NL2007013C2 - Transforming geo-coordinates to a position on an electronic topological map. - Google Patents

Transforming geo-coordinates to a position on an electronic topological map. Download PDF

Info

Publication number
NL2007013C2
NL2007013C2 NL2007013A NL2007013A NL2007013C2 NL 2007013 C2 NL2007013 C2 NL 2007013C2 NL 2007013 A NL2007013 A NL 2007013A NL 2007013 A NL2007013 A NL 2007013A NL 2007013 C2 NL2007013 C2 NL 2007013C2
Authority
NL
Netherlands
Prior art keywords
map
coordinates
geo
topological
topological map
Prior art date
Application number
NL2007013A
Other languages
Dutch (nl)
Inventor
Hans Dam
Original Assignee
Hans Dam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Dam filed Critical Hans Dam
Priority to NL2007013A priority Critical patent/NL2007013C2/en
Application granted granted Critical
Publication of NL2007013C2 publication Critical patent/NL2007013C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3863Structures of map data
    • G01C21/3867Geometry of map features, e.g. shape points, polygons or for simplified maps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/14Transformations for image registration, e.g. adjusting or mapping for alignment of images
    • G06T3/147Transformations for image registration, e.g. adjusting or mapping for alignment of images using affine transformations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • G09B29/006Representation of non-cartographic information on maps, e.g. population distribution, wind direction, radiation levels, air and sea routes
    • G09B29/008Touring maps or guides to public transport networks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Processing Or Creating Images (AREA)

Description

Transforming geo-coordinates to a position on an electronic topological map.
Background Art 5 Topological maps are simplifications of geographic maps. They allow important information to be displayed more clearly, but lack scale, distance and direction. The best known example of a topological map is a tube map.
The display of the actual position on topological maps is scarce and in cases it is possible, it is based on direct local detection. Direct local detection means that detection of a vehicle or person is performed 10 through a detection mechanism or beacon in the environment itself. Detection through a detection-mechanism embedded in the environment is very expensive and complex because many detectors are needed. The resolution of position-detection is limited by the amount of detectors in the environment. The position of a train, for instance, can be determined because the short-circuiting between the rails on a section is detected by the railway system. The ID of this section can be connected to the ID this section 15 has on a topological map, thus making it possible to display the actual position. The resolution of position-determination is limited by the length of the sections.
In train-systems (such as railroad- and tube-systems) the actual position of a train is known to the outside rail-system through electronic detection, but is currently not visualized in the train cockpit itself.
20 Summary of invention A system for viewing and interacting with functional topological maps on a mobile device. The invention uses the geographical position of an object or person to calculate its or his position on a topological map. The invention provides a transformation from the actual position in geographical coordinates to a location on a topological map. The system requires no detectors in the environment.
25 Brief description of drawings
Figure 1: An embodiment of the invention showing a conductor holding a mobile device in the cockpit of his train showing a topological map of his surroundings and his current position. The display of his current position roots the conductor in the real world that he sees through the window of his cockpit. Signal 503 is visible on the topological map as well as in the real world through the window.
30 Figure 2: The actual position of the user on the geographical map at the top is transformed into a location on a topological map at the bottom by transforming triangular areas. The position within the 2 triangle on the geographical map with corner points 1,2 and 3 is transformed to the corresponding position on the topological map within the corresponding triangle, with corner points 1, 2 and 3 on the topological map.
Figure 3: The accuracy circle around the actual position on a geographical map is transformed into an 5 accuracy shape on a topological map by sampling the circle and transforming each sample point, after which a smooth line is drawn through these transformed points.
Figure 4: A topological map can be activated by tapping on a polygonal area that corresponds to the area of the topological map on a geographic map
Figure 5: A polygonal area covering a train yard on a geographical map.
10 Figure 6: A compass showing that the north direction in the real world outside of the mobile device corresponds to vector 1. The north direction on the geographical map corresponds to vector 2. When the map is rotated on the display over angle 3, the map and the real world are directionally aligned.
Figure 7: On a topological map vector 1 is a transformed version of the North pointing vector on the corresponding topological map in the real world at this local coordinate. Vector 2 is the transformed 15 version of the upward pointing vector at the actual location on the geographical map. The topological map should be rotated by the angle denoted by 3 to align the topological map with directions in the real world around the mobile device.
Description of embodiments 20 Machine executable transformation methods
The area on the geographic map that corresponds to the topological map is seeded with markers. The area is then divided into triangles with the markers as corner points, such that each triangle satisfies the Delaunay condition.
On the topological map markers are placed corresponding to the markers on the geometrical map. Each 25 position on the area of a triangle on the geographic map is mapped to a corresponding position on the topological map as shown in Figure 2.
The following transformation describes this mapping:
Xtopo = 3n * Xgeo + 3i2 * Ygeo + 3l3 Ytopo = 321 * Xgeo + 322 * Ygeo + &23 30 The matrix coefficients an through a23 are derived by solving the set of equations following from the mappings of the corner points of each triangle: (1) Xt0po_i = an * XgeojL + a12 * ygeo_l + 3i3 3 (2) Ytopo_l = a21 * Xgeo_l + 322 * Ygeo_l + a23 (3) Xtopo_2 = all * Xgeo_2 + a12 * Ygeo_2 + a13 (4) Ytopo_2 = a21 * Xgeo_2 + a22 * Ygeo_2 + a23 (5) xtopo_3 = au * xgeo_3 + a12 * ygeo_3 + ai3 3 (6) Ytopo_3 = a21 * xgeo_3 + a22 * Ygeo_3 + a23
Where xtopo ,, ytopoj are the coordinates of corner point i of a triangle on the topological map and xgeoJ, Ygeoj are the coordinates of corner point i of the corresponding triangle on the geographical map. A position in geo-coordinates as measured by a global positioning device is mapped to a position on the topological map in 2 steps: 10 1) Determine the triangle, as described above and in claim 1, that contains the position in geo coordinates.
2) Map these geo-coordinates to a position on the topological map using the mapping ay as described above, corresponding to the triangle of step 1.
Positions outside of the area covered by triangles are mapped by the mapping as described above and in 15 claim 2, corresponding to the triangle that is closest to this position.
User Interface
The user interface method for creating the mapping between geo-coordinates and coordinates on a topological map consists of display of both the geographic and topological map at the same time as 20 shown in Figure 2. The user can create anchor points by clicking on the geographical map with a pointing device. The position of the pointing device is recorded in terms of the geo-coordinates of the position on the geographical map that is clicked on. The anchor points thus created are shown on the geographical map. The created anchor points function as corner points of the triangles that are used for the mapping from geo-coordinates to coordinates on the topological map as mentioned above and in claim 1. These 25 triangles may be created according to the Delaunay criterion. A Delaunay triangulation for a set P of points in the plane is a triangulation such that no point in P is inside the circumcircle of any triangle. When the user creates an anchor point on the geographical map a corresponding anchor point is created on the topological map. Initially this anchor point is created at the position that follows from the mapping that results from following the step 1 and 2 as described above. This position is the best guess 30 from mappings defined by the previous set of anchor points. The anchor point on the topological map can subsequently be moved to exactly the right position by the user using a pointing device. This will improve the mapping, especially in this vicinity of the last added anchor point.
4
The resulting mapping consists of a set of triangles with coordinates in terms of geo-coordinates and per triangle a mapping matrix A with coefficients aij as described above.
In the application that runs on a mobile device the mapping as described in claim 1 is used to transform a geo-coordinate resulting from a global positioning device into a position on an electronic topological 5 map. This position can be shown by displaying a filled circular dot with a radius independent of the zoom factor of the map.
Accuracy
On electronic geographic maps on a mobile device the actual position is generally displayed using a filled 10 circle, surrounded by a partly transparent filled circle that denotes the accuracy of the global position detection. The accuracy circle is thus an uncertainty region around the global position that is displayed. This accuracy circle can be transformed towards a topological map like the global position itself.
Positions on the accuracy circle are sampled and each sample position is transformed to coordinates on the topological map. Through these transformed coordinates on the topological map a cardinal spline 15 may be drawn. A cardinal spline is a series of cubic Bezier splines smoothly connecting a set of points. Cardinal splines maintain continuity, ensuring the connected spline segments form a differentiable curve, ensuring at least a minimum level of smoothness.
Directionality of the topological map on a mobile device 20 Mobile devices may be equipped with a compass. The compass can be used to align the orientation of a geographical map with the direction of the mobile device. This allows for better orientation of the user within his environment, because directions on the electronic map correspond to the directions in the real world. Technically this is effectuated by rotating the map using the angle between a vertically upward pointing vector (0,1) and the vector corresponding to the direction of the actual North, provided 25 the top of the geographical map corresponds to the geographical north. This is illustrated in Figure 5.
A similar method may be employed for aligning a topological electronic map on a mobile device with its environment. The method, however, for obtaining this direction is not trivial. Using the transformation method as described above and in claim 1, a vector local to the actual position and corresponding to a specific compass direction, e.g. a north pointing vector, on a geographic map can be transformed 30 towards a topological map. This is similar to transforming a point, only the translation coefficients a*3 should be left out of the transformation equations described above. For the further point of this explanation we shall take the compass direction to be a north pointing vector, because the particular 5 choice of direction is not relevant for the method. Furthermore a north pointing vector on the geographical map, i.e. an upward pointing vector, is also transformed towards the topological map. This is illustrated in Figure 7. The topological map can be rotated by the angle (3) between the transformed upward pointing vector (2) and the transformed north pointing vector (1). This will result in a local 5 alignment of directions on the electronic topological map and the real world around the user. On the topological map only the immediate surroundings of the actual position on the map will now accurately correspond to the situation in the physical world around it.
On the electronic map textual elements may be rotated, such that they are always upright with respect to the current screen orientation. This makes sure that reading the text is not impeded.
10

Claims (12)

1. Een door een machine uitvoerbare methode om een transformatie te bepalen van posities uitgedrukt in geo-coördinaten naar coördinaten op een topologische kaart. Een verzameling moet beschikbaar zijn van posities waarvoor zowel de geo-coördinaten (geo-posities) als de 5 ermee corresponderende coördinaten op een topologische kaart bekend zijn. The methode omvat de volgende stappen: a) Triangulatie van de bovengenoemde geo-posities in driehoeken zodat de beschikbare geo-coördinaten hoekpunten van de driehoeken zijn. Deze geo-coördinaten moeten bekende corresponderende posities hebben op de topologische kaart. 10 b) Voor tenminste een deel van de driehoeken resulterend uit a), berekening van een affiene transformatiematrix A resulterend in een verzameling vergelijkingen t = A*g die uitdrukken dat ieder hoekpunt g, in homogene coördinaten: (latitude, longitude, 1)T, van de driehoek op de geografische kaart precies afgebeeld wordt op zijn tegenhanger t=(x,y,l)T op de topologisch kaart.A machine-executable method to determine a transformation from positions expressed in geo-coordinates to coordinates on a topological map. A set must be available of positions for which both the geo-coordinates (geo-positions) and the corresponding coordinates on a topological map are known. The method comprises the following steps: a) Triangulation of the aforementioned geo positions in triangles so that the available geo-coordinates are vertices of the triangles. These geo-coordinates must have known corresponding positions on the topological map. B) For at least a part of the triangles resulting from a), calculation of an affine transformation matrix A resulting in a set of equations t = A * g expressing that each vertex g, in homogeneous coordinates: (latitude, longitude, 1) T , of the triangle on the geographic map is exactly depicted on its counterpart t = (x, y, l) T on the topological map. 2. Een door een machine uitvoerbare methode omvattend een punt P uitgedrukt in geo- coördinaten dat wordt getransformeerd naar punt Q uitgedrukt in x, y-coördinaten op een topologische kaart door middel van de matrix A zoals bepaald in conclusie 1, die behoort bij de driehoek zoals beschreven in conclusie 1. Deze laatste driehoek is die driehoek uit de set bepaalde driehoeken die punt P bevat of er het dichtst bijligt.A machine-executable method comprising a point P expressed in geo-coordinates that is transformed to point Q expressed in x, y coordinates on a topological map by means of the matrix A as defined in claim 1, which belongs to the triangle as described in claim 1. This last triangle is that triangle from the set of defined triangles that contains point P or is closest to it. 3. Een uitvoeringsvorm van de uitvinding zoals in conclusie 1 kan een Delaunay triangulatie gebruiken, omdat deze ertoe neigt smalle driehoeken te vermijden. Als de hoekpunten uitgedrukt worden in latitude en longitude dan moet het triangulatie-mechanisme gecorrigeerd worden omdat 1 graad latitude in het algemeen niet dezelfde meetkundige afstand vertegenwoordigt als 1 graad longitude. De verhouding tussen meters per graad latitude en 25 meters per graad longitude hangt af van de latitude van de positie die getransformeerd moet worden. Om op optimale wijze smalle driehoeken te vermijden moet de Delaunay triangulatie deze verhouding verdisconteren.An embodiment of the invention as in claim 1 may use a Delaunay triangulation because it tends to avoid narrow triangles. If the vertices are expressed in latitude and longitude, the triangulation mechanism must be corrected because 1 degree of latitude does not generally represent the same geometric distance as 1 degree of longitude. The ratio between meters per degree of latitude and 25 meters per degree of longitude depends on the latitude of the position to be transformed. To avoid narrow triangles in an optimal way, the Delaunay triangulation must take this ratio into account. 4. Een door een machine uitvoerbare methode volgens conclusie 2, waarin punt P en Q de huidige positie van het mobiele apparaat belichamen.A machine-executable method according to claim 2, wherein points P and Q embody the current position of the mobile device. 5. Een door een machine uitvoerbare methode volgens conclusie 4, verder bevattend: het tekenen van het onzekerheidsgebied rondom punt O zodanig dat dit correspondeert met de onzekerheidscirkel van de positie-meting rondom punt P. Deze is als volgt te bepalen: a) Bemonster de nauwkeurigheidscirkel rondom de huidige positie in geo-coördinaten. b) Transformeer de coördinaten van ieder monster-punt naar topologische coördinaten volgens de transformatie uit conclusie 2. c) Creëer een convexe vorm door de in b) genoemde coördinaten.A machine-executable method according to claim 4, further comprising: drawing the uncertainty region around point O such that it corresponds to the uncertainty circle of the position measurement around point P. This can be determined as follows: a) Sample the accuracy circle around the current position in geo-coordinates. b) Transform the coordinates of each sample point to topological coordinates according to the transformation of claim 2. c) Create a convex shape through the coordinates mentioned in b). 6. Een uitvoeringsvorm van de methode zoals in conclusie 5 kan een gesloten kardinaal spline gebruiken voor het tekenen van een convexe vorm, zodat de resulterende vorm een vloeiende buitenrand heeft.An embodiment of the method as in claim 5 may use a closed cardinal spline to draw a convex shape so that the resulting shape has a smooth outer edge. 7. Een mobiel kaart-weergavesysteem met het kenmerk dat een topologische kaart van een gebied weergegeven wordt, waarop de huidige positie weergegeven wordt zoals bepaald met de 10 methode uit conclusie 4.7. A mobile map display system characterized in that a topological map of an area is displayed, on which the current position is displayed as determined by the method of claim 4. 8. Een kaart-weergavesysteem volgens conclusie 6 met het kenmerk dat een veelhoekig gebied op een geografische kaart geselecteerd kan worden waardoor de topologische kaart getoond wordt die overeenkomt met het veelhoekig gebied op de geografische kaart.A map display system as claimed in claim 6, characterized in that a polygonal area on a geographical map can be selected, whereby the topological map is shown which corresponds to the polygonal area on the geographical map. 9. A kaart-weergavesysteem volgens conclusie 7 met het kenmerk dat de juiste topologisch kaart 15 automatisch geselecteerd wordt op basis van de huidige positie van het mobiele apparaat. De kaart die hoort bij de huidige positie van het mobiele apparaat is die kaart waarvan het veelhoekig gebied zoals vermeld in conclusie 8 de huidige positie bevat.9. A map display system according to claim 7, characterized in that the correct topological map 15 is automatically selected based on the current position of the mobile device. The map corresponding to the current position of the mobile device is that map whose polygonal area as claimed in claim 8 contains the current position. 10. Een door een machine uitvoerbare methode om een elektronische topologische kaart te draaien zodat hij lokaal in dezelfde richting ligt als de wereld rondom het mobiele apparaat, waarop de 20 kaart getoond word. Deze methode bevat de volgende stappen: a) Transformatie volgens conclusie 1 van de richtingsvector met willekeurige lengte in een bekende referentie richting op een geografische kaart op de huidige positie. b) Transformatie volgens conclusie 1 van een richtingsvector met willekeurige lengte die wijst in een referentie-richting zoals gemeten door een kompas ten opzichte van het geo- 25 coördinatensysteem van de geografische kaart. c) De hoek tussen de vector berekend in stap a) en stap b) wordt genomen als de noodzakelijke rotatie om de topologische kaart lokaal in dezelfde richting te leggen als de wereld rondom het mobiele apparaat waarop de topologische kaart getoond wordt. Als centrum van de rotatie kan de huidige positie op de topologische kaart genomen worden zoals berekend 30 volgens conclusie 4.10. A method executable by a machine to rotate an electronic topological map so that it lies locally in the same direction as the world around the mobile device on which the map is displayed. This method comprises the following steps: a) Transformation according to claim 1 of the directional vector with any length in a known reference direction on a geographical map at the current position. b) Transformation according to claim 1 of a direction vector of any length pointing in a reference direction as measured by a compass relative to the geo-coordinate system of the geographical map. c) The angle between the vector calculated in step a) and step b) is taken as the necessary rotation to place the topological map in the same direction locally as the world around the mobile device on which the topological map is displayed. The current position on the topological map can be taken as the center of rotation as calculated according to claim 4. 11. Een voertuig dat het kaartweergavesysteem volgens conclusie 8 bevat.A vehicle comprising the map display system according to claim 8. 12. Een voertuig volgens conclusie 11 waarin het voertuig een trein omvat.A vehicle according to claim 11, wherein the vehicle comprises a train.
NL2007013A 2011-06-28 2011-06-28 Transforming geo-coordinates to a position on an electronic topological map. NL2007013C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2007013A NL2007013C2 (en) 2011-06-28 2011-06-28 Transforming geo-coordinates to a position on an electronic topological map.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007013A NL2007013C2 (en) 2011-06-28 2011-06-28 Transforming geo-coordinates to a position on an electronic topological map.
NL2007013 2011-06-28

Publications (1)

Publication Number Publication Date
NL2007013C2 true NL2007013C2 (en) 2013-01-03

Family

ID=44511427

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2007013A NL2007013C2 (en) 2011-06-28 2011-06-28 Transforming geo-coordinates to a position on an electronic topological map.

Country Status (1)

Country Link
NL (1) NL2007013C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045866A3 (en) * 2014-12-22 2016-09-21 HERE Global B.V. Method and apparatus for providing mapping of geo locations on schematic maps

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070176932A1 (en) * 2006-02-01 2007-08-02 Microsoft Corporation Design of arbitrary linear and non-linear maps
EP1876576A1 (en) * 2006-07-06 2008-01-09 Géomatic Ingénierie S.A. Method and device for position finding
WO2009023165A1 (en) * 2007-08-11 2009-02-19 Infogation Corporation Method and apparatus for navigating on artistic maps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070176932A1 (en) * 2006-02-01 2007-08-02 Microsoft Corporation Design of arbitrary linear and non-linear maps
EP1876576A1 (en) * 2006-07-06 2008-01-09 Géomatic Ingénierie S.A. Method and device for position finding
WO2009023165A1 (en) * 2007-08-11 2009-02-19 Infogation Corporation Method and apparatus for navigating on artistic maps

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GILLMAN D W: "Triangulations for rubber sheeting", PROCEEDINGS OF 7TH INTERNATIONAL SYMPOSIUM ON COMPUTER ASSISTED CARTOGRAPHY,, no. 7TH, 1 January 1985 (1985-01-01), pages 191 - 197, XP002598473 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045866A3 (en) * 2014-12-22 2016-09-21 HERE Global B.V. Method and apparatus for providing mapping of geo locations on schematic maps
US9747663B2 (en) 2014-12-22 2017-08-29 Here Global B.V. Method and apparatus for providing mapping of geo locations on schematic maps

Similar Documents

Publication Publication Date Title
US11532136B2 (en) Registration between actual mobile device position and environmental model
KR102714655B1 (en) Mobile device navigation system
ES2332460T3 (en) PROCEDURE AND SYSTEM FOR THE LOCATION OF A MOBILE WLAN CUSTOMER.
BR102018072910A2 (en) SYSTEMS, METHODS, AND TOOLS TO REGISTER ESPACIALLY VIRTUAL CONTENT WITH PHYSICAL ENVIRONMENT ON PLATFORMS OF INCREASED REALITY
US20140247280A1 (en) Federated mobile device positioning
US9366765B2 (en) Handheld GIS data collection device target augmentation
KR20080040739A (en) Location signposting and orientation
KR101886932B1 (en) Positioning system for gpr data using geographic information system and road surface image
CN102692229A (en) Labelling of map elements in digital maps
CN109282813B (en) Unmanned ship global obstacle identification method
KR101272422B1 (en) Device and method for locationing using laser scanner and landmark matching
CN113900517B (en) Route navigation method and device, electronic equipment and computer readable medium
CN107869991B (en) Method and device for acquiring indoor position data, computer equipment and readable medium
NL2007013C2 (en) Transforming geo-coordinates to a position on an electronic topological map.
CN108955723B (en) Method for calibrating augmented reality municipal pipe network
CN105204053A (en) GNSS-based infrared positioning device
JP5998396B2 (en) Triaxial sign measurement method, triaxial sign measurement program, and triaxial sign measurement apparatus
CN107869990B (en) Method and device for acquiring indoor position data, computer equipment and readable medium
CN110426034A (en) Indoor orientation method based on cartographic information auxiliary inertial navigation array
US10185787B1 (en) Tool for accurate onsite model visualization that facilitates environment interaction
KR101401265B1 (en) an apparatus for offering the location of underground facilities
US11432110B2 (en) Method, system and computer program product for geospatial calibration
CN107820213B (en) Method and device for acquiring indoor position data, computer equipment and readable medium
CN107861975B (en) Method and device for collecting indoor panoramic data, equipment and computer readable medium
JP5203411B2 (en) Portable map display device and display control method thereof

Legal Events

Date Code Title Description
V1 Lapsed because of non-payment of the annual fee

Effective date: 20150101