gas mixture. The gas may in particular be an exhaust gas from a power plant or factory. The device is configured to operate alternately in adsorption phase and desorption phase.
The device comprises a vessel 20. The vessel is cylindrical and may have a substantial vertical central axis 19. The vessel 20 has a uniform diameter and has a bottom end and a top end and a circumferential wall 21. The vessel comprises an entry 6A which is provided in the lower end. The vessel comprises an exit 6 which is located in the upper end. The entry 6A and the exit 6 having closing gates 150 (also indicated as valves) which can be operated to open or close the entry 6A and the exit 6. The gates are shown in figure 7.
Inside the vessel is a body 4 of adsorption material. The body has a substantial tubular shape, i.e. having an annular cross-section. The body comprises a reticulate mesh. The tubular shape is parallel with the vessel, in particular coaxial. The tubular shape has a length 28 and a diameter 29. The body has a thickness 31 which is also uniform. The diameter 29 is uniform over the length.
Adsorption materials for moisture are known and may comprise zeolite, silica gel, lithium, activated carbon, salts and other materials. The adsorption material is sometimes indicated as desiccant material.
At the lower end (also referred to as upstream end) of the body 4, an end wall 33 is provided which closes off the lower end of the body. The upper end 452 (also referred to as downstream end 452) is positioned against a partition wall 8.
The device further comprises a condenser 10. The condenser is of a type which is cooled by ambient air. The condenser is located outside the vessel 20 and is connected to the vessel via a branch conduit 9 and a condenser return conduit 10A. The condenser has an air entry 50 for ambient air and an air exit 54. Inside the condenser there is an exchange surface via which the ambient air can cool the flow arriving in the condenser through the branch conduit 9.
The vessel has an upstream region 22 which is located upstream from the body of adsorption material. The upstream region extends around the body 4 and extends over an area between the entry 6A and the end wall 33.
The vessel 20 has a downstream region 24 which is located downstream from the body 4 of adsorption material and comprises two parts 24A and 24B. A first part 24A of the downstream region 24 is located in a downstream chamber 30 which is separated from the rest of the vessel by a partition wall 8. An opening 34 is provided in the partition wall and a fan 5 is provided in said opening. The entry 6a, the fan 5 and the exit 6 are coaxial.
The downstream chamber is fluidly connected to the inner region 24B of the tubular body of adsorption material via the opening 34. A second part 24B of the downstream region, named the inner region 24B, is located inside the substantially tubular body and upstream of the fan 5. A movable partition wall 15, also referred to as a gate 15, is provided in the inner region. The gate can be operated to substantially divide the inner region 24A in two parts, a first part 48 and a second part 49. The partition wall is not closed but comprises openings which allow the passage of air or gas from lower part 49 to upper part 48. The movable partition wall 15 creates a flow which is more evenly spread over the surface area of the body 4.
The device further comprises at least one main return conduit 7 for returning air or gas from the downstream region to the upstream region in the desorption phase. This will be elucidated further below.
The device further comprises the fan 5 for blowing air or gas through the body 4 of adsorption material from the upstream region 22 to the downstream region 24,
The device further comprises a heating unit 14 for heating the air or gas inside the device. The heating unit comprises a system of closed circuit conduits 70 through which a heating fluid can run. The conduits are located in the upstream region 22 of the vessel 20.
The device further comprises a condenser loop 26 which comprises the condenser 10, the branch conduit (9) which extends from the vessel to the condenser, and the condenser return conduit (10A) which extends from the condenser back to the vessel. The condenser loop 26 is configured to let a relatively small flow of air or gas run from the downstream chamber 30 through the condenser and back to the upstream region 22 of the vessel 20 during the desorption phase. In this embodiment, the condenser loop is closed, i.e. no air or gas is discharged into the surroundings in the condenser loop.
The branch conduit 9 has an entry opening 40 which is provided in the wall of the downstream chamber 30.
The device comprises one or more or in particular a plurality of main return conduits 7. The main return conduits 7 start at the downstream chamber 30. Valves 41 are provided to open and/or close the main return conduits 7. The main return conduits extend parallel to the main axis 19 and extend parallel to the tubular body 4 of adsorption material.
The main return conduits have discharge openings 42 which are located near an end (44) of the tubular body of adsorption material. It is also possible that a single main return conduit is provided, which for instance extends along the outer side of the vessel 20.
The exit 6 of the device is provided in an outer wall 46 of the downstream chamber. The end wall forms the end face of the vessel 20.
The device further comprises a movable partition wall 15 which is positioned within the tubular body 4 of adsorption material. The movable partition wall comprises openings. The movable partition wall 15 is movable between a closed position and an open position.
The movable partition wall is mounted on an axis 25 which extends at right angles with the main axis 19 and extends through the vessel wall 21. The axis 25 is rotatable from the outside.
In the closed position, the movable partition wall divides the inner region 24B inside the tubular body in a first part 48 and a separate second part 49. The first and second part have roughly the same size. In the open position, the first part 48 and second part 49 are united and together form the inner region 24B.
The condenser 10 comprises a condenser entry 50 for ambient air, a fan 11, an exchange surface 52 for exchanging heat between a branch flow arriving through the branch channel 9 and a flow of ambient air entering the condenser through the condenser entry, and a condenser discharge 54 for discharging the heated ambient air.
The device may be used to extract multiple substances from the air or gas. To this end, the body 4 may comprise multiple different adsorption materials. In an advantageous embodiment the multiple materials are arranged as concentric layers 4A, 4B. A first layer 4A of a first adsorption material for adsorbing a first substance is provided around a second layer 4B of a second, different adsorption material for adsorbing a second substance. The first and second layer form a multi-layer tubular body.
The device further comprises a docking station 60 for a container 62. The docking station is connected to the vessel via a discharge conduit 64. The docking station comprises a pump 66 for pumping the contents of the vessel, in particular air or gas which comprises one or more undesired substances such as carbon dioxide, into the container.
When the container is full, a second empty container can be connected to the docking station.
The heating unit 14 comprises a closed conduit system 70 which is connected to a source 71 of heated fluid, which is discussed in relation to figure 7 below. The closed conduit system 70 is physically separated from the body 4 of adsorption material.
The heating unit 14 may additionally or alternatively comprises a low voltage electrical heating system of wires which extend through the body of adsorption material. In use, an electrical current may be passed through the wires, thereby making the process more efficient.
The condenser 10 does not comprise any heat pump. This results in a very simple system. The device 1 does not comprise any cold storage. It was recognized that cold storage makes the system overly complicated and less efficient.
In an embodiment, the device 1 does not comprise any pre-cooling device for cooling the air or gas which enters the vessel via the entry 6A. This is not required in many situations and further simplifies the system.
The condenser return channel 10A of the condenser loop branches into a water channel 78 for discharging the water from the device and a condenser gas return channel 80 which ends in the vessel. The water channel 78 discharges into a reservoir 12. The water may be used in the evaporative cooler or for other purposes, such as drinking or irrigation.
The upstream region 22 extends around the tubular body 4 of adsorption material and also extends in the area between an end wall 45 of the vessel 20, the entry 6A and the end wall 33 of the body 4.
In use, the device 1 is operated as follows. Figures 1 and 2 show the adsorption phase. In adsorption phase, air or gas is fed through the entry 6A as shown by arrows 100. The air or gas may have a temperature of 10C to 45C.
The air or gas is distributed throughout the upstream region 22 as indicated by arrows 102. The driving force behind the flow is the fan 5.
The air or gas subsequently flows through the tubular body 4 of adsorption material. The adsorption materials adsorb moisture and/or another substance from the air or gas and gradually become saturated with the moisture and other substances. The gas subsequently enters the inner region and flows through the opening 34 into the downstream chamber 30. The air or gas subsequently exits the device via the exit 6. Upon exiting, the air or gas may have a temperature of 15- 50. This is higher than the temperature at entry, which is caused by the energy which is released by the adsorption process.
Turning to figures 3 and 4, when the adsorption materials are completely saturated, the device 1 is switched to desorption phase. The entry 6a and the exit 6 are closed. The movable partition wall 15 is also closed, dividing the inner region in two parts 48, 49 but allowing a flow from the second part 49 to the first part 48 through openings in the movable partition wall 15.
The fan 51 of the condenser 10 is turned on and blows ambient air over the exchange surface 52. The fan 5 sucks air or gas from the inner region 24B and pumps it into the downstream chamber 30.
From the downstream chamber, two separate flows flow to the upper region. A main return flow flows via the main return channels 7 from the downstream region to the upstream region. The main return flow is indicated by arrows 106. A branch flow flows through the opening 40 into the branch flow channel 9. The branch flow 108 may be substantially smaller than the main return flow 106. The ratio between the branch flow and the return flow can be determined by the ratios of the cross sections of the branch flow channel 9 and the main return channels 7. Account will have to be taken for the resistance inside the channels, in particular the resistance over the condenser 10. Both the main return flow 106 and the branch flow 108 are driven by the single fan 5. In another embodiment, a separate fan may be provided inside the branch flow channel 9 to more accurately control both flows.
Also, the heating system is turned on and a heated fluid flows through the closed conduit system 70. The air or gas inside the vessel is gradually heated to a target temperature.
The branch flow flows through the condenser 10. In the condenser, moisture is removed from the air or gas. The moisture is collected in the reservoir 12. At the same time the main return flow 106 circulates through the body 4 of adsorption material and desorbs moisture and other components from the body 4. Gradually, all adsorbed substances are desorbed from the body of adsorption material.
The moisture is collected in the reservoir 12. Other substances such as carbon dioxide are contained in the air or gas inside the vessel.
This condition is maintained for a certain period of time.
When the moisture has been removed from the air or gas, the pump 66 of the docking station 60 is turned on. The air or gas inside the vessel is pumped into the container 62 with pump 66. If the container is not large enough, the pump 66 is turned off and a second container is docked into the docking station and the pumping is resumed. An under pressure is created inside the vessel and an over pressure is created inside the one or more containers. The docking station 60 is optional. If no carbon dioxide or other components need to be removed, it may be left out.
The pumping may continue for another period of time, referred to as the third period The second and third period may coincide, or overlap or the third period may occur after the second period is over, i.e. the condenser may be turned off during the third period.
In the desorption phase the movable partition wall is moved to a closed position in which it divides the space inside the tubular body in a first part 48 and a second part 49 and in the adsorption phase the movable partition wall is moved to an open position in which the first part and second part are united.
Turning to figures 5 and 6, another embodiment is shown in which the device comprises a vortex tube 18, i.e. a Ranque-Hilsch vortex tube, which is provided in the condenser loop 26 and positioned downstream from the condenser 10. The vortex tube 18 is a device known per se. A vortex tube divides an incoming flow into two outgoing flows, a cold outgoing flow and a warm or hot outgoing flow. The exact principle which underlies a vortex tube 18 is not completely known, but it works and is a very simple device without any moving parts.
The vortex tube comprises a vortex tube entry 82 in which air or gas are supplied under pressure. The condenser return channel 10A bifurcates at a bifurcation point 120 into the vortex tube entry 82 and the regular condenser return channel 10A. The vortex tube further comprises a cold air exit 83 for cold air and a hot air exit 84 for hot air.
In the vortex tube, the flow from the condenser enters via conduit 82 and is injected tangentially into a swirl chamber and accelerated to a high rate of rotation. Due to a conical nozzle at the end of the tube, only the outer shell of the compressed gas is allowed to escape at that end as hot exit 84. The remainder of the gas is forced to return in an inner vortex of reduced diameter within the outer vortex and exits via the cold exit 83.
The cold air exit 83 is connected to the air entry 50 of the condenser. In use, a cold flow 130 from the vortex tube is fed into the condenser. The hot air exit 84 merges with the return channel and exits into the vessel. In use, the air or gas from the cold air exit may be as cold as -40C to -5 C. In use, the flow from the hot air exit 84 may reach temperatures of 80C to 120C.
Two separate water channels extend to the reservoir 12, a first water channel 19A and a second water channel 19B. The first water channel discharges the water, which is condensed in the condenser and the second water channel discharges the water, which is condensed in the vortex tube.
This embodiment further comprises a second fan 17 which blows the branch flow into the condenser.
Turning to figure 7, two devices 1 may be connected to a common source and operate alternately in adsorption mode and desorption mode. The entry 6A of the device 1 is connected to a gas source 72 for removing substances from the gas coming from the gas source. Gates 150 allow control of the flow of gas from the gas source into the two devices 1
An entry of the heating system 70 (depicted diagrammatically) of the device is connected to the heat source 71. Gates 152 allow control of the flow of heat from the heat source into the two devices 1.
The devices 1 may share a single condenser which alternates between the two vessels 20.
The heat source 71 of the heating system and the gas source 72 form part of a common source device 74. The common source device 74 may in particular be a power plant, a heat plant, a hydrocarbon processing plant, or a factory. In this way, the device of the present invention can clean the gas from the source device while using heat, in particular residual heat, from the very same source.
During the adsorption phase, gas from the gas source is fed into the vessel, and during desorption phase, heat from the heat source, in particular residual heat, is used to heat the air or gas inside the vessel.
Incorporation of the device into a system for air-conditioning, heating of air, water desalination and/or water purification
Turning to figure 8, a system 200 is shown which is constructed to condition air, heat of air, perform water desalination and water purification. The system 200 comprises a dehumidifier 202 for removing moisture from the air. The system 200 is coupled to a space 201 in which the air is to be conditioned via an air supply opening 220 and an air return opening 222.
The dehumidifier 202 is based on the device 1 as discussed in connection with figures 1 -7. The dehumidifier comprises a primary air inlet 204 and a primary air outlet 203. The dehumidifier further comprises at least two vessels 20A, 20B (generally designated 20) which are arranged in parallel and are constructed to operate alternately in adsorption mode and de-adsorption mode.
Each vessel 20 comprises a respective primary air discharge channel 205 with a valve 207. The discharge channels 205 merge into the primary air outlet 203.
The system 200 further comprises an air cooling device 210 which is arranged downstream of the dehumidifier. The air cooling device 210 has a primary air inlet 212 which is connected to the primary air outlet 203 of the dehumidifier 202. The air cooling device 210 has a primary air outlet 218 which is coupled with the space 201 via a primary air channel 219.
The system 200 further comprises a first ambient air intake 224 having a valve 225 and a second ambient air intake 226 having a valve 227. A direct return channel 264 returning from the space 201 which is to be air-conditioned, and merges with the primary air channel 219. The ambient air intake 224 merges with the direct return channel 264 from the space for creating a mixture of ambient air and return air. The return channel 264 is connected to an auxiliary air inlet 272 of the air cooling device 210.
The system further comprises a heat exchanger 230. The heat exchanger is coupled to the air cooling device 210 via a heat exchange feed channel 232. The heat exchanger 230 comprises a heat exchanger outlet 234 which is coupled to the primary air channel 219 at a merge point 236 via an indirect return channel 238 with valve 239. The indirect return channel 238 comprises an outlet 290 with valve 292 in order to have the possibility of discharging the return flow directly into the surroundings. The heat exchanger 230 works on counter flow. A coolant channel 250 is provided for conveying a cooling air flow to the heat exchanger 230. The coolant air channel branches off from the primary air channel 219 at a branch point 252 downstream of the cooling device 210. The cooling air flow which exits the heat exchanger 230 may be discharged into the surroundings at an outlet 254.
The system 200 further comprises a bypass channel 240 with a valve 241 which bypasses the dehumidifier 202 and which extends from a branch point 242 upstream of the dehumidifier to a merge point 244 downstream of the dehumidifier.
The system further comprises a tank 12 for holding water, in particular water, which is recovered from the air in the dehumidifier. The tank 12 is connected to the dehumidifier 202 via water channel 78. Additionally, a water channel 256 with valve 257 extends from the heat exchanger 230 to the tank 12. A further water channel 258 with a valve 259 extends from the tank 12 to another tank 260. The tank 260 receives water from the tank 12 and this water is used for direct and indirect evaporative cooling in the cooling device 210, as will be explained further below. To this end, a water supply channel 262 with a valve 263 extends from the tank 260 to the cooling device 210.
The system 200 further comprises a direct return channel 264 with a valve 265 which extends from the space 201 to the primary air channel 219 and merges with the primary air channel 219 at a merge point 268 upstream of the dehumidifier and upstream of the branch point 242 of the bypass channel 240. A fan 267 is provided in the direct return channel 264 to take air from the space 201 and/or from the surroundings via air intake 224.
An auxiliary feed channel 270 extends from a branch off point 271 at the direct return channel 264 to an auxiliary air inlet 272 and comprises a valve 274. An auxiliary air outlet 273 is provided, to which the heat exchange feed channel 232 of the heat exchanger 230 is connected. A fan 266 is provided in the primary air channel 219 for blowing the primary air flow through the primary air channel. A further valve 276 is provided in the primary air channel 219 directly upstream of the space 201. The system further comprises an air filter 278 positioned upstream of the dehumidifier and directly downstream of the air intake 226.
The evaporator is fed with water via water supply channel 280 and valve 281, and may additionally be provided with water from an external source via external water supply channel 284 with valve 285.
The system further comprises an evaporator 282 for evaporating water into the primary air channel 219. The evaporator 282 is provided downstream of the air filter 278 and upstream of the dehumidifier 202. More specifically, the evaporator 282 is provided downstream of merge point 236 and upstream of merge point 268.
Turning to figures 9 and 10, the dehumidifier 202 comprises two vessels 20A, 20B. Each vessel comprises a substantially tubular body 4 of a moisture absorbing material for adsorbing moisture from a primary air flow during the adsorption mode which is explained further below. The moisture adsorbing material may be supported by a metal mesh. The tubular body 4 has an open lower end and closed upper end. In use, the air flows from the inside to the outside through the tubular body. A flow from outside to inside is also possible, as is the case in the vessel 20 of figures 1-7
The adsorption material(s) are chosen for their capability to extract moisture from air and may be the same as in the embodiment of figures 1-7. A heating unit 14 is provided inside each vessel 20A, 20B. The heat may be provided from any source of heat or, alternatively, from power such as electric power. A fan 5 is further provided to draw air through an opening 34. A common condenser 10 is provided which can alternately be fed with air from vessel 20A or vessel 20B. The condenser comprises a fan 11 and an air inlet 50 which draws in ambient air and air outlet 54 which discharges into the surroundings. A return channel 7 is provided for each vessel 20A, 20B for recirculating air through the body of adsorption material.
The vessel has an upstream region 22 which is located upstream from the body 4 of adsorption material. The vessel 20 has a downstream region 24 which is located downstream from the body 4 of adsorption material.
Turning to figure 11, the air cooling device 210 comprises a first, indirect evaporative air cooler 214 in which the dried primary air from the dehumidifier is cooled indirectly, and a second, direct evaporative air cooler 216, the direct evaporative air cooler device being arranged downstream from the indirect evaporative air cooler and coupled to the indirect evaporative air cooler. The primary air channel 219 extends through the air cooling device 210 from the primary air inlet 212 to the primary air outlet 218. The details of the air cooling device are discussed further below.
The indirect evaporative air cooler 214 further comprises an evaporative water distribution system 310 for distributing an evaporative water in the regenerative air channel 300 for cooling the regenerative air flow. The water distribution system comprises a supply channel 262 and a wet pad 312 in the regenerative air channel. The water is provided to cool the regenerative air flow via direct evaporation. As a result, the regenerative air flow is cooled. A heat exchange surface 304 is provided between the regenerative air channel 300 and the primary air channel 219. Heat is drawn from the primary air flow by the regenerative air flow via the heat exchange surface 304.
The indirect evaporative air cooler 214 further comprises an outlet 213 which leads to the second direct evaporative air cooling device 216. The indirect evaporative air cooler extends along about 3Λ of the length of the air cooling device 210, more generally between 50 percent and 85 percent of the total length of the air cooling device.
The direct evaporative air cooler 216 comprises an evaporative water distribution device 314 which is fed with water via the supply channel 262. The water is directly evaporated into the primary air channel 219 to moisten and cool the primary air flow which has just passed the indirect regenerative air cooler 214. The enthalpy of the primary air flow in the direct evaporative cooler 216 remains substantially constant, i.e. the cooling is substantially adiabatic.
The air cooling device 210 comprises a third, auxiliary air cooler 320 for cooling the regenerative air flow with an auxiliary air flow 322. The third, auxiliary air cooler 320 comprises: an auxiliary air inlet 272 for the auxiliary air flow 322, an auxiliary air channel 308 and an auxiliary air outlet 273 for the auxiliary air flow, an auxiliary evaporative water distribution system 324 for distributing an evaporative water in the auxiliary air channel 308 for cooling the auxiliary air flow, a heat exchange surface 326 placed between the auxiliary air channel 308 and the regenerative air channel 300 for conducting heat from the regenerative air flow to the auxiliary air flow.
The regenerative air flow cools the primary air flow and is simultaneously cooled itself by the auxiliary air flow.
The auxiliary air flow 322 may comprise ambient air drawn in via intake 224 (see figure 8, air from the space 201 to be cooled or a mixture thereof.
The regenerative air channel comprises a regenerative air outlet 330 which discharges into the auxiliary air channel 308, wherein the regenerative air flow 311 is mixed with the auxiliary air flow 322.
The first air cooler 216, second air cooler 216 and third air cooler 320 form an integrated device. At least a substantial part of the regenerative air channel 300 is located between a primary air channel 219 of the first, indirect evaporative air cooler and an auxiliary air channel 308 of the third, auxiliary air cooler 320. The primary air channel 219 of the first, indirect evaporative air cooler, the regenerative air flow channel 300 and the auxiliary air flow channel 308 are arranged concentrically. The auxiliary air channel 308 is the outer channel, the regenerative air channel 300 is the middle channel and the primary air channel is the inner channel.
It is noted that the air cooling device 210 disclosed herein may be replaced by other air cooling devices which are based on a combination of indirect and direct evaporative cooling and which are available on the market. In such an embodiment, the auxiliary air channel 270 would not be present.
Operating mode: air cooling mode of warm humid air
Returning to figure 8, this operating mode relates to a situation in which the space 201 contains warm humid air. The warm humid air needs to be cooled, for instance to keep the space at a comfortable temperature for humans, plants or machinery
The warm humid air from the space 201 is withdrawn from the space via air return opening 222 and returned to the upstream side of the system via direct return channel 264 in order to be entered as a primary air flow into the dehumidifier via inlet 204. It is noted that the primary air flow at the inlet 204 can be composed completely of air from the space 201, but alternatively also completely from outside air via intake 224 or intake 226 or from a mixture of inside air and outside air. Also, the outside air and/or the air from the space 201 can be mixed with the auxiliary air flow which has been cooled in the heat exchanger 230 and returns via the indirect return channel 238, which will be discussed further below.
Returning to figures 9 and 10, the dehumidifier 202 is configured to let each vessel 20A, 20B alternately operate in adsorption mode (drying mode) and desorption mode (water recovery mode). Vessel 20B is shown in adsorption mode and vessel 20A is shown in desorption mode.
In adsorption mode, a primary air flow enters the vessel 20B via inlet 204 and entry 6A. A valve 150 at the entry of vessel 20B is open and valve 207 at the exit is also open.
The fan 5 is on. The air travels through the body 4 of adsorption material in which the moisture is removed from the air by adsorption to the material. In the process, heat is released by the adsorbed moisture which increase the temperature of the air flow. The primary air flow travels from inside out through the tubular body. Next, the air is discharged via opening 5 into discharge channel 205 to be processed further downstream in the cooling device 210.
At the same time, the vessel 20A is operated in desorption mode. The heater 14 is turned on, and valve 150 and valve 207 are closed in order close the vessel. Valve 41 is opened. The air is recirculated by the fan 5 time and again through the body of adsorption material, through opening 5, through the recirculation channel 7, through the heater 14 and back to the body of adsorption material. The heated air adsorbs the moisture from the body of adsorption material. At the same time, another air flow is created by the fan 11 through the condenser 10 via the channel 9 and the condenser return channel 10A. The air in the condenser is cooled with ambient air so that the moisture which is absorbed from the body of adsorption material condenses and flows into tank 12 via channel 78. The ambient air flows through inlet 50 and outlet 54.
When the body of adsorption material of vessel 20A is dehumidified and/or the body of adsorption material of vessel 20B has become saturated with moisture, the modes are switched. The various valves are opened or closed. The heater of vessel 20A is shut off and of the heater vessel 20B is turned on. The condenser 10 is coupled to vessel 20B instead of vessel 20A, and the mirrored operation continues.
The dried and heated air which leaves the dehumidifier via discharge channel 205 and primary air outlet 203 subsequently enters the air cooling device 210. The dried and heated air enters the cooling device from the dehumidifier 202 via primary air inlet 212.
In a first section of the air cooling device 210 the primary air flow is cooled with a regenerative air flow 311 in a regenerative air channel 300. Here, the enthalpy of the primary air flow is lowered.
The regenerative air channel receives the regenerative air flow via branch off point 302 in the primary air channel. About one third of the primary air flow is branched off into the regenerative channel, but this can be varied according to requirements.
The branch off point 302 for the regenerative air flow is located in the direct evaporative cooler 216, in particular downstream of a first region 340 of direct evaporative cooling and upstream of a second region 341 of direct evaporative cooling. At the branch off point 302, the regenerative air flow makes a 180 degree turn. Hence, the regenerative air flow flows as a counter flow to the primary air flow.
This air may have a temperature of 37 degrees Celsius and a relative humidity (RH) of 20 percent. This primary air flow is cooled with the regenerative air flow which may reach a temperature of 15 degrees Celsius at a RH of 90 percent. At the discharge end of the regenerative air channel , the regenerative air flow has a temperature of 32 Celsius and a RH of 90 percent.
The auxiliary air flow which enters the air cooling device via the auxiliary air inlet 322 may have a temperature of 25 degrees Celsius and an RH of 50 percent. The auxiliary air flow which exits the air cooling device may have temperature of 32 degrees Celsius and a RH of 80 percent.
After being cooled in the air cooling device 210, the primary air flow exits the air cooling device 210 via the primary air outlet 218 and is discharged into the space 201 via opening 220.
The auxiliary air flow which exits the air cooling device 210 is conveyed to the heat exchanger 230 via the heat exchanger air inlet which is connected to the auxiliary air flow outlet 273 of the third, auxiliary air cooler. Here, the auxiliary air flow is cooled with a branch flow from the primary air channel 219 which is branched off downstream of primary air outlet 218 of the air cooling device 210.
The auxiliary air flow which exits the air cooling device may have a temperature of 32 degrees and a relative humidity of 80 percent. In the heat exchanger 230, the auxiliary air flow is cooled to a temperature of about 27 degrees and a relative humidity of about 95 percent. The auxiliary air flow is returned to the primary air channel 219 via the heat exchanger air outlet 234 and an indirect return channel 238 which ends at a return point 236 in the primary air channel upstream of the dehumidifier 202.
The device is free of any compressor and free of the use of a refrigerant. This contributes to the energy efficiency. The device therefore largely operates at atmospheric air pressure.
Turning to figure 12, an example of the operating mode of cooling of warm humid air is shown on a psychometric chart. The various points along the primary air channel are indicated in figure 8 as numbers with circles around them. Point 1 indicates the condition of the outside air, i.e. 35 degrees Celsius and 40 percent RH. Point 6 indicates the condition inside the space 201, i.e. 25 degrees Celsius and 50 percent RH. The outside air is drawn in at air intake 224, and mixed with the air from the space in the direct return channel 264. The primary air flow now has a temperature of about 29 degrees and a RH of about 45 percent, see point 2 on the chart.
Next, the air is dehumidified in the dehumidifier 210 and heated due to the latent heat of condensation which is converted into heat. This is shown as trajectory 2-3. The primary air flow now has a temperature of 37 degrees and a RH of 20 percent. The removal of the moisture does not change the enthalpy.
Next, the primary air flow is cooled in the first indirect regenerative cooling device to a temperature of 21 degrees and 55 percent RH. This is indicated as point 4. Since no moisture is added, the absolute humidity stays constant
Next, the primary air flow is cooled in the second direct evaporative cooling device to a temperature of 15 degrees and a RH of 90 percent. The enthalpy is not changed by evaporating the moisture into the primary air flow. The primary air flow of 15 degrees is then discharged into the space where it gradually warms up to a temperature of 25 degrees.
With simple parts and without a compressor or refrigerant, the space 201 can be cooled.
In this operating mode, valves 227 and 239 may be open or partially open to draw in ambient air and/or cooled auxiliary air from heat exchanger 230. Valve 292 may be opened or closed to let escape none, some or all of the cooled auxiliary air from heat exchanger 230.
Operating mode: air cooling mode of warm dry air
This operating mode is largely the same as the operating mode of cooling warm humid air, except that the dehumidifier is bypassed via the bypass channel 240. This is possible because the air does not need to be dehumidified. To this end valves 150 are closed and valve 241 is opened.
Turning to figure 13, the psychometric chart is substantially the same as for cooling humid war air, except that there is no dehumidification step. The air from the space 201 is directly guided through the air cooling device 210 via air return opening 222, the direct return channel 264, merge point 266 and bypass channel 240. There is first cooling step from 1 to 4, wherein the absolute humidity stays constant and the temperature lowers to about 18 degrees and RH of 70 percent. In the second cooling step the temperature lowers to 15 or 16 degrees and an RH of about 90 percent.
Operating mode: air heating mode
The device may also be used for heating air and providing the heated air to a space. In the heating mode, the cold outside air is drawn in via air intake 226. Valve 227 is opened. The air is first filtered in the filter device 278.
Subsequently, the air is humidified in evaporator 282. The evaporator is fed with warm water from the dehumidifier 202. This water is relatively warm because the desorption step takes place with the heater 14 on, leading to high temperatures. Next, the primary air flow enters the vessel 20 which is in adsorption mode and the moisture is adsorbed from the air, thereby heating the air. The primary airflow subsequently enter the air cooling device 210, where it is humidified. Subsequently, the air is led into the space 201 which is to be heated.
In heating mode, the heat exchanger 230 is off.
Turning to figure 14, outside air having a temperature of zero degrees Celsius and a RH of about 90 percent is drawn in via air intake 227. The outside air is humidified and heated in the evaporator to a temperature of about 20 or 21 degrees and a RH of about 90 percent by direct evaporation of warm water. Subsequently, the primary air flow is dried and heated in the dehumidifier 202 to a temperature of 40 degrees Celsius and a RH of about 15 percent, see point 3. Next, the primary air flow is re-humidified in the air cooling device to a RH of about 25 percent, see point 4.
It is noted that if this operational mode is not required, the evaporator 282 may not be present.
Operating mode: desalinisation
In desalinisation mode, saline water is supplied to the evaporator 282 where it is evaporated in a primary air flow, thereby moistening the primary air flow. The moistened primary air flow is dried in a compartment of the dehumidifier 202 by adsorption of the moisture to the adsorption material.
Subsequently, the compartment is switched to desorption mode, wherein during the desorption mode the moisture is recovered in the condenser 10 of the dehumidifier and discharged into a tank 12.
The primary air flow leaves the dehumidifier via outlet 203 and subsequently enters the air cooling device.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the invention.
The terms "a" or "an", as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language, not excluding other elements or steps). Any reference signs in the claims should not be construed as limiting the scope of the claims or the invention.
The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims (44)

1. Inrichting (1) voor het verwijderen van vocht en / of andere stoffen, met name kooldioxide, uit lucht of uit een gas, waarbij de inrichting is geconfigureerd om afwisselend werken in een adsorptiefase en een desorptiefase, waarbij de inrichting omvat: een vat (20) omvattende een ingang (6A) en een uitgang (6) die kleppen omvatten waardoor de ingang en uitgang geopend en gesloten kunnen worden, een lichaam (4) van adsorptiemateriaal dat in het vat is gepositioneerd, waarbij het lichaam in wezen een buisvorm heeft, waarbij het vat een stroomopwaarts gebied (22) heeft dat zich stroomopwaarts van het lichaam van adsorptiemateriaal bevindt en waarbij het vat een stroomafwaarts gebied (24, 24A, 24B) heeft dat stroomafwaarts van het lichaam van adsorptiemateriaal is gelokaliseerd, waarbij de inrichting verder omvat: een ventilator (5) voor het blazen van lucht of gas door het lichaam van adsorptiemateriaal vanuit het stroomopwaartse gebied naar het stroomafwaartse gebied, waarbij de inrichting is ingericht om in de adsorptiefase een hoofdstroom te creëren, waarbij de hoofdstroom het vat via de ingang (6a) ingaat, vervolgens door het lichaam van adsorptiemateriaal stroomt en het vat verlaat via de uitgang (6), waarbij vocht en/of een andere stof wordt geadsorbeerd door het adsorptiemateriaal, waarbij de inrichting verder omvat: een verwarmingsunit (14) voor het verwarmen van de lucht of het gas in de inrichting tijdens de desorptiefase, ten minste een hoofdretourleiding (7) voor het terug laten stromen van een hoofd retourstroom van lucht of gas van het stroomafwaartse gebied naar het stroomopwaartse gebied tijdens de desorptiefase, waarbij tijdens de desorptiefase een hoofdlus van herhaalde stroming door het lichaam van adsorptiemateriaal wordt gecreëerd, een condensorlus (26) voor het onttrekken van vocht tijdens de desorptiefase, waarbij de condensorlus omvat: o een condensor (10), o een aftakleiding (9) die zich vanaf het vat naar de condensor uitstrekt en waardoor een aftakstroom uit het vat naar de condensor kan stromen, o een condensorretourleiding (10A) die zich uitstrekt vanaf de condensor naar het vat en in gebruik de aftakstroom laat terugkeren van de condensator naar het vat.Device (1) for removing moisture and / or other substances, in particular carbon dioxide, from air or from a gas, the device being configured to operate alternately in an adsorption phase and a desorption phase, the device comprising: a vessel (20) comprising an inlet (6A) and an outlet (6) comprising valves through which the inlet and outlet can be opened and closed, a body (4) of adsorption material positioned in the vessel, the body being essentially a tubular shape wherein the vessel has an upstream region (22) located upstream of the body of adsorbent material and wherein the vessel has a downstream region (24, 24A, 24B) located downstream of the body of adsorbent material, the device further comprises: a fan (5) for blowing air or gas through the body of adsorption material from the upstream region to the downstream region, the device is arranged to create a main stream in the adsorption phase, the main stream entering the vessel through the inlet (6a), then flowing through the body of adsorption material and leaving the vessel through the outlet (6), wherein moisture and / or another dust is adsorbed by the adsorption material, the device further comprising: a heating unit (14) for heating the air or gas in the device during the desorption phase, at least one main return line (7) for flowing back a main return flow of air or gas from the downstream region to the upstream region during the desorption phase, during which a main loop of repeated flow through the body of adsorption material is created during the desorption phase, a condenser loop (26) for extracting moisture during the desorption phase, the condenser loop comprises: o a condenser (10), o a branch line (9) which extends from the vessel to the condenser and through which a tap current can flow from the vessel to the condenser, o a condenser return line (10A) that extends from the condenser to the vessel and in use causes the branch current to return from the capacitor to the vessel. 2. Inrichting volgens conclusie 1, waarbij de condensor van een type is dat wordt gekoeld door omgevingslucht.Device according to claim 1, wherein the condenser is of a type that is cooled by ambient air. 3. Inrichting volgens een der voorgaande conclusies, waarbij het lichaam van adsorptiemateriaal een lengte (28) heeft en een diameter (29) heeft die uniform is over genoemde lengte.Device according to one of the preceding claims, wherein the body of adsorption material has a length (28) and a diameter (29) that is uniform over said length. 4. Inrichting volgens een der voorgaande conclusies, waarbij het stroomopwaartse gebied zich buiten het in wezen buisvormige lichaam ligt en waarbij ten minste een gedeelte (24B) van het stroomafwaartse gebied, genoemd het interne gebied (24B) zich in het in hoofdzaak buisvormige lichaam bevindt.Device according to any one of the preceding claims, wherein the upstream region is located outside the substantially tubular body and wherein at least a portion (24B) of the downstream region, said internal region (24B) is located in the substantially tubular body . 5. Inrichting volgens een der voorgaande conclusies, waarbij de inrichting een stroomafwaartse kamer (30) omvat en een adsorptie/desorptie-kamer (32), waarbij de stroomafwaartse kamer van de adsorptie/desorptie-kamer wordt gescheiden door een scheidingswand (8), en waarbij deze in fluïdumverbinding staat met het interne gebied (24B) van het buisvormige lichaam van adsorptiemateriaal via een opening (34) in de scheidingswand, waarbij de ventilator (5) is geplaatst in de opening en waarbij de ten minste een aftakleiding (9) begint in genoemde stroomafwaartse kamer.Device according to any of the preceding claims, wherein the device comprises a downstream chamber (30) and an adsorption / desorption chamber (32), wherein the downstream chamber is separated from the adsorption / desorption chamber by a partition wall (8), and wherein it is in fluid communication with the internal region (24B) of the tubular body of adsorption material through an opening (34) in the partition wall, wherein the fan (5) is disposed in the opening and wherein the at least one branch line (9) starts in said downstream chamber. 6. Inrichting volgens een der voorgaande conclusies, waarbij de aftakleiding (9) een ingangsopening (40) heeft die is aangebracht in de wand van de stroomafwaartse kamer (30).Device according to any one of the preceding claims, wherein the branch line (9) has an entrance opening (40) arranged in the wall of the downstream chamber (30). 7. Inrichting volgens een der voorgaande conclusies, omvattende een aantal hoofdretourleidingen (7), waarbij de hoofdretourleidingen beginnen bij het stroomafwaartse gebied (24) en zich evenwijdig aan een hoofdas (19) van het buisvormige lichaam (4) van adsorptiemateriaal uitstrekken, waarbij de terugvoerleidingen afvoeropeningen hebben (42) die nabij een uiteinde (44) van het buisvormige lichaam van adsorptiemateriaal zijn gelegen.Device according to one of the preceding claims, comprising a number of main return lines (7), wherein the main return lines start at the downstream region (24) and extend parallel to a main axis (19) of the tubular body (4) of adsorption material, the return lines have outlet openings (42) located near an end (44) of the tubular body of adsorption material. 8. Inrichting volgens een der voorgaande conclusies, waarbij de uitgang (6) is aangebracht in een buitenwand (46) van de stroomafwaartse kamer.Device according to one of the preceding claims, in which the outlet (6) is arranged in an outer wall (46) of the downstream chamber. 9. Inrichting volgens een der voorgaande conclusies, waarbij de inrichting verder een beweegbare scheidingswand (15) met openingen omvat, die is gepositioneerd binnenin het buisvormige lichaam van adsorptiemateriaal, waarbij de beweegbare scheidingswand beweegbaar is tussen een gesloten stand en een open stand, waarbij in de gesloten stand de beweegbare scheidingswand het binnenste gebied (24B) in het buisvormige lichaam in een eerste deel (48) en een afzonderlijk tweede deel (49) verdeelt, waarbij het eerste en tweede deel via openingen in de verplaatsbare scheidingswand (15) in fluïdumverbinding met elkaar staan, en waarbij in de open stand het eerste deel en tweede deel zijn verenigd en tezamen het binnenliggende gebied vormen.A device according to any one of the preceding claims, wherein the device further comprises a movable partition (15) with openings positioned within the tubular body of adsorption material, the movable partition being movable between a closed position and an open position, wherein in in the closed position the movable partition divides the inner region (24B) in the tubular body into a first part (48) and a separate second part (49), the first and second part via openings in the movable partition (15) in fluid communication with each other, and wherein in the open position the first part and second part are united and together form the inner area. 10. Inrichting volgens een der voorgaande conclusies, waarbij de condensor (10) een condensoringang (50) voor omgevingslucht heeft, een uitwisselingoppervlak (52) voor het uitwisselen van warmte tussen een aftakstroom die door het aftakkanaal (9) arriveert en een stroom van omgevingslucht die de condensor binnenkomt door de condensoringang, en een condensatoruitlaat (54) voor het afvoeren van de warme omgevingslucht.Device according to any one of the preceding claims, wherein the condenser (10) has an ambient air condensing inlet (50), an exchange surface (52) for exchanging heat between a branch flow arriving through the branch channel (9) and a flow of ambient air entering the condenser through the condenser input, and a condenser outlet (54) for extracting the warm ambient air. 11. Inrichting volgens een van de voorafgaande conclusies, omvattende: een eerste laag (4A) van een eerste adsorptiemateriaal voor het adsorberen van een eerste stof en een tweede laag (4B) van een tweede, verschillend adsorptiemateriaal voor het adsorberen van een tweede stof, waarbij de eerste en tweede laag een meerlaags buisvormig lichaam vormen, waarbij de inrichting verder een dockingstation (60) voor een houder (62) omvat, waarbij het dockingstation met het vat is verbonden via een afvoerleiding (64) en waarbij de inrichting een pomp (66) omvat voor het pompen van de inhoud van het vat in de houder, in het bijzonder lucht of gas dat een of meer ongewenste stoffen zoals koolstofdioxide bevat.Device according to any of the preceding claims, comprising: a first layer (4A) of a first adsorption material for adsorbing a first substance and a second layer (4B) of a second, different adsorption material for adsorbing a second substance, wherein the first and second layers form a multi-layer tubular body, the device further comprising a docking station (60) for a container (62), the docking station being connected to the vessel via a discharge line (64) and the device comprising a pump ( 66) for pumping the contents of the vessel into the container, in particular air or gas containing one or more undesirable substances such as carbon dioxide. 12. Inrichting volgens de voorgaande conclusies, waarbij de verwarmingseenheid (14) een gesloten leidingstelsel (70) omvat die is verbonden met een bron (71) van een verwarmd fluïdum, waarbij de leiding fysiek gescheiden is van de behuizing (4) van adsorptiemateriaal.Device according to the preceding claims, wherein the heating unit (14) comprises a closed pipe system (70) connected to a source (71) of a heated fluid, the pipe being physically separated from the housing (4) of adsorption material. 13. Inrichting volgens een der voorgaande conclusies, waarbij de ingang (6A) van de inrichting is verbonden met een gasbron (72), en waarbij de warmtebron (71) van de verwarmingsinstallatie en de gasbron hun oorsprong (72) vinden in een gemeenschappelijk bronapparaat (74), in het bijzonder een elektriciteitscentrale, een warmte- installatie, een koolwaterstofverwerkingsinstallatie, of een fabriek.A device according to any one of the preceding claims, wherein the input (6A) of the device is connected to a gas source (72), and wherein the heat source (71) of the heating installation and the gas source have their origin (72) in a common source device (74), in particular a power plant, a heat plant, a hydrocarbon processing plant, or a factory. 14. Inrichting volgens een der voorgaande conclusies, waarbij de condensor (10) geen warmtepomp omvat en waarbij de inrichting (1) geen koudeopslag heeft.Device according to one of the preceding claims, wherein the condenser (10) does not comprise a heat pump and wherein the device (1) has no cold storage. 15. Inrichting volgens een der voorgaande conclusies, waarbij de inrichting (1) geen voorkoelinrichting omvat voor het koelen van de lucht of het gas dat het vat via de ingang (6A) binnenkomt, en waarbij de inrichting geen zonnecollector heeft voor het leveren van warmte.Device as claimed in any of the foregoing claims, wherein the device (1) does not comprise a pre-cooling device for cooling the air or gas entering the vessel via the inlet (6A), and wherein the device does not have a solar collector for supplying heat . 16. Inrichting volgens een der voorgaande conclusies, waarbij het condensor-retourkanaal (10A) van de condensorlus vertakt in een vloeistofkanaal (78) voor het afvoeren van de vloeistof uit het apparaat en een condensorgas-retourkanaal (80) die eindigt in het vat.The device of any preceding claim, wherein the condenser return channel (10A) of the condenser loop branches into a fluid channel (78) for discharging the fluid from the device and a condenser gas return channel (80) that ends in the vessel. 17. Inrichting volgens een der voorgaande conclusies, waarbij het stroomopwaartse gebied zich rond het buisvormige lichaam (4) van adsorptiemateriaal uitstrekt.The device of any preceding claim, wherein the upstream region extends around the tubular body (4) of adsorption material. 18. Inrichting volgens een der voorgaande conclusies, omvattende een vortexbuis (18) die is aangebracht in de condensorlus (26) en stroomafwaarts van de condensor (10) is gepositioneerd, waarbij de vortexbuis een vortexbuisingang (82) omvat waaraan lucht of gas onder druk vanuit de condensor wordt toegevoerd, en een koude-luchtuitlaat (83) voor koude lucht en een warme-luchtuitlaat (84) voor warme lucht, waarbij de koude luchtuitlaat is aangesloten op de luchtinlaat van de condensor en waarbij de hete-luchtuitlaat uitkomt in het vat.An apparatus according to any one of the preceding claims, comprising a vortex tube (18) arranged in the condenser loop (26) and positioned downstream of the condenser (10), the vortex tube comprising a vortex tube entrance (82) to which air or gas under pressure is supplied from the condenser, and a cold air outlet (83) for cold air and a warm air outlet (84) for hot air, the cold air outlet being connected to the air inlet of the condenser and the hot air outlet coming out into the condenser barrel. 19. Werkwijze voor het verwijderen van vocht of een andere stof uit omgevingslucht of uit een gas, in het bijzonder een uitlaatgas, waarbij de werkwijze omvat: het verschaffen van de inrichting (1) volgens conclusie 1, tijdens de adsorptiefase: o voeren van omgevingslucht of gas in de invoer (6A) en door het buisvormige lichaam (4) van adsorptiemateriaal, o adsorberen vocht en / of een andere stof uit de lucht of gas door het adsorptiemateriaal, en o het afvoeren van de lucht of gas via de uitgang (6), wanneer het adsorptiemateriaal verzadigd is, het schakelen van de inrichting naar de desorptiefase en: o het sluiten van de ingang (6A) en de uitgang (6), o het herhaaldelijk circuleren van de lucht of het gas in het vat (20) door het lichaam van adsorptiemateriaal via de hoofdretourleiding (7), waarbij de lucht of het gas wordt verwarmd door de verwarmingseenheid, waarbij een of meer stoffen door het adsorptiemateriaal worden geadsorbeerd, en o het door de condensorlus (26) circuleren van een gedeelte van de lucht of gas in het vat als een aftakstroom voor het verwijderen van vocht en het retourneren van de gedroogde lucht of het gedroogde gas in het vat na de condensatie.A method for removing moisture or another substance from ambient air or from a gas, in particular an exhaust gas, the method comprising: providing the device (1) according to claim 1, during the adsorption phase: o feeding ambient air or gas in the inlet (6A) and through the tubular body (4) of adsorption material, o adsorb moisture and / or another substance from the air or gas through the adsorption material, and o the discharge of the air or gas via the outlet ( 6), when the adsorption material is saturated, switching the device to the desorption phase and: o closing the inlet (6A) and the outlet (6), o repeatedly circulating the air or gas in the vessel (20 ) through the body of adsorption material via the main return line (7), the air or gas being heated by the heating unit, one or more substances being adsorbed by the adsorption material, and circulating through the condenser loop (26) a portion of the air or gas in the vessel as a branch stream for removing moisture and returning the dried air or gas in the vessel after condensation. 20. Werkwijze volgens conclusie 19, waarbij de ingang (6A) van de inrichting is verbonden met een gasbron (72), waarbij in de desorptiefase restwarmte wordt gebruikt van een warmtebron (71) en waarbij de warmtebron (71) en de gasbron (72) deel uitmaken van een gemeenschappelijk bronapparaat (74), in het bijzonder een elektriciteitscentrale, een warmte-installatie, een koolwaterstofverwerkingsinstallatie of een fabriek, en waarbij tijdens de adsorptiefase gas uit de gasbron wordt gevoerd naar het vat, en waarbij tijdens desorptiefase warmte, met name restwarmte, van de warmtebron wordt gebruikt om de lucht of het gas in het vat te verwarmen.The method of claim 19, wherein the input (6A) of the device is connected to a gas source (72), wherein residual heat from a heat source (71) is used in the desorption phase and wherein the heat source (71) and the gas source (72) ) form part of a common source device (74), in particular a power plant, a heat plant, a hydrocarbon processing plant or a plant, and wherein gas is supplied from the gas source to the vessel during the adsorption phase, and where heat, with desorption phase, with in particular residual heat, from the heat source is used to heat the air or gas in the vessel. 21. Werkwijze volgens conclusie 19 of 20, omvattende het verschaffen van een verplaatsbare scheidingswand (15) die is gepositioneerd in het buisvormige lichaam (4) van adsorptiemateriaal, waarbij in de desorptiefase de beweegbare scheidingswand wordt bewogen naar een gesloten stand waarin deze de ruimte binnenin het buisvormige lichaam in een eerste deel (48) en een tweede deel (49) verdeelt, en waarbij in de adsorptiefase de beweegbare scheidingswand wordt verplaatst naar een open stand waarin het eerste deel en tweede deel samengevoegd zijn.A method according to claim 19 or 20, comprising providing a movable partition (15) positioned in the tubular body (4) of adsorption material, wherein in the desorption phase the movable partition is moved to a closed position in which it moves the space inside divides the tubular body into a first part (48) and a second part (49), and wherein in the adsorption phase the movable partition is moved to an open position in which the first part and second part are joined together. 22. Werkwijze volgens een der conclusies 19-21, waarbij het lichaam van adsorptiemateriaal omvat: een eerste laag (4A) van een eerste adsorptiemateriaal voor het adsorberen van een eerste stof en een tweede laag (4B) van een tweede, ander adsorptiemateriaal voor het adsorberen van een tweede stof, waarbij de eerste en tweede laag een meerlaags buisvormig lichaam vormen, waarbij de inrichting verder een dockingstation (60) voor een houder omvat, waarbij het dockingstation met het vat is verbonden via een afvoerleiding (64) en een pomp (66) omvat voor het pompen van de inhoud van het vat, in het bijzonder lucht of gas die/dat een of meer ongewenste stoffen zoals kooldioxide omvat in de houder, waarbij de werkwijze omvat: het aan het einde van de desorptiefase pompen van de lucht of het gas dat zich in het vat in de houder (62) bevindt naar en in de houder.A method according to any of claims 19-21, wherein the body of adsorption material comprises: a first layer (4A) of a first adsorption material for adsorbing a first substance and a second layer (4B) of a second, other adsorption material for the adsorbing a second substance, the first and second layers forming a multi-layer tubular body, the device further comprising a docking station (60) for a container, the docking station being connected to the vessel via a discharge line (64) and a pump ( 66) for pumping the contents of the vessel, in particular air or gas comprising one or more undesirable substances such as carbon dioxide in the container, the method comprising: pumping the air at the end of the desorption phase or the gas contained in the vessel in the container (62) to and in the container. 23. Werkwijze volgens conclusie 22 , waarbij het eerste materiaal wordt gekozen om vocht te adsorberen en waarbij de desorptiestap omvat: eerst verwijderen van het vocht uit de lucht of het gas in het vat en vervolgens het in de houder pompen van de lucht of het gas.The method of claim 22, wherein the first material is selected to adsorb moisture and wherein the desorption step comprises: first removing the moisture from the air or gas in the vessel and then pumping the air or gas into the container . 24. Werkwijze volgens een der conclusies 19-23, omvattende het verschaffen van een inrichting omvattende een vortexbuis die stroomafwaarts van de condensor in de condensorlus is geplaatst, waarbij tijdens de desorptiefase ten minste een deel van de lucht of het gas uit de condensor wordt toegevoerd aan de vortexbuis en wordt gesplitst in een koude stroom en een warme stroom, waarbij de koude stroom als de koelstroom wordt teruggevoerd naar de condensor.A method according to any of claims 19-23, comprising providing a device comprising a vortex tube which is placed downstream of the condenser in the condenser loop, wherein at least a part of the air or gas is supplied from the condenser during the desorption phase to the vortex tube and is split into a cold stream and a warm stream, the cold stream being returned to the condenser as the cooling stream. 25. Systeem (200) voor het koelen van lucht, verwarmen van lucht, voor het ontzilten van water en/of voor het zuiveren van water, het systeem omvattende: - een inrichting (1) volgens conclusie 1, waarbij de inrichting is ingericht als een ontvochtiger (202) en omvat: o een hoofluchtinlaat (204) en een hoofdluchtuitlaat (203), o ten minste twee vaten (20A, 20B) die in parallel zijn opgesteld en zijn geconstrueerd om alternerend te werken in een adsorptiemodus en een de-adsorptiemodus, waarbij ieder compartiment een in hoofdzaak buisvormig lichaam (4) van een vochtadsorberend materiaal omvat voor het adsorberen van vocht uit een primaire luchtstroom gedurende de adsorptiemodus, - een luchtkoelinrichting (210) die stroomafwaarts van de ontvochtiger is geplaatst en die is verbonden met de primaire luchtuitgang van de ontvochtiger, waarbij de luchtkoelinrichting omvat: o een eerste, indirecte verdampingsluchtkoeler (214) waarin de gedroogde primaire lucht uit de ontvochtiger indirect wordt gekoeld, en o een tweede, directe verdampingsluchtkoeler (216), waarbij de directe verdampingsluchtkoeler stroomafwaarts van de indirecte verdampingsluchtkoeler is opgesteld en is gekoppeld met de indirecte verdampingsluchtkoeler.A system (200) for cooling air, heating air, for desalinating water and / or for purifying water, the system comprising: - a device (1) according to claim 1, wherein the device is arranged as a dehumidifier (202) and comprising: o a main air inlet (204) and a main air outlet (203), o at least two vessels (20A, 20B) arranged in parallel and constructed to operate alternately in an adsorption mode and a desorption adsorption mode, wherein each compartment comprises a substantially tubular body (4) of a moisture-absorbing material for adsorbing moisture from a primary air stream during the adsorption mode, - an air cooling device (210) positioned downstream of the dehumidifier and connected to the primary air outlet of the dehumidifier, the air cooling device comprising: o a first, indirect evaporative air cooler (214) in which the dried primary air from the dehumidifier is indirectly cooled, and a second, direct evaporative air cooler (216), wherein the direct evaporative air cooler is arranged downstream of the indirect evaporative air cooler and is coupled to the indirect evaporative air cooler. 26. Systeem (200) voor het conditioneren van lucht volgens conclusie 25, waarbij de indirecte verdampingsluchtkoeler regeneratief is en omvat: - een primaire luchtinlaat (212) en een primaire luchtuitlaat (213), - een regeneratief luchtkanaal (300) dat wordt gevoed met een regeneratieve luchtstroom (311) die wordt gebruikt als een koelmiddel, waarbij het regeneratieve luchtkanaal bij een aftakpunt (302) afgetakt wordt van het primaire luchtkanaal, - een verdampingswaterdistributiesysteem (310) voor het distribueren van verdampingswater in het regeneratieve luchtkanaal (300) voor het koelen van de regeneratieve luchtstroom, - een warmteuitwisselingsoppervlak (304) dat is geplaatst tussen het primaire luchtkanaal (219) en het regeneratieve luchtkanaal (300) voor het geleiden van warmte vanuit de primaire luchtstroom naar de regeneratieve luchtstroom.An air conditioning system (200) according to claim 25, wherein the indirect evaporative air cooler is regenerative and comprises: - a primary air inlet (212) and a primary air outlet (213), - a regenerative air channel (300) fed with a regenerative air stream (311) used as a coolant, wherein the regenerative air channel is branched off from the primary air channel at a branch point (302), - an evaporation water distribution system (310) for distributing evaporation water in the regenerative air channel (300) for cooling the regenerative air flow, - a heat exchange surface (304) disposed between the primary air channel (219) and the regenerative air channel (300) to conduct heat from the primary air flow to the regenerative air flow. 27. Systeem volgens conclusie 26, omvattende een derde auxiliaire luchtkoeler (320) voor het koelen van de regeneratieve luchtstroom (311) met een auxiliaire luchtstroom (322) waarbij de derde auxiliaire luchtkoeler omvat: - een auxiliaire luchtinlaat (272) voor de auxiliaire luchtstroom, - een auxiliair luchtkanaal (308) en een auxiliaire luchtuitlaat (273) voor de auxiliaire luchtstroom, - een auxiliair verdampingswaterdistributiesysteem (324) voor het distribueren van verdampingswater in het auxiliaire luchtkanaal (308) voor het koelen van de auxiliaire luchtstroom, - een warmteuitwisselingsoppervlak (326) dat is geplaatst tussen het auxiliaire luchtkanaal (308) en het regeneratieve luchtkanaal (300) voor het geleiden van warmte vanuit de regeneratieve luchtstroom naar de auxiliaire luchtstroom, waarbij de regeneratieve luchtstroom de primaire luchtstroom koelt en tegelijkertijd wordt gekoeld door de auxiliaire luchtstroom.A system according to claim 26, comprising a third auxiliary air cooler (320) for cooling the regenerative air flow (311) with an auxiliary air flow (322), wherein the third auxiliary air cooler comprises: - an auxiliary air inlet (272) for the auxiliary air flow - an auxiliary air channel (308) and an auxiliary air outlet (273) for the auxiliary air flow, - an auxiliary evaporation water distribution system (324) for distributing evaporation water in the auxiliary air channel (308) for cooling the auxiliary air flow, - a heat exchange surface (326) disposed between the auxiliary air channel (308) and the regenerative air channel (300) for conducting heat from the regenerative air flow to the auxiliary air flow, wherein the regenerative air flow cools the primary air flow and is simultaneously cooled by the auxiliary air flow . 28. Systeem volgens conclusie 27, omvattende: - een retourkanaal (264) dat terugkeert vanuit de ruimte (201) die dient te worden geairconditioned, en - een inlaat (224) voor omgevingslucht, waarbij de inlaat samenkomt met het retourkanaal uit de ruimte voor het creëren van een mengsel van omgevingslucht en retourlucht, waarbij het retourkanaal is verbonden met de auxiliaire luchtinlaat (272) van de auxiliaire luchtkoeler (320), waarbij de auxiliaire luchtstroom omgevingslucht omvat, lucht van de ruimte die dient te worden gekoeld of een mengsel daarvan.A system according to claim 27, comprising: - a return channel (264) returning from the room (201) to be air-conditioned, and - an ambient air inlet (224), wherein the inlet meets the return channel from the room for creating a mixture of ambient air and return air, wherein the return channel is connected to the auxiliary air inlet (272) of the auxiliary air cooler (320), wherein the auxiliary air flow comprises ambient air, air from the room to be cooled or a mixture thereof . 29. Systeem volgens een van de conclusies 26-28, waarbij het regeneratieve luchtkanaal een regeneratieve luchtuitlaat (330) omvat die uitmond in het auxiliaire luchtkanaal (308), waarbij de regeneratieve luchtstroom (311) samenkomt met de auxiliaire luchtstroom (322).A system according to any of claims 26-28, wherein the regenerative air channel comprises a regenerative air outlet (330) which opens into the auxiliary air channel (308), the regenerative air flow (311) merging with the auxiliary air flow (322). 30. Systeem volgens een van de conclusies 27-29, waarbij de eerste luchtkoeler (214) tweede luchtkoeler (216) en derde luchtkoeler (320) een geïntegreerde inrichting vormen.The system of any of claims 27 to 29, wherein the first air cooler (214), second air cooler (216) and third air cooler (320) form an integrated device. 31. Systeem volgens een van de conclusies 27-30, waarbij ten minste een substantieel deel van het regeneratieve luchtkanaal (300) is gelegen tussen een hoofdluchtkanaal (219) van de eerste indirecte verdampingsluchtkoeler en een auxiliair luchtkanaal (308) van de derder auxiliaire luchtkoeler.The system of any of claims 27-30, wherein at least a substantial portion of the regenerative air channel (300) is located between a main air channel (219) of the first indirect evaporative air cooler and an auxiliary air channel (308) of the third auxiliary air cooler . 32. Systeem volgens conclusie 31, waarbij het primaire luchtkanaal (219) van de eerste indirecte verdampingsluchtkoeler, het regeneratieve luchtkanaal (300) en het auxiliaire luchtkanaal (308) concentrisch opgesteld zijn.The system of claim 31, wherein the primary air channel (219) of the first indirect evaporation air cooler, the regenerative air channel (300) and the auxiliary air channel (308) are arranged concentrically. 33. Systeem volgens een van de conclusies 25-33, verder omvattende: - een luchtfilter (278) dat stroomopwaarts van de ontvochtiger is gepositioneerd, en stroomafwaarts van een inlaat (226) van omgevingslucht, - een verdamper (282) die stroomopwaarts van de ontvochtiger is gepositioneerd en stroomafwaarts van het luchtfilter (278), - een direct retourkanaal (264) dat zich uitstrekt van de ruimte (201) die dient te worden geairconditioned naar het primaire luchtkanaal bij een samenkomstpunt (266) dat stroomopwaarts van de ontvochtiger ligt, - een bypasskanaal (240) dat om de onvochtiger heen gaat van een punt in het primaire luchtkanaal stroomopwaarts van de ontvochtiger naar een punt stroomafwaarts van de ontvochtiger, waarbij het bypasskanaal een klep (241) omvat voor het openen en sluiten van het bypasskanaal, en - ten minste een blazer (268) in het primaire luchtkanaal voor het aandrijven van de primaire luchtstroom door het primaire luchtkanaal.A system according to any of claims 25-33, further comprising: - an air filter (278) positioned upstream of the dehumidifier, and downstream of an inlet (226) of ambient air, - an evaporator (282) upstream of the dehumidifier is positioned downstream of the air filter (278), - a direct return channel (264) extending from the space (201) to be air-conditioned to the primary air channel at a meeting point (266) located upstream of the dehumidifier, - a bypass channel (240) that goes around the dehumidifier from a point in the primary air channel upstream of the dehumidifier to a point downstream of the dehumidifier, the bypass channel comprising a valve (241) for opening and closing the bypass channel, and - at least one blower (268) in the primary air duct for driving the primary air flow through the primary air duct. 34. Systeem volgens een van de conclusies 27-33, verder omvattende een warmtewissel (230) omvattende: - een warmtewissellaarluchtinlaat die is verbonden met de auxiliaire luchtstroomuitlaat (273) van de derde auxiliaire luchtkoeler (320), - een warmtewissellaarluchtuitlaat (234) die via een retourkanaal (238) is verbonden met het primaire luchtkanaal (219) bij een retourpunt (236) dat stroomopwaarts van de ontvochtiger ligt, - een warmtewissellaarkoelmiddelinlaat (253) dat aftakt van het primaire luchtkanaal (219) stroomafwaarts van de tweede, directe verdampingsluchtkoeler (216).The system of any of claims 27-33, further comprising a heat exchanger (230) comprising: - a heat exchanger air inlet connected to the auxiliary air flow outlet (273) of the third auxiliary air cooler (320), - a heat exchanger air outlet (234) is connected via a return channel (238) to the primary air channel (219) at a return point (236) upstream of the dehumidifier, - a heat exchanger coolant inlet (253) that branches off from the primary air channel (219) downstream of the second direct evaporative air cooler (216). 35. Systeem volgens conclusie 34, omvattende: - een wateropvangtank (12) voor het opvangen van water uit de ontvochtiger (202) en de warmtewisselaar (230), en - een waterkanaal (258) dat zich uitstrekt tussen de wateropvangtank (12) en respectievelijk de luchtkoelinrichting (210) voor het transporteren van water vanuit de wateropvangtank naar de eerste, tweede en derde luchtkoeler.The system according to claim 34, comprising: - a water collection tank (12) for collecting water from the dehumidifier (202) and the heat exchanger (230), and - a water channel (258) extending between the water collection tank (12) and the air cooling device (210) for transporting water from the water collection tank to the first, second and third air cooler, respectively. 36. Systeem volgens een van de conclusies 25-35, waarbij de ontvochtiger verder een van de kenmerken volgens de conclusies 2-18 omvat.A system according to any of claims 25-35, wherein the dehumidifier further comprises one of the features according to claims 2-18. 37. Systeem volgens een van de conclusies 25-36, waarbij een aftakpunt (302) voor de regeneratieve luchtstroom (311) ligt in de directe verdampingskoeler (216), in het bijzonder stroomafwaarts van een eerste gebied (340) van directe verdampingskoeling en stroomopwaarts van een tweede gebied (341) van directe verdampingskoeling.The system of any of claims 25-36, wherein a regenerative air flow branching point (302) lies in the direct evaporative cooler (216), in particular downstream of a first area (340) of direct evaporative cooling and upstream from a second area (341) of direct evaporative cooling. 38. Werkwijze voor het koelen van lucht, het verwarmen van lucht, ontzilten van water en/of waterzuivering omvattende: - het verschaffen van een systeem volgens een van de conclusies 26-39, - het koelen van de gedroogde primaire luchtstroom die de ontvochtiger (202) verlaat met een luchtkoelinrichting (210) die stroomafwaarts van de ontvochtiger is opgesteld en is verbonden met de primaire luchtuitlaat van de ontvochtiger (202), waarbij de koelinrichting omvat: o een eerste, indirecte verdampingsluchtkoeler (214) waarin de droge primaire luchtstroom uit de ontvochtiger indirect wordt gekoeld, en o een tweede, directe verdampingsluchtkoeler (216) waarbij de directe verdampingsluchtkoeler stroomafwaarts van de indirecte verdampingskoeler is opgesteld en is gekoppeld met de indirecte verdampingsluchtkoeler.A method for cooling air, heating air, desalinating water and / or water purification comprising: - providing a system according to any of claims 26-39, - cooling the dried primary air stream that the dehumidifier ( 202) leaves with an air cooling device (210) arranged downstream of the dehumidifier and connected to the primary air outlet of the dehumidifier (202), the cooling device comprising: o a first, indirect evaporative air cooler (214) in which the dry primary air flow flows out the dehumidifier is indirectly cooled, and o a second, direct evaporative air cooler (216) wherein the direct evaporative air cooler is arranged downstream of the indirect evaporative cooler and is coupled to the indirect evaporative air cooler. 39. Werkwijze van het conditioneren van lucht volgens conclusie 38, waarbij de eerste, indirecte verdampingsluchtkoeler een indirecte regeneratieve luchtkoeler is, die een regeneratieve luchtstroom gebruikt die wordt afgetakt van de primaire luchtstroom, en waarbij de regeneratieve luchtstroom tegelijkertijd wordt gekoeld met een derde auxiliaire luchtstroom die omgevingslucht, lucht van een ruimte die dient te worden gekoeld of een mengsel daarvan omvat.The air conditioning method of claim 38, wherein the first, indirect evaporative air cooler is an indirect regenerative air cooler that uses a regenerative air stream that is tapped from the primary air stream, and wherein the regenerative air stream is simultaneously cooled with a third auxiliary air stream which comprises ambient air, air from a room to be cooled or a mixture thereof. 40. Werkwijze van het conditioneren van lucht volgens conclusie 38 of 39, waarbij het systeem (200) is ingericht om te schakelen tussen de volgende operationele modi: - een luchtkoelmodus voor het koelen van warme vochtige lucht, waarbij een primaire luchtstroom via een luchtretouropening (222) wordt genomen uit de ruimte (201) die dient te worden gekoeld en door de ontvochtiger (202) wordt geleid en door de eerste luchtkoeler (214) en de tweede luchtkoeler (216), - een luchtkoelmodus voor warme droge lucht, waarbij de primaire luchtstroom wordt genomen uit de lucht die dient te worden gekoeld, vervolgens de ontvochtiger (202) bypasst via een bypasskanaal (240), en door de eerste en tweede luchtkoeler (214, 216) wordt geleid, - een luchtverwarmingsmodus, waarbij buitenlucht die de inrichting binnenkomt via een luchtinlaat (227) wordt toegevoerd aan een verdamper (282), waarbij de verdamper wordt gevoed met warm water die wordt herwonnen in een desorptiecyclus van de ontvochtiger (202), en waarbij de verwarmde en vochtige primaire luchtstroom vanuit de verdamper wordt ontvochtigd en verwarmd in een desorptiestap in de ontvochtiger, - een ontzilting- of zuiveringsmodus, waarbij zout water wordt toegevoerd aan de verdamper (282), waar het zoute water wordt verdampt in een primaire luchtstroom, waarbij de primaire luchtstroom wordt bevochtigd, en waarbij de bevochtigde primaire luchtstroom wordt gedroogd in een compartiment van de ontvochtiger door adsorptie van het vocht aan het adsorptiemateriaal, en waarbij vervolgens het compartiment wordt geschakeld naar de desorptiemodus, waarbij gedurende de desorptiemodus het vocht wordt herwonnen in een condenser (10) van de ontvochtiger en wordt afgevoerd naar een tank (11).A method of air conditioning according to claim 38 or 39, wherein the system (200) is arranged to switch between the following operational modes: - an air cooling mode for cooling hot humid air, wherein a primary air flow via an air return opening ( 222) is taken from the space (201) to be cooled and passed through the dehumidifier (202) and through the first air cooler (214) and the second air cooler (216), - an air cooling mode for warm dry air, the primary air flow is taken from the air to be cooled, then bypasses the dehumidifier (202) through a bypass channel (240), and is passed through the first and second air cooler (214, 216), - an air heating mode where outside air device entering via an air inlet (227) is supplied to an evaporator (282), the evaporator being fed with hot water recovered in a desorption cycle of the dehumidifier (202), and wherein the heated and moist primary air stream from the evaporator is dehumidified and heated in a desorption step in the dehumidifier, - a desalination or purification mode, wherein salt water is supplied to the evaporator (282), where the salt water is evaporated in a primary air stream, wherein the primary air stream is humidified, and wherein the humidified primary air stream is dried in a compartment of the dehumidifier by adsorption of the moisture on the adsorption material, and subsequently switching the compartment to the desorption mode, the moisture being changed during the desorption mode recovered in a condenser (10) from the dehumidifier and discharged to a tank (11). 41. Luchtkoelinrichting (210) omvattende: - een regeneratieve indirecte verdampingsluchtkoeler (214) omvattende: o een primair luchtkanaal (219) voor het transporteren van een primaire luchtstroom tussen een primaire luchtinlaat (212) en een primaire luchtuitlaat (213), o een regeneratief luchtkanaal (300) dat wordt gevoed met een regeneratieve luchtstroom (311) die wordt gebruikt als een koelmiddel, waarbij het regeneratieve luchtkanaal wordt afgetakt van het primaire luchtkanaal bij een aftakpunt (302), o een verdampingswaterdistributiesysteem (310) voor het distribueren van verdampingswater in het regeneratieve luchtkanaal (300) voor het koelen van de regeneratieve luchtstroom, o een warmteuitwisselingsoppervlak (304) dat is geplaatst tussen het primaire luchtkanaal (219) en het regeneratieve luchtkanaal (300) voor het geleiden van warmte van de primaire luchtstroom naar de regeneratieve luchtstroom, - een tweede, directe verdampingsluchtkoeler (216), waarbij de directe verdampingsluchtkoeler is opgesteld stroomafwaarts van de indirecte verdampingsluchtkoeler en is gekoppeld met de primaire luchtuitlaat (213) van de indirecte verdampingsluchtkoeler, - een derde auxiliaire luchtkoeler (320) voor het koelen van de regeneratieve luchtstroom (311) met een auxiliaire luchtstroom (322), waarbij de derde auxiliaire luchtstroom (320) omvat: o een auxiliaire luchtinlaat (272) voor de auxiliaire luchtstroom, een auxiliair luchtkanaal (308), en een auxiliaire luchtuitlaat (273) voor de auxiliaire luchtstroom, o een auxiliair verdampingswaterdistributiesysteem (324) voor het distribueren van verdampingswater in het auxiliaire luchtkanaal (308) voor het koelen van de auxiliaire luchtstroom, o een warmteuitwisselingsoppervlak (326) dat is geplaatst tussen het auxiliaire luchtkanaal (308) en het regeneratieve luchtkanaal (300) voor het geleiden van warmte uit de regeneratieve luchtstroom (311) naar de auxiliaire luchtstroom (322).An air cooling device (210) comprising: - a regenerative indirect evaporative air cooler (214) comprising: o a primary air channel (219) for conveying a primary air flow between a primary air inlet (212) and a primary air outlet (213), o a regenerative air channel (300) fed with a regenerative air stream (311) used as a coolant, the regenerative air channel being tapped from the primary air channel at a branch point (302), o an evaporation water distribution system (310) for distributing evaporation water in the regenerative air channel (300) for cooling the regenerative air flow, o a heat exchange surface (304) disposed between the primary air channel (219) and the regenerative air channel (300) for conducting heat from the primary air flow to the regenerative air flow a second direct evaporative air cooler (216), wherein the direct evaporative 1 The air cooler is located downstream of the indirect evaporative air cooler and is coupled to the primary air outlet (213) of the indirect evaporative air cooler, - a third auxiliary air cooler (320) for cooling the regenerative air flow (311) with an auxiliary air flow (322), wherein the third auxiliary air flow (320) comprises: o an auxiliary air inlet (272) for the auxiliary air flow, an auxiliary air channel (308), and an auxiliary air outlet (273) for the auxiliary air flow, o an auxiliary evaporation water distribution system (324) for distributing of evaporation water in the auxiliary air channel (308) for cooling the auxiliary air flow, o a heat exchange surface (326) disposed between the auxiliary air channel (308) and the regenerative air channel (300) for conducting heat from the regenerative air flow ( 311) to the auxiliary air stream (322). 42. Inrichting volgens conclusie 41, waarbij de eerste luchtkoeler (214), tweede luchtkoeler (216) en een derde luchtkoeler (320) een geïntegreerde luchtkoelinrichting vormen.The device of claim 41, wherein the first air cooler (214), second air cooler (216) and a third air cooler (320) form an integrated air cooling device. 43. Inrichting volgens een van de conclusies 41 of 42, waarbij ten minste een substantieel deel van het regeneratieve luchtkanaal (300) is gelegen tussen een primair luchtkanaal (219) van de eerste indirecte verdampingsluchtkoeler en een auxiliair luchtkanaal (308) van de derde auxiliaire verdampingskoeler (320).An apparatus according to any of claims 41 or 42, wherein at least a substantial part of the regenerative air channel (300) is located between a primary air channel (219) of the first indirect evaporative air cooler and an auxiliary air channel (308) of the third auxiliary evaporative cooler (320). 44. Inrichting volgens een van de conclusies 41-43, waarbij het primaire luchtkanaal (219) van de eerste, indirecte verdampingsluchtkoeler, het regeneratieve luchtkanaal (300) en het auxiliaire luchtkanaal (308) concentrisch zijn opgesteld.An apparatus according to any of claims 41-43, wherein the primary air channel (219) of the first, indirect evaporative air cooler, the regenerative air channel (300) and the auxiliary air channel (308) are arranged concentrically.
NL2012292A 2013-07-11 2014-02-20 Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water. NL2012292C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2012292A NL2012292C2 (en) 2014-02-20 2014-02-20 Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water.
PCT/NL2014/050477 WO2015005791A1 (en) 2013-07-11 2014-07-11 Device and method for extracting various components from ambient air or from a vapor-gas mixture, and a system for cooling air, heating air, desalination of water and/or purification of water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2012292A NL2012292C2 (en) 2014-02-20 2014-02-20 Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water.
NL2012292 2014-02-20

Publications (1)

Publication Number Publication Date
NL2012292C2 true NL2012292C2 (en) 2015-08-25

Family

ID=54140174

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2012292A NL2012292C2 (en) 2013-07-11 2014-02-20 Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water.

Country Status (1)

Country Link
NL (1) NL2012292C2 (en)

Similar Documents

Publication Publication Date Title
WO2015005791A1 (en) Device and method for extracting various components from ambient air or from a vapor-gas mixture, and a system for cooling air, heating air, desalination of water and/or purification of water
CN107300230B (en) Evaporative cooling system
US7338548B2 (en) Dessicant dehumidifer for drying moist environments
US4910971A (en) Indirect air conditioning system
JP2020091096A (en) Rooftop liquid desiccant systems and methods
US9631824B1 (en) Liquid desiccant HVAC system
US10184675B2 (en) Dehumidification system and method
FI112445B (en) A method and apparatus for increasing the yield of the air drying process
US20090211276A1 (en) System and method for managing water content in a fluid
JP2007327712A (en) Humidity control system
US20210283528A1 (en) Compact apparatus for extracting water from air
US10767875B2 (en) Humidity control unit and method having bypass for process air
AU2015400019B2 (en) Building provided with an air treatment system
US20160109143A1 (en) Device and method for extracting various components from ambient air or from a vapor-gas mixture, and a system for cooling air, heating air, desalination of water and/or purification of water
JP2008116193A (en) Desiccant air-conditioning method coupled to adsorption type refrigerating machine and device
EP3527292B1 (en) Drying facility for painting
US11035581B1 (en) Integrated desalination and air conditioning system
NL2012292C2 (en) Device for extracting various components from ambient air or from a vapor-gas mixture, and a system and method for cooling air, heating air, desalination of water and/or purification of water.
WO2021052278A1 (en) Vehicle air conditioning system
CN114719459A (en) Deep dehumidification system driven by cascade heat pump and application
NL2011146C2 (en) Device for extracting various components from ambient air or from a vapor-gas mixture.
CN107178841B (en) Air conditioning system
JP7266328B1 (en) water intake device
CN211844018U (en) Vehicle air conditioning system
EP3271659A1 (en) A cooling system, a cooling unit, and a method of cooling intake-air to an air-conditioned building space

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20170301