NL2011256C2 - A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method. - Google Patents

A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method. Download PDF

Info

Publication number
NL2011256C2
NL2011256C2 NL2011256A NL2011256A NL2011256C2 NL 2011256 C2 NL2011256 C2 NL 2011256C2 NL 2011256 A NL2011256 A NL 2011256A NL 2011256 A NL2011256 A NL 2011256A NL 2011256 C2 NL2011256 C2 NL 2011256C2
Authority
NL
Netherlands
Prior art keywords
reservoir
wall
plug
capillary
irrigation system
Prior art date
Application number
NL2011256A
Other languages
Dutch (nl)
Inventor
Petrus Mattheus Maria Hoff
Eduard Willem Zanen
Original Assignee
Holland Technology B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holland Technology B V filed Critical Holland Technology B V
Priority to NL2011256A priority Critical patent/NL2011256C2/en
Application granted granted Critical
Publication of NL2011256C2 publication Critical patent/NL2011256C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/006Reservoirs, separate from plant-pots, dispensing directly into rooting medium
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/04Self-acting watering devices, e.g. for flower-pots using wicks or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

Title: A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method
The invention relates to a method for providing a plant irrigation system.
Reservoirs containing water for irrigation purposes are generally known. Publication WO 2012/081980 describes a plant irrigation system manufactured from paper material and/or biodegradable plastic. The system includes a capillary cord for irrigating the subsoil in a dosed manner. The capillary cord traverses the wall of the reservoir to enable a dosed fluid flow. The manufacturing process of paper based reservoirs entails that the size of openings receiving the capillary cord may vary in a certain range such that leakage of the hquid may occur through a space in the opening that is not occupied by the capillary cord. Leakage is highly undesired since such plant irrigation systems may be used in dry environments where water is scarce and of vital importance for the plant to be protected.
Further, it appears in practice that the wall of the reservoir may be damaged when guiding the capillary cord through the wall, thereby further increasing the leakage problems.
It is an object of the invention to counteract undesired leakage of liquid from the above-mentioned reservoirs.
According to an aspect of the invention, a method for providing a plant irrigation system is provided, including the steps of providing a reservoir having walls for containing a liquid, providing an elongate element of capillary material, and inserting the elongate element of capillary material through a wall opening of the container such that the elongate capillary element traverses the wall aperture, wherein the step of inserting the elongate element of capillary material is performed using a device carrying the elongate capillary element and traversing the wall opening.
According to another aspect of the invention, a plant irrigation system is provided, comprising a reservoir having walls for containing a liquid, further comprising an elongate element of capillary material traversing a wall, the elongate capillary element being inserted using the above-described method.
According to yet another aspect of the invention, a device is provided for carrying an elongate element of capillary material and for traversing a wall opening of a reservoir having walls for containing a liquid, the device comprising an elongated body portion provided with a distal end portion and a structure for carrying the elongate capillary element.
By using a device carrying the elongate capillary element during insertion through the wall opening, the chance of damaging the wall is decreased considerably, thereby reducing leakage problems of the reservoir. Further, advantageously, the device can be used to form the opening in the wall of the reservoir, so that the number of operations needed to manufacture a reservoir with a single or a multiple number of elongate capillary elements is reduced considerably.
According to a further aspect of the invention, a plug is provided for sealingly guiding a capillary cord through a wall of a reservoir containing a liquid. The plug comprises a substantially cylindrical first member having an axial portion and a flange portion, near an end of the axial portion, the axial portion and the flange portion being provided with a bore defining a channel extending axially through the first member, the plug further comprising a separate, substantially cylindrical second member having an annular portion for cooperation with the axial portion of the first member such that a wall segment of the reservoir surrounding an opening being traversed by the axial portion of the first member is sandwiched between the flange portion of the first member and the annular portion of the second member.
By using a two member assembly a portion of the wall surrounding the cord opening can sealingly be mounted to the plug. The specific structure of sandwiching the wall portion between the flange portion of the first member and the annular portion of the second member enables also the application of the plug to a large range of opening sizes since the radial extension of the flange portion and the annular portion can be large, especially relative to the axial dimensions of the plug.
Advantageously, at least one of the plug surfaces sandwiching the wall portion surrounding the cord opening is provided with an axial protruding sealing edge penetrating into said wall portion to further minimize a risk of leaking.
In a preferred embodiment, the flange portion of the first member or the annular portion of the second member is provided with at least one gripping element for engaging the wall section sealingly clamped by the sealing surfaces. Then, the associated member is blocked against rotational movement so that the first and the second member can easily be brought into cooperation. In addition, damage to the wall portion surrounding the cord opening is counteracted.
Further advantageous embodiments according to the invention are described in the following claims.
The invention also relates to a plant irrigation system and a method of manufacturing a plant irrigating system.
In addition, the invention relates to a further method of providing a plant irrigation system.
By way of example only, embodiments of the present invention will now be described with reference to the accompanying figures in which
Fig. 1 shows a schematic perspective cross sectional view of a plant irrigation system according to the invention;
Fig. 2 shows a schematic perspective view of a device for carrying a strip of capillary material according to the invention;
Fig. 3 shows a schematic perspective view of another device for carrying a strip of capillary material according to the invention;
Fig. 4 shows a flow chart of an embodiment of a method according to the invention;
Fig. 5 shows a schematic perspective cross sectional view of another plant irrigation system according to the invention;
Fig. 6 shows a schematic cross sectional view of a first embodiment of a plug according to the invention;
Fig. 7 shows a schematic cross sectional view of a second embodiment of a plug according to the invention;
Fig. 8 shows a schematic cross sectional view of a third embodiment of a plug according to the invention;
Fig. 9A shows a schematic perspective top view of a second member of the plug shown in Fig. 6;
Fig. 9B shows a schematic perspective bottom view of a second member of the plug shown in Fig. 6;
Fig. 10A shows a schematic perspective bottom view of a first member of the plug shown in Fig. 6;
Fig. 10B shows a schematic perspective top view of a first member of the plug shown in Fig. 6;
Fig. 11A shows a schematic perspective bottom view of a first member of the plug shown in Fig. 8;
Fig. 11B shows a schematic perspective top view of a first member of the plug shown in Fig. 8; and
Fig. 12 shows a flow chart of an embodiment of a method according to the invention.
It is noted that the figures show merely preferred embodiments according to the invention. In the figures, the same reference numbers refer to equal or corresponding parts.
Figure 1 shows a schematic perspective cross sectional view of a plant irrigation system 1. The system 1 comprises a collection structure 99 for collecting moisture present in the atmosphere, wherein the collection structure 99 is provided with a water recovery surface 24 which during use at least partly makes an angle with respect to the orientation of gravity. The recovery surface 24 is located above a cover layer 22. The system 1 also includes a reservoir 98 for storing the recovered moisture, wherein the reservoir 98 has a bottom layer 11, also called bottom wall, provided with bottom openings 19. During operation of the plant irrigation system, capillary elementsextend through said bottom openings 19 for delivering moisture present in the reservoir 98 to a subsoil located therebelow.
The water recovery surface 24 has a specific geometry for receiving rain, bloom and other moisture from the atmosphere. The water is collected in a drain 25 and flown to the reservoir 98 via downwardly extending pipes 26, 27. The moisture receiving structure 24 further includes a cap 28 removably closing an aperture 23 in the cover layer 22, and an exit drain 29 flowing excess water to an exit opening 30 in a radial outer wall section 12a of the water reservoir 98. The wall module 2 extends through the cover layer 22 and the moisture receiving structure 24 and forms a radial inner wall of the drain 25.
Further, the plant irrigating system includes an upwardly extending tube 2 forming a radial inner wall section 12b of the water reservoir 98. The tube 2 is connected to the collection structure 99 and has a longitudinal axis A2, for at least partly sideways surrounding a young plant. The water reservoir 98 is thus formed by the radial outer wall section 12a, the radial inner wall section 12b, the bottom layer 11 and the cover layer 22 that forms a top section of the water reservoir 98.
During use of the plant irrigation system 1, a single or a multiple number of seeds, plants or small trees are placed in a soil area 9 surrounded by the tube 2, such that it on the one hand throws a shadow on a soil area near the wall module when the sun reaches its highest orbit point and for allowing a sun beam on the soil area at a time period on the day when the elevation of the sun is relatively low, thereby providing optimal light conditions for the plant.
The collection structure 99 and/or the reservoir 98 can be manufactured from a biodegradable material such as paper material or a biodegradable plastic. Paper material may include cardboard, cellulose, such as paper tissue, paper foam and/or fiber paper.
As an example, the fiber paper may include coconut fiber, cotton fiber, banana fiber, jute fiber, wool fiber, straw fiber, grass fiber, hemp fiber, kenaf fiber, wheat straw paper, sunflower stalks fiber, rags fiber, mulberry paper and/or kozo.
Biodegradable plastic can be based on petroleum based plastics or renewable raw materials.
In the shown embodiment, the plant irrigation system comprises a a reservoir for containing water, and strips 50 of capillary material traversing the bottom wall 11 through the bottom openings 19, respectively. By providing the strips 50 of capillary material, water may flow from the reservoir 98 into the soil, for moistening a root structure of the plant. Thus, the strips 50 serve as an irrigation device for irrigating soil near the reservoir 89. The strips 50 extend through the respective openings 19 in a sealing manner such that waste of water is counteracted.
It is noted that the strips 50 of capillary material may traverse a side wall 12a of the reservoir 98, instead or in addition to the bottom wall 11.
Figure 2 shows a schematic perspective view of a device 60 for carrying a strip 50 of capillary material according to the invention. The device 60 is also arranged for traversing a wall opening 19 of a reservoir 98 shown in Fig. 1. The device 60 comprises an elongated body portion 61 provided with a distal end portion 62 and a structure 63 for carrying the capillary material strip 50. The elongated body portion 61 has a substantially rectangular cross section. Further, the structure 63 for carrying the capillary material strip 50 includes a slot 64. The slot 64 has an open end so that the device 60 may engage and release the strip 50 very easily. The distal end portion 62 of the device 60 is provided with a punching surface 65 for making a slot-shaped opening 19 in the bottom wall 11 of the reservoir 98. The punching surface 65 can e.g. be formed by providing a wedge shaped distal end portion 62 or by providing a separate cutting element at the distal end portion 62 of the device 60. In the shown embodiment, the punching surface has a mainly hnear cutting edge. Alternatively, other cutting edge geometries can be implemented, such as a curved cutting edge or a circular cutting edge. Further, the punching surface can e.g be implemented as a tapered surface. The punching surface can be sharp or blunt. For the purpose of facilitating comfortable use of the device 60, a handgrip 66 is provided.
During use of the device 60, a strip 50 of capillary material is inserted through a wall opening 19 of the reservoir 98 such that the strip 50 traverses the wall opening 19. In this process, a strip 50 is inserted through the slot 64 of the structure 63 for carrying the capillary material strip 50. Then, the distal end 62 of the device 60 brought into contact with the bottom wall 11 of the reservoir 98. The user of the device 60 exerts a force on said wall 11, via the distal end 62 of the device, thus punching the wall 11 and forming an opening 19. Then, the device 60 is pushed further through the opening 19 until the slot 64 has moved through the opening 19. The position of the device 60 in this state of the procedure is shown in Fig. 2, the slot being moved through the opening 19, below the bottom wall 11. The step of making the opening 19 is performed prior to the step of inserting the strip 50. Preferably, the step of punching the wall and inserting the strip 50 of capillary material is performed in a single forward movement of the device 60. In principle, however, the punching step and the inserting step can be performed separately, in two movements of the device 60. Further, the opening 19 can be preformed in the bottom wall 11, e.g. using another tool or being preformed during manufacture of the reservoir 98.
During the process of moving the device 60 through the opening 19 of the bottom wall 11, the user may optionally grip the device 60 and one or both ends 51, 52 of the strip 50, thus keeping control of the position of the strip 50 relative to the device 60. When, the slot 64 has moved through the opening 19, one of both strip ends 51, 52 may be released so that the released end may also move through the opening 19 when the device 60 is further advanced through the opening 19. Alternatively or additionally, the user may pull a first end of the strip backwards, thereby pulling the other end via the slot 64 through the opening 19.
When one of the strip ends has moved through the opening 19, the strip 50 extends through the opening 19, and the device 60 can be retracted from the opening 19 leaving behind the strip 50.
The strip 50 of capillary material can be preformed as a piece of strip material or can be cut from a portion of capillary material having larger dimensions, e.g. from a roll of capillary material.
By using a device having a punching surface that matches the cross sectional shape of the capillary material strip 50, the strip 50 may traverse the bottom wall 11 of the reservoir 98 with a minimal leakage surface around the strip 50. As an example, the strip 50 has a rectangular cross section. By using a device having a punching surface with a linear cutting edge, a slot-shaped opening 19 is formed. By selecting corresponding dimensions, the size of the slot-shaped opening 19 can be large enough to allow the strip 50 to extend therethrough while filling substantially the entire opening, thereby minimizing undesired leakage of water. Apparently, the geometry and the dimensions of the punching surface 65 matching the cross section of the capillary material strip 50 can be selected otherwise, e.g. in forming a circular opening 19 and providing a round capillary cord.
If the reservoir has been manufactured from a biodegradable material, said material may migrate into the part of the opening 19 that is not occupied by the strip, thereby further sealing the strip with the bottom of the reservoir.
Advantageously, a cross sectional dimension of the capillary material strip is selected matching a desired capillary outflow of water from the reservoir. As an example, a double width of the strip provides a mainly double outflow of the water from the reservoir.
As an alternative to providing the slot 64, the structure 63 for carrying the capillary material strip 50 may be implemented in another way, e.g. by providing a notch or flange engaging the strip 50 of capillary material.
It is noted that the shown elongated body portion 61 is mainly invariant along its longitudinal axis. However, other variants are possible. As an example, the elongated body portion may be tapered along a substantial part in its longitudinal direction. Further, instead of having a substantial rectangular cross section, the elongated body portion 61 may have another geometry such as an ellipse or a circle.
It is also noted that the device can be provided without a handgrip and/or without a punching surface, e.g. for realizing a simphfied tool for inserting strips of capillary material through an opening in a reservoir wall.
It is further noted that the strip of capillary material can be implemented with another geometry of an elongate capillary element, e.g. as capillary cord.
The elongate capillary element can be made from a polyester or from another material having capillary properties.
Figure 3 shows a schematic perspective view of another device 60 for carrying a strip 50 of capillary material according to the invention. Here, the slot 64 of the structure 63 for carrying the capillary material strip 50 is entirely surrounded by material of the elongated body portion 61 of the device. In this embodiment, a chance of loosing the strip 50 during the process of handling the device, e.g. when punching the reservoir wall, can be smaller.
Figure 4 shows a flow chart of an embodiment of a method according to the invention for providing a plant irrigation system. The method comprises a step of providing 70 a reservoir having walls for containing a liquid, a step of providing 71 an elongate element of capillary material, and a step of inserting 72 the elongate element of capillary material through a wall opening of the container such that the elongate element of capillary material traverses the wall opening.
It is noted that the above-described features can not only be applied for providing a plant irrigation system, but also more generally for providing a system delivering a dosed outflow of liquid from a reservoir.
Figure 5 shows a schematic perspective cross sectional view of another plant irrigating system 1. The plant irrigation system 1 is mainly similar to the system shown in Fig. 1. Here, plugs 100 are provided for sealingly guiding the capillary elements through the bottom openings 19 on the bottom layer 11.
Fig. 6 shows a schematic cross sectional view of a first embodiment of a plug 100 according to the invention. The plug has a substantially cylindrical first member 101 and a separate, substantially cylindrical second member 102 engaging each other. The first member 101 is provided with an axial portion 103 mainly symmetric with respect to a central axis A, and a flange portion 104, near an end 105 of the axial portion 103. In the axial portion 103 and the flange portion 104, the first member has a bore 106 defining a channel 107 extending axially through the first member 101. The substantially cylindrical second member 102 has an annular portion 108 cooperating with the axial portion 103 of the first member 101.
The first and second member 101; 102 cooperate with each other via a screw connection. In the shown embodiment, the first member 101 has an external screw thread 109 on the radial outer surface of the axial portion 103, while the second member 102 has an inner screw thread 110 on the radial inner surface of the annular portion 108.
In the assembled state of the first member 101 and the second member 102, the central axis A of the axial portion 103 and the annular portion substantially coincide. The first and second member 101; 102 cooperate such that a wall segment 111 of the reservoir 98 surrounding an opening 112 being traversed by the axial portion 103 of the first member 101 is sandwiched between the flange portion 104 of the first member 101 and the annular portion 108 of the second member 102.
Instead of a screw connection, another connection type can be applied, e.g. a snap connection.
In the embodiment shown in Fig. 6, the annular portion 108 includes a staggered portion 108’ staggered in the radial direction. In another embodiment, the annular portion 108 of the second member has a single radial profile, with substantially equal opposite end sections. Further, more complex geometries can be implemented, e.g. including multiple staggered profiles. The annular portion 108 can be implemented as a nut.
Preferably, the first and second members 101; 102 exert a certain pressure force on the wall segment 111 sandwiched between them to seal the opening 112 in the reservoir 98. By clamping said wall segment it is counteracted that fluid flows to the opening 112 providing a fluid escape route from the reservoir outwardly.
In the shown embodiment, the flange portion 104 of the first member 101 and the annular portion 108 of the second member 102 each have a sealing surface 113; 114 facing each other for sealingly clamping therebetween the sandwiched wall segment 111 of the reservoir 98.
Further, the sealing surface 114 of the second member 102 is provided with an axial protruding sealing edge 115 to increase the sealing performance of the plug 100. The sealing edge 115 protrudes in the axial direction A, into the wall segment 111 surrounding the opening 112, and extends in a circumferential direction D, enclosing, in the cooperating state, the axial portion 103 of the first member 101.
In principle, the seahng edge can have a circular profile subscribing the axial portion 103. However, other profiles are possible, e.g. a polygon profile. Further, the sealing edge 115 may extend partially in the circumferential direction D, not entirely enclosing the axial portion 103.
Also, additional sealing edges can be applied, axially protruding from the sealing surface 114 of the second member 102. Alternatively or additionally, a single or a multiple number of sealing edges protruding from the sealing surface 113 of the first member 101 can be applied. However, in a particular embodiment of the plug 100, the sealing surfaces 113; 114 can be implemented without a seahng edge, e.g. to provide a simplified design.
In the embodiment shown in Fig. 6, the flange portion 104 of the first member 101 is provided with a multiple number of gripping elements, implemented as elements 116 protruding in the axial direction A and extending in a radial direction R away from the axial portion 103, for engaging the wall section that is seahngly clamped by the sealing surfaces 113, 114. The gripping elements form ribs 116 that are preferably distributed in a mainly uniform manner in the circumferential direction D. In principle, also a single axially protruding, radially extending rib can be applied. By employing gripping elements, the first member can be blocked in the circumferential direction D when screwing and securing the second member 102 to the first member 101. This simplifies the process of mounting the plug 100 in the reservoir wall considerably, especially when the plug 100 is mounted in the bottom layer 11 of the reservoir 98.
Moreover, damage to the wall segment 111 surrounding the opening 112 in the bottom layer 11 potentially leading to leakage is counteracted.
The gripping element can be implemented otherwise, e.g. as a tooth or a needle.
For providing convenient manual operation of the plug 100, the second member 102 has a handle like a butterfly nut including radially extending wings 117. In the shown embodiment, two wings 117A,B are provided, see in more detail Fig. 5A and 5B. In principle, other engaging means can be provided, e.g. providing a polygon profile so that the second member 102 can be rotated using a ring spanner handling the second member 102 as a nut when mounting the plug 100 to the reservoir wall segment 111.
When mounting the plug 100 to the bottom layer 11 of the reservoir 98, the first member is positioned to the outside surface, below the bottom layer 11. Then, the axial portion 103 of the first member 101 traverses the bottom layer 11 through an opening 112 in said bottom layer 11. The opening 112 can be pre-formed. Alternatively, the opening 112 can be formed when positioning the first member adjacent to the bottom layer outside surface puncturing said layer 111. Further, the second member 102 is positioned to the inner side of the bottom layer 11, opposite to the first member 101. The first and second member 101; 102 can be brought in position one after another, or simultaneously. Then, the first member 101 is secured to the second member 102 by screwing the annular portion 108 on the axial portion 103 of the first member 101. In this process, the first member 101 is preferably stationary, either by manually grasping the first member 101 and/or by pulling the first member 101 upwardly so that the axial protruding gripping elements engage in the wall segment 111 surrounding the opening 112, thereby blocking the first member 101 against rotational movement around axial axis A. By screwing the annular portion 108 on the axial portion 103, the first and second member 101 are brought in cooperation forming the plug 100 and sandwiching the wall segment 111 between the flange portion 105 of the first member 101 and the annular portion 108 of the second member 102. When securing the members 101; 102 of the plug 100, preferably exerting a pressure force on the sandwiched wall segment 111, the plug is fixedly mounted in the bottom layer 11 of the reservoir 98, and leakage of fluid from the reservoir 98 outwardly is counteracted.
Further, a capillary cord 21 is inserted through the channel 107 of the first member 101 to enable fluid transport from the reservoir 98 outwardly in a dosed manner. In principle, the capillary cord 21 can be inserted after mounting the plug 100 to the bottom layer 11 of the reservoir 98. Alternatively, the capillary cord is pre-inserted in the first member 101 before mounting the plug 100.
In the embodiment shown in Fig. 6, the wall segment 111 surrounding the opening 112 is staggered inwardly, having a distance mainly equal to the thickness T of the flange portion 104, so that the outwardly oriented surface 119 of the flange portion 104 substantially extends in the plane P into which the outer surface 118 of the bottom layer 11 extends. Advantageously, any internal stress in the material of the bottom layer 11 is thus minimized. Also, the stability of the reservoir 98 may increase. Alternatively, the offset of the staggered profile is chosen differently, e.g. smaller than the thickness T of the flange portion 104. Optionally, the wall segment 111 surrounding the opening 112 is not staggered at all, thus simplifying the bottom structure of the reservoir 98.
In the shown embodiment of Fig. 6, the axial dimension S of the second member 102 is larger than the thickness T of the flange portion 104 to enable a rehable screw connection between the first and second member 101; 102. Further, the dimensions of the flange portion 104 in the radial direction R are slightly larger than the dimensions of the annular portion 108. The axial dimensions of the first and second member 101; 102 may be set in the order of several milhmeters. The radial dimensions L can be in the order of several centimeters. It is noted, however, that other dimensions are equally possible, e.g. depending on the size of the reservoir and the size of the opening.
Both the axial portion 103 and the flange portion 104 of the first, member 101, as well as the annular portion 108 of the second member 102 are mainly rotationally symmetric with respect to axis A. Alternatively, at least one of said portions has another geometry. As an example, the radial outer surface of the annular portion 108 may be formed as a polygon.
Figure 7 shows a schematic cross sectional view of a second embodiment of a plug 100 according to the invention. The plug 100 is mainly similar to the plug 100 shown in Fig. 2. Here, the position of the first and second member 101; 102 is changed. The first member 101 is positioned on the inner side of the bottom layer 11, while the second member 102 is positioned on the outer side of the bottom layer 11. Such a plug assembly may be advantageous when the plug 100 is applied in another wall segment of the reservoir 98, e.g. in a side wall 12a of the reservoir 98. The second member 102 is implemented a single, simple type annular portion 104.
Further, in the plug 100 shown in Fig. 7, the gripping elements are implemented as teeth or points 116 penetrating in the wall segment 111 surrounding the opening 112. The gripping elements 116 are provided on the sealing surface 113 of the second member 102. The axial protruding sealing edge 115 is again provided on the sealing surface 113 of the second member 102. For rotating the first member 101, a handle 117’ is provided on the first member 101.
Figure 8 shows a schematic cross sectional view of a third embodiment of a plug 100 according to the invention. Again, the plug 100 is mainly similar to the plug 100 shown in Fig. 6. The first member 101 is free of gripping elements such as the teeth or points shown in Fig. 7 and the axially protruding, radially extending elements in Fig. 6. Here, the flange surface 119 facing away from the axial portion 103 is provided with an axially extending part 120 for anchoring the first member 101 in the subsoil to block a rotation of the first member 101 in circumferential direction D. In the shown embodiment two separate axially extending parts 120A,B are provided. The parts 120A,B are formed as radially extending strips contacting the subsoil when the reservoir is placed in or on the ground, see more specifically Figs. 11A and 11B. It is noted that the axially extending parts 120 may have other shapes and sizes, e.g. extending further in the radial direction R. Further, more parts 120 may be provided, preferably evenly distributed in the circumferential direction D. However, the first member 101 may also be provided with a single axially extending part 120.
Figures 9A and 9B show a schematic perspective top view and bottom view, respectively, of the second member 102 of the plug 100 shown in Fig. 6. The second member 102 of the plug 100 shown in Fig. 8 is mainly similar.
Figures 10A and 10B show a schematic perspective bottom view and top view, respectively, of the first member 102 of the plug 100 shown in Fig. 6.
Similarly, Figures 11A and 1 IB show a schematic perspective bottom view and top view, respectively, of the first member 102 of the plug 100 shown in Fig. 8.
The first and/or second member 101; 102 of the plug 100 can be made from a biodegradable material such as a biopolymer. Alternatively, at least one of the members can be made from another material such as polyethylene, e.g. for the purpose of reuse.
As described, the plug 100 can be mounted in the reservoir 98 shown in Fig. 5. However, the plug 100 can also be applied to other reservoirs, e.g. a reservoir having another collection structure for collecting moisture present in the atmosphere. As a further example, the collection structure may include a flat cover provided with filling openings for manually filling the reservoir. In principle, the plug can also be applied to a reservoir that is not made from a biodegradable.
The plug is applicable to reservoirs containing water for irrigating soil to stimulate growth of plants and/seeds. In addition, the plug may in principle also be applied to reservoirs wherein a capillary cord traverses a reservoir wall for delivering another liquid, e.g. a beverage or fuel.
Figure 12 shows a flow chart of an embodiment of the method according to the invention. The method is used for sealingly guiding a capillary cord through a wall of a reservoir containing a liquid. The method comprises a step of providing 310 a substantially cylindrical first member having an axial portion and a flange portion, near an end of the axial portion, the axial portion and the flange portion being provided with a bore defining a channel extending axially through the first member, a step of providing 320 a separate, substantially cylindrical second member having an annular portion, a step of positioning 330 the first member to a first side of the reservoir’s wall, the axial portion of the first member traversing the wall of the reservoir, a step of positioning 340 the second member to a second side of the reservoir’s wall, opposite to the first member to cooperate therewith, and a step of securing 350 the first member to the second member forming a plug, such that a wall segment of the reservoir surrounding the axial portion of the first member is sandwiched between the flange portion of the first member and the annular portion of the second member.
According to a further aspect of the invention, a method for providing a plant irrigation system is provided, comprising the steps of providing a reservoir having walls for containing a liquid, and puncturing a reservoir wall using a puncturing device for forming a wall aperture. The idea is at least partially based on the insight that apertures in the reservoir wall may function as capillary structures enabhng a capillary fluid flow towards the ground, thereby providing an extremely simple and low cost irrigation system since puncturing a wall is an easy process and additional components such as additional capillary components are then superfluous.
Preferably, the wall to be punctured is a bottom wall, so that an irrigation process can continue even if an amount of liquid in the reservoir is small. However, also a side wall can be punctured to provide a capillary opening. Further, as an example, a needle can be used to form small apertures. However, also other puncturing device can be used, such as a nail.
Advantageously, the diameter of a wall aperture is in a range from circa 10 micrometer to circa 1 cm. As an example, the diameter of a wall aperture is circa 10 micrometer, circa 50 micrometer, circa 100 micrometer, circa 500 micrometer, circa 1 mm, circa 5 mm or circa 1 cm.
Apparently, instead of forming a single aperture, a multiple number of apertures can be formed in the reservoir wall, by repeatedly puncturing the reservoir wall. Then, by adding apertures, the irrigation flow will increase accordingly.
The invention is also at least partially based on the insight that a well defined irrigation flow level can be set by selecting a size of apertures and a number of apertures. Then, the total aperture are, i.e. the summed areas of the individual apertures is directly correlated with an irrigation flow level. According to said insight, the number of apertures that are formed in the reservoir wall and the size of the respective apertures can be pre-determined depending on a desired irrigation flow level.
The invention is not restricted to the embodiments described herein. It will be understood that many variants are possible.
Other such variants will be apparent for the person skilled in the art and are considered to fall within the scope of the invention as defined in the following claims.

Claims (46)

1. Werkwijze voor het verschaffen van een plant irrigatiesysteem, omvattende de stappen van: - het verschaffen van een reservoir met wanden voor het houden van een vloeistof, - het verschaffen van een langwerpig element van capillair materiaal, en - het invoeren van het langwerpige element van capillair materiaal door een wandopening van de houder zodat het langwerpig capillaire element de wandopening doorkruist, waarbij de stap van het invoeren van het langwerpige element van capillair materiaal wordt uitgevoerd gebruik makend van een instrument dat het langwerpige capillaire element draagt en de wandopening doorkruist.A method for providing a plant irrigation system, comprising the steps of: - providing a reservoir with walls for holding a liquid, - providing an elongate element of capillary material, and - introducing the elongate element of capillary material through a wall opening of the container so that the elongated capillary element traverses the wall opening, the step of introducing the elongated element of capillary material being carried out using an instrument that carries the elongated capillary element and traverses the wall opening. 2. Werkwijze overeenkomstig conclusie 1, voorts omvattende de stap van het maken van de opening in de wand voorafgaand aan het invoeren van de strook.The method of claim 1, further comprising the step of making the opening in the wall prior to inserting the strip. 3. Werkwijze overeenkomstig één der voorgaande conclusies, waarbij de opening gleufvormig is.Method according to one of the preceding claims, wherein the opening is slit-shaped. 4. Werkwijze overeenkomstig één der voorgaande conclusies, waarbij het reservoir is vervaardigd uit een bioafbreekbaar materiaal.A method according to any one of the preceding claims, wherein the reservoir is made from a biodegradable material. 5. Werkwijze overeenkomstig conclusie 4, voorts omvattende de stap van het doorprikken van de wand gebruik makend van het instrument dat het langwerpige capillaire element draagt.The method of claim 4, further comprising the step of piercing the wall using the instrument that carries the elongated capillary element. 6. Werkwijze overeenkomstig conclusie 5, waarbij de stap van het doorprikken van de wand en de stap van het invoeren van het langwerpige element van capillair materiaal worden uitgevoerd door een enkelvoudige voorwaartse beweging van het instrument.The method of claim 5, wherein the step of piercing the wall and the step of introducing the elongate element of capillary material are performed by a single forward movement of the instrument. 7. Werkwijze overeenkomstig één der voorgaande conclusies, waarbij het langwerpige capillaire element is vervaardigd uit een polyester.A method according to any one of the preceding claims, wherein the elongated capillary element is made from a polyester. 8. Werkwijze overeenkomstig één der voorgaande conclusies, voorts omvattende een stap van het selecteren van een dwarsdoorsnede-dimensie van het langwerpige capillaire element dat past bij een gewenste capillaire uitstroom van vloeistof uit het reservoir.A method according to any one of the preceding claims, further comprising a step of selecting a cross-sectional dimension of the elongated capillary element that matches a desired capillary outflow of liquid from the reservoir. 9. Werkwijze overeenkomstig één der voorgaande conclusies, waarbij het langwerpige capillaire element strookvormig is.A method according to any one of the preceding claims, wherein the elongated capillary element is strip-shaped. 10. Plant irrigatiesysteem, omvattende een reservoir met wanden voor het houden van een vloeistof, voorts omvattende een langwerpig element van capillair materiaal dat een wand doorkruist, waarbij het langwerpige capillaire element is ingevoerd gebruik makend van een werkwijze volgens conclusie 1.A plant irrigation system comprising a reservoir with walls for holding a liquid, further comprising an elongate element of capillary material traversing a wall, the elongated capillary element being introduced using a method according to claim 1. 11. Plant irrigatiesysteem overeenkomstig conclusie 10, waarbij het langwerpige capillaire element een bodemwand van het reservoir doorkruist.The plant irrigation system according to claim 10, wherein the elongated capillary element traverses a bottom wall of the reservoir. 12. Plant irrigatiesysteem overeenkomstig conclusie 10 of 11, waarbij het langwerpige capillaire element een irrigatie-instrument is voor het irrigeren van grond nabij het reservoir.A plant irrigation system according to claim 10 or 11, wherein the elongated capillary element is an irrigation instrument for irrigating soil near the reservoir. 13. Plant irrigatiesysteem overeenkomstig één der voorgaande conclusies 10-12, voorts omvattende een verzamelstructuur voor het verzamelen van vocht dat aanwezig is in de atmosfeer, waarbij de verzamelstructuur is voorzien van een wateropvang-oppervlak dat tijdens gebruik tenminste gedeeltelijk een hoek ten opzichte van de oriëntatie van de zwaartekracht maakt.13. Plant irrigation system according to any one of the preceding claims 10-12, further comprising a collecting structure for collecting moisture present in the atmosphere, the collecting structure being provided with a water collecting surface which during use is at least partially at an angle to the orientation of gravity. 14. Plant irrigatiesysteem overeenkomstig één der voorgaande conclusies 10-13, waarbij het reservoir is vervaardigd uit een bioafbreekbaar materiaal.A plant irrigation system according to any one of the preceding claims 10-13, wherein the reservoir is made from a biodegradable material. 15. Instrument voor het dragen van een strook capillair materiaal en voor het doorkruisen van een wandopening van een reservoir met wanden voor het houden van een vloeistof, waarbij het instrument een langwerpig hoofddeel heeft met een distaai uiteinde deel en een structuur voor het dragen van het langwerpige capillaire element.15. Instrument for carrying a strip of capillary material and for traversing a wall opening of a reservoir with walls for holding a liquid, the instrument having an elongated main part with a distal end part and a structure for carrying the elongated capillary element. 16. Instrument overeenkomstig conclusie 15, waarbij het langwerpige hoofddeel een in hoofdzaak rechthoekige dwarsdoorsnede heeft.The instrument of claim 15, wherein the elongated main body has a substantially rectangular cross section. 17. Instrument overeenkomstig conclusie 15 of 16, waarbij de structuur voor het dragen van het langwerpige capillaire element een gleuf omvat.The instrument of claim 15 or 16, wherein the structure for supporting the elongated capillary member comprises a slot. 18. Instrument overeenkomstig conclusie 17, waarbij de gleuf een open uiteinde heeft.The instrument of claim 17, wherein the slot has an open end. 19. Instrument overeenkomstig één der voorgaande conclusies 15-18, waarbij het distale uiteinde deel een oppervlak met een doorprikfunctie heeft.The instrument of any one of the preceding claims 15-18, wherein the distal end portion has a surface with a puncture function. 20. Instrument overeenkomstig één der voorgaande conclusies 15-19, voorts omvattende een handgreep.An instrument according to any one of the preceding claims 15-19, further comprising a handle. 21. Plug voor het af dichtend geleiden van een capillair koord door een wand van een reservoir voor het houden van een vloeistof, waarbij de plug een in hoofdzaak cylindrisch eerste onderdeel omvat met een axiaal deel en een flensdeel, nabij een uiteinde van het axiale deel, waarbij het axiale deel en het flensdeel zijn voorzien van een boring die een kanaal definiëren dat zich axiaal uitstrekt door het eerste onderdeel, waarbij de plug voorts een afzonderlijk, in hoofdzaak cylindrisch tweede onderdeel omvat met een ringvormig deel om samen te werken met het axiale deel van het eerste onderdeel zodanig dat een wandsegment van het reservoir dat een opening omgeeft dat is doorkruist door het axiale deel van het eerste onderdeel wordt geplaatst tussen het flensdeel van het eerste onderdeel en het ringvormige deel van het tweede onderdeel.A plug for sealingly guiding a capillary cord through a wall of a reservoir for holding a liquid, the plug comprising a substantially cylindrical first part with an axial part and a flange part, near an end of the axial part wherein the axial member and the flange member are provided with a bore defining a channel extending axially through the first member, the plug further comprising a separate, substantially cylindrical second member with an annular member to cooperate with the axial member part of the first part such that a wall segment of the reservoir surrounding an opening that is traversed by the axial part of the first part is placed between the flange part of the first part and the annular part of the second part. 22. Plug volgens conclusie 21, waarbij het eerste en het tweede onderdeel samenwerken via een schroefverbinding.The plug of claim 21, wherein the first and the second component cooperate via a screw connection. 23. Plug volgens conclusie 21 of 22, waarbij het flensdeel van het eerste onderdeel en het ringvormige deel van het tweede onderdeel elk een afdichtend oppervlak hebben die naar elkaar gericht zijn voor het daartussen afdichtend klemmen van het tussengeplaatste wandwegment van het reservoir.The plug of claim 21 or 22, wherein the flange portion of the first component and the annular portion of the second component each have a sealing surface facing each other for sealingly clamping the intermediate wall weighing portion of the reservoir between them. 24. Plug volgens conclusie 23, waarbij tenminste één van de afdichtende oppervlakken is voorzien van een axiaal uitstekende afdichtrand.The plug of claim 23, wherein at least one of the sealing surfaces is provided with an axially protruding sealing edge. 25. Plug volgens conclusie 24, waarbij de afdichtrand zich in een omtreksrichting uitstrekt, omsluitend, in de samenwerkende toestand, het axiale deel van het eerste onderdeel.The plug of claim 24, wherein the sealing edge extends in a circumferential direction, enclosing, in the cooperating state, the axial part of the first part. 26. Plug volgens één der voorgaande conclusies 23-25, waarbij het flensdeel van het eerste onderdeel of het ringvormige deel van het tweede onderdeel is voorzien van tenminste één grijpelement voor het aangrijpen van de wandsectie dat afdichtend wordt geklemd door de afdichtoppervlakken.A plug according to any one of the preceding claims 23-25, wherein the flange part of the first part or the annular part of the second part is provided with at least one gripping element for engaging the wall section which is sealingly clamped by the sealing surfaces. 27. Plug volgens conclusie 26, waarbij het aangrijpelement is gevormd als een tand.The plug of claim 26, wherein the engaging element is shaped like a tooth. 28. Plug volgens conclusie 26 of 27, waarbij het grijpelement in een axiale richting uitsteekt en zich vanaf het axiale deel in aan radiale richting uitstrekt.Plug according to claim 26 or 27, wherein the gripping element protrudes in an axial direction and extends from the axial part in a radial direction. 29. Plug volgens conclusie 28, omvattende een meervoudig aantal axiaal uitstekende grijpelementen die zich vanaf het axiale deel uitstrekken, bij voorkeur evenredig verdeeld in een omtreksrichting.The plug of claim 28, comprising a plurality of axially projecting gripping elements extending from the axial member, preferably evenly distributed in a circumferential direction. 30. Plug volgens één der voorgaande conclusies 21-29, waarbij het tweede onderdeel is voorzien van een handvat om het tweede onderdeel met de hand aan het eerste onderdeel te verbinden.A plug according to any one of the preceding claims 21-29, wherein the second part is provided with a handle for manually connecting the second part to the first part. 31. Plug volgens één der voorgaande conclusies 21-30, waarbij het flensoppervlak dat van het axiale deel vandaan is gericht is voorzien van een zich axiaal uitstrekkend deel om het eerste onderdeel aan de ondergrond te verankeren.A plug according to any one of the preceding claims 21-30, wherein the flange surface directed away from the axial part is provided with an axially extending part to anchor the first part to the substrate. 32. Plug volgens één der voorgaande conclusies 21-31, waarbij het eerste en/of het tweede onderdeel is vervaardigd uit een bioafbreekbaar materiaal, bij voorkeur een biopolymeer.A plug according to any one of the preceding claims 21-31, wherein the first and / or the second part is made from a biodegradable material, preferably a biopolymer. 33. Plant irrigatiesysteem, omvattende een reservoir met wanden voor het houden van een vloeistof, omvattende een plug volgens één der voorgaande conclusies 21-32 bevestigd in een wand van het reservoir, waarbij het reservoir voorts aan capillair koord omvat dat de wand van het reservoir doorkruist via het kanaal van het eerste onderdeel.A plant irrigation system, comprising a reservoir with walls for holding a liquid, comprising a plug according to any one of the preceding claims 21-32 mounted in a wall of the reservoir, the reservoir further comprising a capillary cord covering the wall of the reservoir through the channel of the first part. 34. Plant irrigatiesysteem volgens conclusive 33, waarbij de plug is bevestigd in een bodemwand van het reservoir.A plant irrigation system according to claim 33, wherein the plug is mounted in a bottom wall of the reservoir. 35. Plant irrigatiesysteem volgens conclusie 33 of 34, waarbij het capillaire koord een irrigatie-instrument is voor het irrigeren van grond nabij het reservoir.The plant irrigation system according to claim 33 or 34, wherein the capillary cord is an irrigation instrument for irrigating soil near the reservoir. 36. Plant irrigatiesysteem volgens één der voorgaande conclusies 33- 35, voorts omvattende een verzamelstructuur voor het verzamelen van vocht dat aanwezig is in de atmosfeer, waarbij de verzamelstructuur is voorzien van een wateropvang-oppervlak dat tijdens gebruik tenminste gedeeltelijk een hoek ten opzichte van de oriëntatie van de zwaartekracht maakt.A plant irrigation system according to any one of the preceding claims 33-35, further comprising a collection structure for collecting moisture present in the atmosphere, the collection structure being provided with a water collection surface which during use is at least partially at an angle to the orientation of gravity. 37. Plant irrigatiesysteem volgens één der voorgaande conclusies 33- 36, waarbij het reservoir is vervaardigd uit een bioafbreekbaar materiaal.A plant irrigation system according to any one of the preceding claims 33-36, wherein the reservoir is made from a biodegradable material. 38. Werkwijze voor het afdichtend geleiden van een capillair koord door een wand van een reservoir van een plant irrigatiesysteem, waarbij het reservoir is ingericht voor het houden van een vloeistof, omvattende de stappen van: - het verschaffen van een in hoofdzaak cylindrisch eerste onderdeel met een axiaal deel en een flensdeel, nabij een uiteinde van het axiale deel, waarbij het axiale deel en het flensdeel zijn voorzien van een boring die een kanaal definiëren dat zich axiaal uitstrekt door het eerste onderdeel, - het verschaffen van een afzonderlijk, in hoofdzaak cylindrisch tweede onderdeel met een ringvormig deel, - het positioneren van het eerste onderdeel aan een eerste zijde van de reservoirwand, waarbij het axiale deel van het eerste onderdeel de wand van het reservoir doorkruist, - het positioneren van het tweede onderdeel aan een tweede zijde van de reservoirwand, tegenover het eerste onderdeel om daarmee samen te werken, - het vastzetten van het eerste onderdeel aan het tweede onderdeel, een plug vormend zodanig dat een wandsegment van het reservoir dat het axiale deel van het eerste onderdeel wordt geplaatst tussen het flensdeel van het eerste onderdeel en het ringvormige deel van het tweede onderdeel.38. Method for sealingly guiding a capillary cord through a wall of a reservoir of a plant irrigation system, the reservoir being adapted to hold a liquid, comprising the steps of: - providing a substantially cylindrical first part with an axial part and a flange part, near an end of the axial part, the axial part and the flange part being provided with a bore defining a channel extending axially through the first part, - providing a separate, substantially cylindrical second part with an annular part, - positioning the first part on a first side of the reservoir wall, wherein the axial part of the first part crosses the wall of the reservoir, - positioning the second part on a second side of the reservoir reservoir wall, opposite the first part to cooperate with it, - securing the first part to the second part, forming a plug such that a wall segment of the reservoir that the axial part of the first part is placed between the flange part of the first part and the annular part of the second part. 39. Werkwijze volgens conclusie 38, voorts omvattende een stap van het invoeren van een capillair koord door het kanaal van het eerste onderdeel.The method of claim 38, further comprising a step of introducing a capillary cord through the channel of the first part. 40. Werkwijze volgens conclusie 38 or 39, waarbij het flensdeel van het eerste onderdeel is bevestigd op het buitenoppervlak van het reservoir.A method according to claim 38 or 39, wherein the flange part of the first part is mounted on the outer surface of the reservoir. 41. Werkwijze voor het verschaffen van een plant irrigatiesysteem, omvattende de stappen van: - het verschaffen van een reservoir met wand voor het houden van een vloeistof, en - het doorprikken van een reservoirwand gebruik makend van een prikgereedschap voor het vormen van een wandopening.A method for providing a plant irrigation system, comprising the steps of: - providing a reservoir with wall for holding a liquid, and - puncturing a reservoir wall using a piercing tool for forming a wall opening. 42. Werkwijze volgens conclusie 41, waarbij de reservoirwand door doorgeprikt moet worden een bodemwand is.The method of claim 41, wherein the reservoir wall is to be punctured by a bottom wall. 43. Werkwijze volgens conclusie 41 of 42, waarbij het prikgereedschap een naald is.The method of claim 41 or 42, wherein the puncture tool is a needle. 44. Werkwijze volgens één der voorgaande conclusies 41-43, waarbij de diameter van de wandopeningen in een bereik is van circa 10 micrometer tot circa 1 cm.A method according to any one of the preceding claims 41-43, wherein the diameter of the wall openings is in a range of approximately 10 microns to approximately 1 cm. 45. Werkwijze volgens één der voorgaande conclusies 41-44, waarbij een meervoudig aantal wandopeningen worden gevormd door herhaaldelijk doorprikken van de reservoirwand.A method according to any of the preceding claims 41-44, wherein a plurality of wall openings are formed by repeatedly puncturing the reservoir wall. 46. Werkwijze volgens één der voorgaande conclusies 41-45, waarbij het aantal openingen die worden gevormd in de reservoirwand en de afmeting van de openingen vooraf is bepaald afhankelijk van een gewenst irrigatiestroom-niveau.A method according to any one of the preceding claims 41-45, wherein the number of openings formed in the reservoir wall and the size of the openings is predetermined depending on a desired irrigation flow level.
NL2011256A 2013-08-02 2013-08-02 A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method. NL2011256C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2011256A NL2011256C2 (en) 2013-08-02 2013-08-02 A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2011256A NL2011256C2 (en) 2013-08-02 2013-08-02 A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method.
NL2011256 2013-08-02

Publications (1)

Publication Number Publication Date
NL2011256C2 true NL2011256C2 (en) 2015-02-03

Family

ID=49261719

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2011256A NL2011256C2 (en) 2013-08-02 2013-08-02 A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method.

Country Status (1)

Country Link
NL (1) NL2011256C2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20200749U1 (en) * 2002-01-18 2002-05-23 Lai Yuan Song Flower pot with a space for water storage
AU2007200264A1 (en) * 2007-01-10 2008-07-24 Jean Ilona Finlay Self watering root stake
WO2009078721A1 (en) * 2007-12-18 2009-06-25 P.M.M. Hoff Holding B.V. Device and method for recovering moisture in the atmosphere
WO2012081980A1 (en) * 2010-12-16 2012-06-21 Holding P.M.M. Hoff B.V. A plant irrigating system and a method
WO2012099351A2 (en) * 2011-01-20 2012-07-26 Lee Hun-Jae Functional plant cultivation apparatus having an automatic water-supplying function
NL2007534C2 (en) * 2011-10-04 2013-04-08 Holding P M M Hoff B V A method of breeding young plants and a plant breeding system.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20200749U1 (en) * 2002-01-18 2002-05-23 Lai Yuan Song Flower pot with a space for water storage
AU2007200264A1 (en) * 2007-01-10 2008-07-24 Jean Ilona Finlay Self watering root stake
WO2009078721A1 (en) * 2007-12-18 2009-06-25 P.M.M. Hoff Holding B.V. Device and method for recovering moisture in the atmosphere
WO2012081980A1 (en) * 2010-12-16 2012-06-21 Holding P.M.M. Hoff B.V. A plant irrigating system and a method
WO2012099351A2 (en) * 2011-01-20 2012-07-26 Lee Hun-Jae Functional plant cultivation apparatus having an automatic water-supplying function
NL2007534C2 (en) * 2011-10-04 2013-04-08 Holding P M M Hoff B V A method of breeding young plants and a plant breeding system.

Similar Documents

Publication Publication Date Title
US6108970A (en) Self-watering plant guard
US9320203B2 (en) Substance introduction method for plant, container, and combination of plant and container
NL2011256C2 (en) A method, a plant irrigation system, a device, a plug, a plant irrigation system, a method and a further method.
CN111972154A (en) Inner scissors cover special for cactus thoracotomy device
KR101408102B1 (en) Flowerpot manufacturing kit
FR2693623A1 (en) Holder for maintaining contact between parts of grafted plants, - is formed as hollow cylinder in elastic plastic material, with arm carrying fixing loop to be attached to stake.
US20190059210A1 (en) Fertilizer Cage Apparatus
US11606948B2 (en) Chemical applicator for plant material
KR101594998B1 (en) Hermetic pressure type injector
US20170118928A1 (en) Subsurface Water, Air and/or Nutrient Delivery Tube
US8127491B1 (en) On-demand control of subsurface watering
US20080134574A1 (en) Tree and shrub apron
KR200478843Y1 (en) underground water supply tool
EP1124410A1 (en) Device for replacing trees, shrubs, flowers and for tending same
US10779486B2 (en) Plant pot wick insertion hardware and method
US9894828B1 (en) Garden tool adapter for punching holes for seeds and method for use
KR102294279B1 (en) Water Supplying Apparatus using Waste Tire
EP2442635B1 (en) Irrigation apparatus
WO2016072851A1 (en) Ssubstance introduction method for plants
US5560654A (en) Irrigantion lay flat pipe hole plug
US9107353B1 (en) Snap on cloning mold for air layering of plants
AU716241B2 (en) Self-watering plant guard
FI12253U1 (en) Apparatus for planting a seedling
US20200029518A1 (en) Device to insert a wick into a plant pot, assembly of device and wick, and production method of the device
EP2870860B1 (en) Mulching attachment with water reservoir for the cultivation of plants, especially potted plants

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20160901