NL2009280C2 - Electric power converter. - Google Patents

Electric power converter. Download PDF

Info

Publication number
NL2009280C2
NL2009280C2 NL2009280A NL2009280A NL2009280C2 NL 2009280 C2 NL2009280 C2 NL 2009280C2 NL 2009280 A NL2009280 A NL 2009280A NL 2009280 A NL2009280 A NL 2009280A NL 2009280 C2 NL2009280 C2 NL 2009280C2
Authority
NL
Netherlands
Prior art keywords
current
branch
power converter
switch
output terminal
Prior art date
Application number
NL2009280A
Other languages
Dutch (nl)
Inventor
Erik Lemmen
Original Assignee
Prodrive B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodrive B V filed Critical Prodrive B V
Priority to NL2009280A priority Critical patent/NL2009280C2/en
Application granted granted Critical
Publication of NL2009280C2 publication Critical patent/NL2009280C2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Description

5
Electric power converter
The present invention relates to an electric power converter, in particular an opposed current converter, also referred to as current amplifier.
Opposed current converters are used for high precision stepper drivers, voice coil actuator positioning systems and ultra low distortion amplifiers. For these applications a very low output distortion is desired. The known converters usually comprise a first branch, comprising a first switch and a first diode connected in series, oriented such that 10 both can conduct a current to a first common node, a second branch, arranged in parallel to the first branch, and comprising a second switch and a second diode connected in series, oriented such that both can conduct a current from a second common node, a first inductance component, with a first end coupled to the first common node, a second inductance component, with a first end coupled to the second common node, a coupling 15 of the respective second ends of the first and second inductance component forming an output connection for a load. The first and second parallel branches are arranged in parallel to a voltage source, and the load is coupled between the output connection and a common ground with the voltage source.
20 State of the art converters are the half/full bridge converter and the opposed current converter.
One disadvantage of the half/full bridge converters according to the state of the art, is that they require a dead-time in switching, that is, a safe margin in their switching 25 control signal for avoiding short circuitry as a result of both switches being switched on.
Disadvantages of the opposed current converter are a bias current that is relatively expensive to measure, and that is relatively high, causing RMS losses and requires high peak current rated output inductors. A bias current is to be understood as current out of 30 the first common node flowing into the second common node.
It is therefore a goal of the present invention to propose an opposed current converter that takes away the above disadvantages of the prior art, and/or to provide a useful alternative.
2
The present invention thereto provides an electric power converter, comprising a first branch, comprising a first switch and a first diode connected in series, oriented such that both can conduct a current to a first common node, a second branch, arranged in parallel 5 to the first branch, and comprising a second switch and a second diode connected in series, oriented such that both can conduct a current from a second common node, a first inductance component, with a first end coupled to the first common node, a second inductance component, with a first end coupled to the second common node, a coupling of the respective second ends of the first and second inductance component forming an 10 output connection for a load, and at least a third inductance component, coupled between the first and the second common node.
In use, the first and second parallel branches are arranged in parallel to a voltage source, and the load is coupled between the output connection and a common ground with the 15 voltage source. The voltage source is oriented such that the switch of the first branch is coupled to the positive connection of the power source, and the diode of the first branch to the negative power source.
The third inductance component connects both branches, and enables a current to flow 20 between them. In a situation where both switches are “on”, that is, in a conducting situation, this inductance component is in parallel with the series connection of the first and second inductance components. As a result, a part of the bias current flows through the third inductance component instead of the first and second inductance component.
25 One advantage of the topology according to the invention is that distortion is less than distortion in half/full bridge converter, as it is in a majority of opposed current convertors. Distortion caused by unbalance of output inductors in the opposed current converter, which creates a coupling from bias current to output voltage, is even less in the extra inductor opposed current converter (ELOCC), as the invention will be referred 30 to as well.
In a preferred embodiment, the third inductance component has a lower impedance than the series connection of first and second inductance components, so that a majority of the bias current flows through the third inductance component.
3 A controller is used for controlling the switches, each with a duty cycle, interleaved such that there is a minimum voltage ripple across the third inductance component, and also controlled such that there is a desired average current through the third inductance 5 component such that the current out of the first branch, and into the second branch is always larger than zero.
The output connection may be coupled to a common ground by a capacitor.
10 In order to be able to create both positive and negative currents, a pair of two parallel converters as described above may be applied, wherein two respective output connections form connections for a load. Even a configuration of two quad inductor opposed current converters may be applied, wherein the two respective output connections of the first pair of power converters is coupled and forms a first output 15 connection for a load, and wherein the two respective output connections of the second pair of power converters is coupled and forms a second output connection for a load.
The invention will now be elucidated into more detail with reference to the following figures. Herein: 20 - Figure 1 shows a first embodiment of a converter according to the invention; - Figure 2 shows wave shapes for the converter in figure 1, with for illustrational purposes a non zero resistance used for the Lbx inductor; - Figures 3a-d show the active parts in the converter during various intervals; - Figure 4 shows a full bridge embodiment of the converter according to the 25 present invention; - Figure 5 shows a half-bridge equivalent of a quad inductor opposed current converter according to the present invention; - Figure 6 shows a full bridge embodiment of the quad inductor opposed current converter according to the present invention; 30 - Figure 7 shows wave shapes for the converter in figure 6.
Figure 1 shows a first embodiment of a voltage source Udc to which power converter according to the present invention is coupled, showing a first branch, comprising a first switch Six and a first diode Dix connected in series, oriented such that both can conduct 4 a current to a first common node, having a voltage usnix; a second branch, arranged in parallel to the first branch, and comprising a second switch S2X and a second diode Ü2X connected in series, oriented such that both can conduct a current from a second common node. The converter further comprises a first inductance component Lfix, with 5 a first end coupled to the first common node, that has an output voltage uout and a second inductance component Lnx, with a first end coupled to the second common node, having a voltage usn2x The converter is characterised by a third inductance component Lbx, coupled between the first and the second common node.
10 In the converter according to the state of the art, the bias and output current both flow through the output inductors Lnx and Lf2X. Depending on the phase shift between the PWM switch control signals within a switching cell the current ripple can be moved from the output to the bias current. With the present invention, the bias and output current path are separated by adding an extra inductor Lbx.
15
The impedance of Lbx should be lower than the impedance of Lnv + Lf2*. In this case the major part of the bias current flows through the bias inductor only. This can be easily measured with a single current sensor, measuring the current though Lnx and Lnx is not necessary.
20
Figure 2 shows various waveshapes for the converter in figure 1. From the figure, it becomes clear that a part of the current continuously flows through Lbx, and that a voltage is over Lbx when both switches are on.
25 Figures 3a-d show the active parts in the converter during various intervals. It is remarked that the state where Ubias is negative does not occur in steady state but it may occur when dynamically adjusting the bias current.
Figure 4 shows a full bridge equivalent converter with an inductor Li and resistor Ri as 30 load. Like numerals refer to like parts. Once can see that the circuit comprises of two converters as shown in figure 1. The first converters components have been marked with a “p”, the second converters components with an “n”.
5
Figure 5 shows a half-bridge equivalent of a quad inductor opposed current converter according to the present invention. The circuit comprises of a converter as shown in figure 1 but with separated bias control for leg 1 and leg 2. In this configuration, the currents can be further decoupled, providing separate bias control for both legs and fully 5 decoupled bias/output currents. The separate switching leg allows for non-interleaved switching in the bias path (Lbix and Lb2X) to have a minimum voltage ripple across the bias inductors, and interleaved switching in the output path to have a minimum current ripple through the output capacitor. Using interleaved switching for the output path results in a minimum voltage/current ripple at the output. Using non-interleaved 10 switching in the bias path results in a minimum of required inductance in the bias path. When aiming for an equal voltage or current ripple on the output, compared to the configuration from figure 1, the total inductive volume of the converter from figure 5 can be lower.
15 Figure 6 shows a full bridge equivalent quad inductor opposed current converter with an inductor Li and resistor Ri as load. Like numerals refer to like parts. Once can see that the circuit comprises of two converters as shown in figure 5. The first converters components have been marked with a “p”, the second converters components with an “n”.
20
In theory all OCC variants are derived from this QLOCC topology. Removing the bias inductors and the bias switching legs results in the standard OCC topology. Leaving only the bias switching legs out and connecting the two separate bias inductors together results in the ELOCC topology.
25
Figure 7 shows wave shapes for the converter from figure 6.

Claims (8)

1. Elektrische vermogenomvormer, omvattende: - een eerste tak, omvattende een eerste schakelaar en een eerste diode met 5 elkaar verbonden in serie, zodanig georiënteerd dat ze beide een stroom kunnen geleiden naar een eerste gezamenlijke knooppunt; - een tweede tak, parallel geplaatst aan de eerste tak, en omvattende een tweede schakelaar en een tweede diode met elkaar verbonden in serie, zodanig georiënteerd dat ze beide een stroom kunnen geleiden van een 10 tweede gezamenlijke knooppunt; - een eerste inductieve component, met een eerste einde gekoppeld aan het eerste gezamenlijke knooppunt; een tweede inductieve component, met een eerste einde gekoppeld aan het tweede gezamenlijke knooppunt; 15. een koppeling van de respectievelijke tweede eindes van de eerste en tweede inductieve component, vormende een uitgangsaansluiting voor een belasting; gekenmerkt door - ten minste een derde inductieve component, gekoppeld tussen het eerste 20 en tweede gezamenlijke knooppunt.An electrical power converter, comprising: - a first branch, comprising a first switch and a first diode connected in series, oriented such that they can both conduct a current to a first common node; a second branch, placed parallel to the first branch, and comprising a second switch and a second diode connected together in series, oriented such that they can both conduct a current from a second joint node; - a first inductive component, with a first end coupled to the first joint node; a second inductive component, with a first end coupled to the second joint node; 15. a coupling of the respective second ends of the first and second inductive components, forming an output terminal for a load; characterized by - at least a third inductive component coupled between the first and second joint node. 2. Elektrische vermogenomvormer volgens conclusie 1, waarbij de derde inductieve component een lagere impedantie heeft dan de som van de eerste en de tweede inductieve componenten. 25The electric power converter according to claim 1, wherein the third inductive component has a lower impedance than the sum of the first and the second inductive components. 25 3. Elektrische vermogenomvormer volgens conclusie 1 of 2, omvattende een besturing voor de schakelaars, ingericht voor het schakelen van de eerste schakelaar en de tweede schakelaar, elk met een inschakelduur, met een zodanige tussentijd dat er een minimale voltagerimpel is over de derde 30 inductieve component, in het bijzonder zodanig dat er een gemiddelde stroom is door de derde inductieve component zodat de stroom uit het eerste gezamenlijke knooppunt, en naar het tweede gezamenlijke knooppunt, altijd groter is dan nul.3. Electric power converter as claimed in claim 1 or 2, comprising a control for the switches, arranged for switching the first switch and the second switch, each with a switch-on duration, with such an interval that there is a minimum voltage ripple over the third inductive component, in particular such that there is an average current through the third inductive component so that the current from the first joint node, and to the second joint node, is always greater than zero. 4. Elektrische vermogenomvormer volgens één van de voorgaande conclusies, waarbij de uitgangsaansluiting is gekoppeld aan een gemeenschappelijke aarde door een condensator.An electric power converter according to any one of the preceding claims, wherein the output terminal is coupled to a common ground by a capacitor. 5. Elektrische vermogenomvormer omvattende twee parallelle vermogenomvormers volgens één van de voorgaande conclusies, waarbij de uitgangsaansluiting van de eerste vermogenomvormer een eerste uitgangsaansluiting vormt voor een belasting, en waarbij de uitgangsaansluiting van de tweede vermogenomvormer een tweede uitgangsaansluiting vormt voor 10 een belasting.5. Electric power inverter comprising two parallel power inverters according to one of the preceding claims, wherein the output terminal of the first power converter forms a first output terminal for a load, and wherein the output terminal of the second power converter forms a second output terminal for a load. 6. Elektrische vermogenomvormer, omvattende: - een eerste tak, omvattende een eerste schakelaar en een eerste diode met elkaar verbonden in serie, zodanig georiënteerd dat ze beide een stroom 15 kunnen geleiden naar een eerste gezamenlijke knooppunt; - een tweede tak, parallel geplaatst aan de eerste tak, en omvattende een tweede schakelaar en een tweede diode met elkaar verbonden in serie, zodanig georiënteerd dat ze beide een stroom kunnen geleiden van een tweede gezamenlijke knooppunt; 20. een eerste inductieve component, met een eerste einde gekoppeld aan het eerste gezamenlijke knooppunt; - een tweede inductieve component, met een eerste einde gekoppeld aan het tweede gezamenlijke knooppunt; - een koppeling van de respectievelijke tweede eindes van de eerste en 25 tweede inductieve component, vormende een uitgangsaansluiting voor een belasting; gekenmerkt door - een derde tak, parallel geplaatst aan de eerste tak, en omvattende een derde schakelaar en een derde diode, met elkaar verbonden in serie, 30 zodanig georiënteerd dat ze beide een stroom kunnen geleiden van een derde gezamenlijk knooppunt; - ten minste een derde inductieve component, gekoppeld tussen het eerste en het tweede gezamenlijke knooppunt; - een vierde tak, parallel geplaatst aan de eerste tak, en omvattende een vierde schakelaar en een vierde diode, met elkaar verbonden in serie, zodanig georiënteerd dat ze beide een stroom kunnen geleiden van een vierde gezamenlijk knooppunt; en 5. ten minste een vierde inductieve component, gekoppeld tussen het tweede en het vierde gezamenlijke knooppunt.6. An electrical power converter, comprising: - a first branch, comprising a first switch and a first diode connected in series, oriented such that they can both conduct a current to a first common node; - a second branch, placed parallel to the first branch, and comprising a second switch and a second diode connected in series, oriented such that they can both conduct a current from a second common node; 20. a first inductive component, with a first end coupled to the first joint node; - a second inductive component, with a first end coupled to the second joint node; a coupling of the respective second ends of the first and second inductive component, forming an output connection for a load; characterized by - a third branch, placed parallel to the first branch, and comprising a third switch and a third diode, connected together in series, oriented such that they can both conduct a current from a third joint node; - at least a third inductive component coupled between the first and the second joint node; - a fourth branch, placed parallel to the first branch, and comprising a fourth switch and a fourth diode connected in series, oriented such that they can both conduct a current from a fourth common node; and 5. at least a fourth inductive component coupled between the second and the fourth joint node. 7. Elektrische vermogenomvormer volgens conclusie 6, waarbij de uitgangsaansluiting is gekoppeld aan een gemeenschappelijke aarde door een 10 condensator.7. Electric power converter according to claim 6, wherein the output connection is coupled to a common ground by a capacitor. 8. Elektrische vermogenomvormer omvattende twee parallelle vermogenomvormers volgens conclusie 6 of 7, waarbij de uitgangsaansluiting van de eerste vermogenomvormer een eerste uitgangsaansluiting vormt voor een 15 belasting, en waarbij de uitgangsaansluiting van de tweede vermogenomvormer een tweede uitgangsaansluiting vormt voor een belasting.8. Electric power inverter comprising two parallel power inverters according to claim 6 or 7, wherein the output terminal of the first power converter forms a first output terminal for a load, and wherein the output terminal of the second power converter forms a second output terminal for a load.
NL2009280A 2012-08-03 2012-08-03 Electric power converter. NL2009280C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2009280A NL2009280C2 (en) 2012-08-03 2012-08-03 Electric power converter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2009280A NL2009280C2 (en) 2012-08-03 2012-08-03 Electric power converter.
NL2009280 2012-08-03

Publications (1)

Publication Number Publication Date
NL2009280C2 true NL2009280C2 (en) 2014-02-04

Family

ID=46845974

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2009280A NL2009280C2 (en) 2012-08-03 2012-08-03 Electric power converter.

Country Status (1)

Country Link
NL (1) NL2009280C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821734A (en) * 2015-04-30 2015-08-05 华南理工大学 Sub module circuit of modular multi-level converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008815A1 (en) * 1995-08-29 1997-03-06 Crown International, Inc. Opposed current power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008815A1 (en) * 1995-08-29 1997-03-06 Crown International, Inc. Opposed current power converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHELLEKENS J M ET AL: "Elimination of zero-crossing distortion for high-precision amplifiers", IECON 2011 - 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 7 November 2011 (2011-11-07), pages 3370 - 3375, XP032105002, ISBN: 978-1-61284-969-0, DOI: 10.1109/IECON.2011.6119853 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821734A (en) * 2015-04-30 2015-08-05 华南理工大学 Sub module circuit of modular multi-level converter

Similar Documents

Publication Publication Date Title
Nguyen et al. A class of quasi-switched boost inverters
Nguyen et al. A modified single-phase quasi-Z-source AC–AC converter
CN103636108B (en) There is the integrated magnetics of isolated drive circuit
US10541623B1 (en) Circuit with an input voltage divider and two half-bridges
RU2558945C2 (en) Ultra-high efficiency switching power inverter and power amplifier
US8488350B2 (en) DC-AC inverters
US10985717B2 (en) Multi-level class D audio power amplifiers
BE1017382A3 (en) METHOD OF SENDING A LOAD WITH A PRINCIPALLY INDUCTIVE CHARACTER AND A DEVICE THAT APPLIES SUCH METHOD.
WO2009118683A4 (en) Switch mode converter including active clamp for achieving zero voltage switching
JP6204970B2 (en) Rectifier circuit with current injection
WO2013035383A1 (en) Power conversion device
WO2018095797A1 (en) A dual active bridge dc-dc converter comprising current balancing
US9281755B2 (en) Inverter with coupled inductances
WO2006018912A1 (en) Zero voltage switching high-frequency inverter
CN109274059B (en) Overcurrent protection circuit of three-phase APFC and air conditioner
NL2009280C2 (en) Electric power converter.
Ghosh et al. A single-phase isolated Z-source inverter
TWI671986B (en) Power conversion device
Saha et al. Analysis of zero voltage switching requirements and passive auxiliary circuit design for DC-DC series resonant converters with constant input current
WO2016128819A1 (en) Power conversion device
KR101395556B1 (en) 3-phase z-source inverter
CN210518110U (en) Multi-level correction magnet power supply based on Buck circuit cascade connection
Sreekanth et al. A single stage coupled inductor based high gain DC-AC buck-boost inverter for photovoltaic (PV) applications
JP5660729B2 (en) Power conversion apparatus and control method thereof
Aleem et al. A class of parallel operated impedance source inverters

Legal Events

Date Code Title Description
HC Change of name(s) of proprietor(s)

Owner name: PRODRIVE TECHNOLOGIES B.V.; NL

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: PRODRIVE B.V.

Effective date: 20151021

RC Pledge established

Free format text: DETAILS LICENCE OR PLEDGE: RIGHT OF PLEDGE, ESTABLISHED

Name of requester: COOEPERATIEVE RABOBANK U.A.

Effective date: 20181206

PD Change of ownership

Owner name: PRODRIVE TECHNOLOGIES INNOVATION SERVICES B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: PRODRIVE TECHNOLOGIES B.V.

Effective date: 20220520