NL2007663C2 - Method for recycling horticultural waste. - Google Patents

Method for recycling horticultural waste. Download PDF

Info

Publication number
NL2007663C2
NL2007663C2 NL2007663A NL2007663A NL2007663C2 NL 2007663 C2 NL2007663 C2 NL 2007663C2 NL 2007663 A NL2007663 A NL 2007663A NL 2007663 A NL2007663 A NL 2007663A NL 2007663 C2 NL2007663 C2 NL 2007663C2
Authority
NL
Netherlands
Prior art keywords
waste
horticultural
energy
forming station
station
Prior art date
Application number
NL2007663A
Other languages
Dutch (nl)
Inventor
Pieter Frans Broos
Johanna Margretha Boef
Original Assignee
Dutch Recycling Solutions B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dutch Recycling Solutions B V filed Critical Dutch Recycling Solutions B V
Priority to NL2007663A priority Critical patent/NL2007663C2/en
Application granted granted Critical
Publication of NL2007663C2 publication Critical patent/NL2007663C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Processing Of Solid Wastes (AREA)

Description

NLP189525A
Method for recycling horticultural waste BACKGROUND
The invention relates to a method for recycling horticultural waste.
5 A known method for recycling horticultural waste comprises dumping the horticultural waste on a compost location to be composted or using it as landfill in order to comply with recycling regulations. Due to the vast amounts of horticultural waste, the compost locations will cover a 10 large land area, which could be used more economically. Also, at some point, the landfill areas are filled, rendering the horticultural waste useless. This results in the occasional illegal burning of the surplus of horticultural waste. This way of disposing of the horticultural waste is 15 environmentally unfriendly as it releases carbon-dioxides into the environment, thus contributing to the greenhouse gasses.
It is an object of the present invention to provide an alternative method for recycling horticultural 20 waste.
SUMMARY OF THE INVENTION
25 According to an aspect, the invention provides a method for recycling horticultural waste in a factory, 2 wherein the factory comprises a production line with a flake forming station and a board forming station, wherein the method comprises the steps of supplying horticultural waste to the flake forming station, converting the horticultural 5 waste at the flake forming station into flakes of horticultural waste, transporting the flakes of horticultural waste from the flake forming station to the board forming station, compressing the flakes of horticultural waste together at the board forming station to form a board.
10 The factory can manufacture boards out of horti cultural waste which would otherwise be composted, used as land fill or illegally burned. The resulting board can be an environmentally friendly alternative to plywood, chipboards, oriented strand boards (OSB), multiplex and/or conventional 15 fibreboards such as medium density fibre boards (MDF), hardboard and softboard.
In an embodiment the horticultural waste comprises residues of the group comprising tomato plants, paprika plants (pepper plants). The leaves of tomato plants and 20 paprika plants (pepper plants) can be used as input material to manufacture a homogenous, stable board.
In an embodiment the factory comprises a recycling section for recycling unused energy or material byproducts of the manufacturing of the board. The recycling of unused 25 energy or material byproduct can reduce the carbon footprint and/or the environmental impact of the factory.
In an embodiment the recycling section is provided with a biomass energy installation, wherein the method comprises supplying organic waste to the biomass installa-30 tion, extracting energy from the organic waste in the biomass installation, preferably with the use of combustion, gasification or fermentation, transporting the extracted energy from the biomass installation to the production line for providing energy which is required for the manufacturing 35 of the board. The internally generated energy can reduce the need for external supply of energy to the factory.
In an embodiment the extracted energy comprises 3 heat energy. The internally generated energy can reduce the need for external supply of heat energy to the factory.
In an embodiment the extracted energy is converted in the biomass installation to comprise electrical energy.
5 The internally generated energy can reduce the need for external supply of electrical energy to the production line.
In an embodiment the amount of converted electrical energy supplied by the biomass installation to the production line corresponds to at least 80%, preferably at 10 least 90%, most preferably 100% of the amount of electrical energy required by the production line. Hence, the factory can be self sustaining or powered autonomously without using environmentally unfriendly energy sources such as fossil fuels and other non-renewable sources which emit carbon-15 dioxides.
In an embodiment, as a result of the extraction of energy, the organic waste is reduced to digestate, wherein the method comprises collecting the digestate for use as a mix component for compost. The invaluable digestate can be 2 0 used as a valuable mix component for compost, thereby converting the organic waste into a non-waste, environmentally friendly product. The compost containing the digestate mix can improve plant growth and/or reduce soil erosion.
In an embodiment the production line further 25 comprises a separator station, wherein the method comprises extracting contaminants from the horticultural waste at the separator station, prior to the horticultural waste being supplied to the flake forming station. The contaminants are removed to prevent inconsistencies in the base material for 30 the board.
In an embodiment the contaminants comprise materials of the group comprising unwanted or non-horticultural organic waste, plastics, metals and minerals such as glass, sand, wool and stones. The aforementioned contaminants can 35 cause inconsistencies in the base material for the board.
In an embodiment the method comprises recycling the unwanted or non-horticultural organic waste which is 4 extracted from the horticultural waste at the separator station by adding it to the organic waste that is supplied to the biomass installation. The organic waste from the separator station, which would otherwise be composted, used 5 as land fill or illegally burned, can be used to generate energy in the biomass installation.
In an embodiment the recycling section comprises a plastic recycling installation, wherein the method comprises recycling the plastics which are extracted from the horti-10 cultural waste at the separator station. The plastics can be reused to form new plastic products.
In an embodiment the flake forming station comprises a grinder that grinds the horticultural waste to a specific flake size. The specific flake size can be set to 15 correspond to a required aftermarket specification.
In an embodiment the method comprises adding a resin to the flakes before the flakes are transported to the board forming station. The resin can bind the flakes together when they are compressed at the board forming station 20 in order to form a stable board.
In an embodiment the resin is free of formaldehyde. The resin can be designed to be free of formaldehyde to reduce the environmental impact of the resin. Formaldehyde forms a health risk which makes boards comprising 25 formaldehyde resin less likely to be allowed in environmentally sensitive areas such as schools, nurseries, hospitals, laboratories, nursing homes and other public buildings.
In an embodiment the production line further comprises a drying station, wherein the method comprises 30 drying the horticultural waste at the drying station, prior to the horticultural waste being supplied to the flake forming station. The drying can reduce the moisture content of the horticultural waste to a level which is required for the manufacture of the board.
35 In an embodiment the method comprises drying the horticultural waste by exposing it to a natural heat source, preferably the sun. The sun can supply heat energy to the 5 drying station without adding to the carbon footprint of the factory.
In an embodiment the method comprises drying the horticultural waste by exposing it to heat from the biomass 5 installation. The heat energy generated by the biomass installation can reduce the need for external supply of heat energy to the production line.
In an embodiment the method comprises drying the horticultural waste until its moisture content is equal or 10 less than 15%. The low moisture content can reduce the negative effects that moisture can have on the board.
In an embodiment the method comprising one or more features or steps described in the description and/or depicted in the attached figures.
15 The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applica-20 tions.
BRIEF DESCRIPTION OF THE DRAWINGS
25 The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which:
Figure 1 shows a schematic drawing of the steps of a method for manufacturing a chipboard according to an 30 embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
35 Figure 1 shows a schematic drawing of a method for recycling horticultural residues or waste 1 into a panel or board C comprising flakes from the horticultural waste 1, 6 according to an embodiment of the invention. The resulting board C is an environmentally friendly, high quality, cradle to cradle alternative to plywood, chipboards, oriented strand boards (OSB), multiplex and/or conventional fibre-5 boards such as medium density fibre boards (MDF), hardboard and softboard. The method is carried out in a factory which comprises a production line A and a recycling section B. The details of the factory will be described hereafter.
The production line A comprises a first material 10 input in the form of bulk horticultural residues or waste 1, in particular tomato plants, paprika plants (pepper plants), which would otherwise be composted, used as land fill or illegally burned. The horticultural waste 1 is contaminated with unwanted fractions such as non-horticultural or miscel-15 laneous organic waste 4, plastics 5, minerals 6 such as glass, sand, wool and stones and other unusable components such as metals which can result in an inconsistent base material for the board C. Horticultural waste 1 from tomato plants generally has a high percentage of plastic contami-20 nants which originate from the plastic robes and clips that are used in glasshouses to guide the tomato plants as they grow up to fifteen meters in length.
At entry in the production line A, the horticultural waste 1 generally has a moisture content of 60 to 70%. 25 The horticultural waste 1 is supplied to a drying station 2, which exposes the horticultural waste 1 to natural heating, such as from the sun, or to the heat of a mechanical dryer. The horticultural waste 1 remains in the drying station 2 until its moisture content is reduced to preferably equal to 30 or less than 15%.
The dried horticultural waste 1 is then transported to a separator station 3. The separator station 3 comprises separator tools such as shredders, magnets, sifters or presses to extract the aforementioned contaminants 35 from the horticultural waste 1. The separator station 3 outputs different fractions. The fine fraction 7 comprises horticultural waste 1 which is ready as a base material for 7 the board C. A midsized fraction is recirculated within the separator station 3 for further separation. The course fraction undergoes further separation into organic waste 4, plastics 5, minerals 6 and other unusable components.
5 The fine fraction 7 of the horticultural waste 1 is then transported to a flake forming station 8. The fine fraction 8 is grinded into a desired grain size to form flakes 9. Subseguently, a resin 10 is added to the flakes 9. The resin 10 is preferably produced without formaldehyde to 10 comply with environmental regulations.
The flakes 9 of horticultural waste 1 mixed with the resin 10 are then transported to the board forming station 11. In the board forming station 10, the flakes 9 are heated up to a high temperature and compressed by 15 presses 12 to form a stable, homogeneous board C comprising flakes 9 of horticultural waste 1. The board C is cut by a saw 13 into desired dimensions, depending on the aftermarket requirements. The board C is typically used in the furniture industry, the interior decoration industry, the building 20 industry, construction industry and industrial packing industry.
Any unused flakes 9 are collected and returned via a return loop 15 from the board forming station 10 to the flake forming station 9. From there, the flakes 9 are again 25 mixed with the resin 10 and subsequently transported to the board forming station 11. With the recycling of the unused flakes 9, the output tonnages of boards C can be as much as 90% of the input tonnages of the horticultural waste 1. The capacity of a single production line A is approximately 30 30.000 to 100.000 tons of horticultural waste 1 per year.
The recycling section B comprises a biomass installation 16. The organic waste 4 is transported from the separator station 3 to the biomass installation 16. At the biomass installation 16, the organic waste 4 is combined 35 with a second material input in the form of biodegradable or organic waste 17, such as fruits, leaves, vegetable oil, manure or specially grown crops, which would otherwise be 8 composted, used as land fill or illegally burned. The organic waste 17 is cleaned and then processed in the biomass installation 16. The biomass installation 16 extracts energy from the organic waste 17 by applying combustion, gasifica-5 tion or fermentation techniques. During fermentation, the energy from the organic waste 17 is released in the form of heat and/or heated gasses which are directly transferred via a conduit 18 to the drying station 2 and/or converted into electrical energy. The biomass installation 16 is connected 10 by electrical power lines 19, 20 to the drying station 2, the separation station 3, the flake forming station 8 and the board forming station 10 in order to provide electrical energy to the production line A, which electrical energy is required for the manufacturing of the board C 15 The electrical energy and the heating energy which is generated in the biomass installation 16 of the recycling section B can be considered as climate neutral or carbon-dioxide neutral bio-energy. The organic waste 17 is a byproduct from the natural eco-system and is renewable as it 20 can be replenished over time. The internally generated energy reduces the need for external supply of energy to the production line A. Hence, the production line can essentially be self sustaining or powered autonomously without using environmentally unfriendly energy sources such as 25 fossil fuels and other non-renewable sources which emit carbon-dioxides .
The organic waste 17 is converted in the biomass installation 16 into anaerobic digestate 22 and methanogenic digestate 26. The anaerobic digestate 22 has similar physi-30 cal and chemical characteristics when compared to compost. The anaerobic digestate 22 is considered a non-waste product and can be safely reused as bio-fertilizer, preferable in a mixing ratio with compost. The recycling section B is provided with a first depot 21 which receives and holds the 35 anaerobic digestate 22. The anaerobic digestate 22 is distributed from the first depot 21 to an external biofertilizer processing installation (not shown).
9
The methanogenic digestate 26 is a sludge which possesses high nutrients such as nitrates and phosphates. The valuable nutrients are filtered out of the methanogenic digestate 26 by a catalyst 25. The nutrients can be used to 5 improve plant growth, protect soil against erosion or as mix component for compost. The recycling section B is provided with a second depot 27 which receives and holds the nutrients from the methanogenic digestate 26. The nutrients are distributed from the second depot 27 to an external nutri-10 ents processing installation (not shown).
The recycling section B further comprises a plastics recycling installation 23, which is directly powered by the electrical energy from the biomass installation 16 via an electrical power line 20. The plastics 5 which are ex-15 tracted from the horticultural waste 1 are transported to the plastics recycling installation 23 are melted into plastic base material for use in production of plastic products .
The recycling section B further comprises a third 20 depot 24 that receives the minerals 6 and other unusable components which are extracted from the horticultural waste 1 at the separator station 3. The minerals 6 and other unusable components are distributed from the third depot 24 to a specialised external recycling installation (not shown) 25 or, if applicable, to a road builder for use as base material in road construction (not shown).
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the 30 invention. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the spirit and scope of the present invention .

Claims (21)

1. Werkwijze voor het hergebruiken van tuinbouwafval in een fabriek, waarbij de fabriek een productielijn omvat met een vlokvormstation en een plankvormstation, waarbij de werkwijze de stappen omvat van 5 het aanleveren van tuinbouwafval aan het vlokvormstation, het omzetten van het tuinbouwafval bij het vlokvormstation in vlokken van tuinbouwafval, het transporteren van de vlokken van tuinbouwafval vanaf het vlokvormstation naar het plankvormstation, het samenpersen van de vlokken van 10 tuinbouwafval bij het plankvormstation teneinde een plank te vormen.A method for reusing horticultural waste in a factory, the factory comprising a production line with a flake forming station and a plank forming station, the method comprising the steps of supplying horticultural waste to the flake forming station, converting the horticultural waste at the flake forming station into horticultural waste flakes, transporting horticultural waste flakes from the flake forming station to the plank forming station, compressing the horticultural waste flakes at the plank forming station to form a plank. 2. Werkwijze volgens conclusie 1, waarbij het tuinbouwafval residuen omvat van de groep omvattende tomatenplanten en paprikaplanten.The method of claim 1, wherein the horticultural waste comprises residues from the group comprising tomato plants and bell pepper plants. 3. Werkwijze volgens conclusie 1 of 2, waarbij de fabriek een hergebruikgedeelte omvat voor het hergebruiken van ongebruikte energie of materiële bijproducten van het vervaardigen van de plank.The method of claim 1 or 2, wherein the plant comprises a reuse portion for reusing unused energy or material by-products from manufacturing the board. 4. Werkwijze volgens conclusie 3, waarbij het 20 hergebruikgedeelte is voorzien van een biomassa-energie- installatie, waarbij de werkwijze het aanvoeren van organisch afval omvat naar de biomassa-installatie, het extraheren van energie uit het organische afval in de biomassa-installatie, het transporteren van de geëxtraheerde 25 energie vanuit de biomassa-installatie naar de productielijn voor het verschaffen van energie die benodigd is voor het vervaardigen van de plank.4. Method according to claim 3, wherein the reuse part is provided with a biomass energy installation, the method comprising supplying organic waste to the biomass installation, extracting energy from the organic waste in the biomass installation, transporting the extracted energy from the biomass plant to the production line to provide energy required for the manufacture of the board. 5. Werkwijze volgens conclusie 4, waarbij verbranding, vergassing of fermentatie wordt toegepast in de 30 biomassa-installatie teneinde de energie uit het organische afval te extraheren.5. Method according to claim 4, wherein incineration, gasification or fermentation is applied in the biomass plant in order to extract the energy from the organic waste. 6. Werkwijze volgens conclusie 4 of 5, waarbij de geëxtraheerde energie warmte-energie omvat.The method of claim 4 or 5, wherein the extracted energy comprises heat energy. 7. Werkwijze volgens een der conclusies 4-6, waarbij de geëxtraheerde energie in de biomassa-installatie wordt omgezet teneinde elektrische energie te omvatten.The method of any one of claims 4-6, wherein the extracted energy is converted in the biomass plant to include electrical energy. 8. Werkwijze volgens conclusie 7, waarbij de 5 hoeveelheid omgezette elektrische energie die wordt verschaft door de biomassa-installatie aan de productielijn overeenkomt met ten minste 80%, bij voorkeur ten minste 90%, bij meeste voorkeur 100% van de hoeveelheid elektrische energie die benodigd is door de productielijn.8. Method according to claim 7, wherein the amount of converted electrical energy provided by the biomass plant on the production line corresponds to at least 80%, preferably at least 90%, most preferably 100% of the amount of electrical energy that is required by the production line. 9. Werkwijze volgens een der conclusies 4-8, waarbij ten gevolge van het extraheren van energie, het organische afval gereduceerd wordt tot digestaat, waarbij de werkwijze het verzamelen van het digestaat omvat voor gebruik als mengcomponent voor compost.A method according to any of claims 4-8, wherein due to energy extraction, the organic waste is reduced to digestate, the method comprising collecting the digestate for use as a mixing component for compost. 10. Werkwijze volgens een der voorgaande conclusies, waarbij de productielijn verder een scheidingsstation omvat, waarbij de werkwijze het extraheren van verontreinigingen vanuit het tuinbouwafval omvat bij het scheidingsstation, voorafgaande aan het aanleveren van het 20 tuinbouwafval aan het vlokvormstation.10. A method according to any one of the preceding claims, wherein the production line further comprises a separation station, wherein the method comprises extracting contaminants from the horticultural waste at the separation station, prior to supplying the horticultural waste to the flake forming station. 11. Werkwijze volgens conclusie 10, waarbij de verontreinigingen materialen omvatten uit de groep omvattende organisch afval niet zijnde tuinbouwafval, kunststof, metalen en mineralen zoals glas, zand, wol en 25 stenen.11. Method as claimed in claim 10, wherein the contaminants comprise materials from the group comprising organic waste other than horticultural waste, plastic, metals and minerals such as glass, sand, wool and stones. 12. Werkwijze volgens conclusies 4 en 11, waarbij de werkwijze het hergebruiken van organisch afval omvat, dat is geëxtraheerd uit het tuinbouwafval bij het scheidingsstation door het toe te voegen aan het organisch 30 afval dat wordt aangeleverd aan de biomassa-installatie.12. A method according to claims 4 and 11, wherein the method comprises reusing organic waste extracted from the horticultural waste at the separation station by adding it to the organic waste supplied to the biomass plant. 13. Werkwijze volgens conclusies 3 en 11, waarbij het hergebruikgedeelte een kunststof hergebruikinstallatie omvat, waarbij de werkwijze het hergebruiken van kunststof omvat die zijn geëxtraheerd uit het tuinbouwafval bij het 35 scheidingsstation.13. Method as claimed in claims 3 and 11, wherein the re-use part comprises a plastic re-use installation, wherein the method comprises the re-use of plastic extracted from the horticultural waste at the separation station. 14. Werkwijze volgens een der voorgaande conclusies, waarbij het vlokvormstation een maler omvat die het tuinbouwafval maalt tot een specifieke vlokgrootte.A method according to any one of the preceding claims, wherein the flake forming station comprises a grinder that grinds the horticultural waste to a specific flake size. 15. Werkwijze volgens een der voorgaande conclusies, waarbij de werkwijze het toevoegen van een hars omvat aan de vlokken voordat de vlokken getransporteerd 5 worden naar het plankvormstation.15. Method as claimed in any of the foregoing claims, wherein the method comprises adding a resin to the flakes before the flakes are transported to the plank forming station. 16. Werkwijze volgens conclusie 15, waarbij de hars vrij is van formaldehyde.The method of claim 15, wherein the resin is free from formaldehyde. 17. Werkwijze volgens een der voorgaande conclusies, waarbij de productielijn verder een droogstation 10 omvat, waarbij de werkwijze het drogen van het tuinbouwafval omvat bij het droogstation, voorafgaande aan het aanleveren van het tuinbouwafval aan het vlokvormstation.A method according to any one of the preceding claims, wherein the production line further comprises a drying station 10, wherein the method comprises drying the horticultural waste at the drying station, prior to supplying the horticultural waste to the flake forming station. 18. Werkwijze volgens conclusie 17, waarbij de werkwijze het drogen van het tuinbouwafval omvat door dit 15 bloot te stellen aan een natuurlijke warmtebron, bij voorkeur de zon.18. A method according to claim 17, wherein the method comprises drying the horticultural waste by exposing it to a natural heat source, preferably the sun. 19. Werkwijze volgens conclusies 4 en 17, waarbij de werkwijze het drogen van tuinbouwafval omvat door dit bloot te stellen aan warmte van de biomassa-installatie.The method of claims 4 and 17, wherein the method comprises drying horticultural waste by exposing it to heat from the biomass plant. 20. Werkwijze volgens een der conclusies 17-19, waarbij de werkwijze het drogen van tuinbouwafval omvat totdat het vochtgehalte hiervan gelijk of kleiner is dan 15%.A method according to any of claims 17-19, wherein the method comprises drying horticultural waste until the moisture content thereof is equal to or less than 15%. 21. Werkwijze omvattende één of meer maatregelen 25 of stappen zoals beschreven in de beschrijving en/of zoals weergegeven in de bij gevoegde figuren. -o-o-o-o-o-o-o-o-21. Method comprising one or more measures or steps as described in the description and / or as shown in the attached figures. -o-o-o-o-o-o-o-
NL2007663A 2011-10-27 2011-10-27 Method for recycling horticultural waste. NL2007663C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2007663A NL2007663C2 (en) 2011-10-27 2011-10-27 Method for recycling horticultural waste.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007663 2011-10-27
NL2007663A NL2007663C2 (en) 2011-10-27 2011-10-27 Method for recycling horticultural waste.

Publications (1)

Publication Number Publication Date
NL2007663C2 true NL2007663C2 (en) 2013-05-06

Family

ID=45350487

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2007663A NL2007663C2 (en) 2011-10-27 2011-10-27 Method for recycling horticultural waste.

Country Status (1)

Country Link
NL (1) NL2007663C2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028841A (en) * 1978-08-26 1980-03-12 Woopar Products Ltd Method of producing composite material
US4528037A (en) * 1981-02-12 1985-07-09 Guidat Gilbert R Method of manufacturing heat insulating aggregates or pellets and product thus obtained
US4857458A (en) * 1985-12-05 1989-08-15 Propiorga Installation and plant for the recovery of energy from waste and residues
US5028299A (en) * 1987-06-23 1991-07-02 Gilbert Guidat Installation for the continuous-flow production of stabilized chips or particles derived from wood waste
WO2011020000A2 (en) * 2009-08-14 2011-02-17 The Ohio State University Research Foundation Combined liquid to solid-phase anaerobic digestion for biogas production from municipal and agricultural wastes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028841A (en) * 1978-08-26 1980-03-12 Woopar Products Ltd Method of producing composite material
US4528037A (en) * 1981-02-12 1985-07-09 Guidat Gilbert R Method of manufacturing heat insulating aggregates or pellets and product thus obtained
US4857458A (en) * 1985-12-05 1989-08-15 Propiorga Installation and plant for the recovery of energy from waste and residues
US5028299A (en) * 1987-06-23 1991-07-02 Gilbert Guidat Installation for the continuous-flow production of stabilized chips or particles derived from wood waste
WO2011020000A2 (en) * 2009-08-14 2011-02-17 The Ohio State University Research Foundation Combined liquid to solid-phase anaerobic digestion for biogas production from municipal and agricultural wastes

Similar Documents

Publication Publication Date Title
Hjaila et al. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment
CN102092912B (en) Method for disposing sludge generated in sewage treatment plant by using earthworms
US8444722B2 (en) Organic fuel brick
CN105665410A (en) Household garbage fine separation and complete recycling comprehensive treatment process
CN103909085A (en) Integrated household garbage treatment method
CN102335669A (en) Processing method of garbage landfill
Prasad et al. Efficient transformation of agricultural waste in India
CN105032891A (en) Pyrolysis energy conversion method for fully recycling of household garbage
DE19909328B4 (en) Waste recovery operations
NL2007663C2 (en) Method for recycling horticultural waste.
EP3017886B1 (en) Method of treatment and reducing the mass of landfilled municipal waste.
CA2248588A1 (en) Method and facility for the processing of organic waste, and biogas plant for use in such a facility
US20040080072A1 (en) Composite material derived from municipal solid waste
Svoykin et al. Perspectives of bark dump recycling at wood processing enterprises
KR20060100650A (en) Fuel material process of manufacture that use food trash and lungs wood
RU67580U1 (en) TECHNOLOGICAL COMPLEX FOR THE PRODUCTION OF Lump FUEL PEAT
Sreenivasan Solid waste management and its role in mitigating environmental degradation with special reference to recycling of wood wastes
JP2020002323A (en) Fuel production apparatus using organic sludge
US20150284647A1 (en) Wte-processes and renewable energy optimization system
RU2813876C1 (en) Scheme of integrated wasteless processing of municipal and industrial wastes
Grant Maximizing resource recovery from waste streams
Visvanathan et al. Mechanical-biological pre-treatment of municipal solid waste in Asia
Nasir et al. Development and Performance of Wood Waste Briquettes in Pyrolysis Reactor
Moise Waste management-study cases.
Stańczykiewicz et al. Current Scenario of Forest Residues and Its Utilization in Various Sectors

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20231101