NL2005612C2 - A method and system for at least temporarily homogenizing a fluid flow in a pipeline. - Google Patents

A method and system for at least temporarily homogenizing a fluid flow in a pipeline. Download PDF

Info

Publication number
NL2005612C2
NL2005612C2 NL2005612A NL2005612A NL2005612C2 NL 2005612 C2 NL2005612 C2 NL 2005612C2 NL 2005612 A NL2005612 A NL 2005612A NL 2005612 A NL2005612 A NL 2005612A NL 2005612 C2 NL2005612 C2 NL 2005612C2
Authority
NL
Netherlands
Prior art keywords
pipeline
fluid
eductor
outlet
flow
Prior art date
Application number
NL2005612A
Other languages
Dutch (nl)
Inventor
Pieter Charles Verloop
Erik Michiel Verloop
Original Assignee
Kimman Process Solutions B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimman Process Solutions B V filed Critical Kimman Process Solutions B V
Priority to NL2005612A priority Critical patent/NL2005612C2/en
Priority to EP11187523.3A priority patent/EP2447698B1/en
Application granted granted Critical
Publication of NL2005612C2 publication Critical patent/NL2005612C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/02Maintaining the aggregation state of the mixed materials
    • B01F23/024Maintaining mixed ingredients in movement to prevent separation of the ingredients after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/452Mixing liquids with liquids; Emulsifying using flow mixing by uniting flows taken from different parts of a receptacle or silo; Sandglass-type mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/918Counter current flow, i.e. flows moving in opposite direction and colliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention provides a method for at least temporarily homogenizing a fluid flow in a pipeline (20) for analyzing the fluid flow, wherein the method comprises the step of feeding an injection fluid in the fluid flow, characterized by using an eductor (3), wherein the eductor comprises a pressure inlet (8), a suction inlet (9), and an outlet (10), wherein the pressure inlet (8) is connected to a source of pressurized injection fluid, wherein the suction inlet (9) is arranged in or connected to a bottom region (12) of the pipeline (20) to suck in liquid from the bottom region (12), and wherein the outlet (10) is arranged in the pipeline (20) to discharge a mixture of at least the injection fluid and fluid from the bottom region (12) of the pipeline (20) into the pipeline (20), wherein the step of feeding injection fluid into the pipeline (20) comprises feeding pressurized injection fluid to the eductor (3), mixing the injection fluid with fluid sucked in from the bottom region (12) of the pipeline (20) and discharging the mixture into the pipeline (20) to homogenize the fluid flow in the pipeline (20).

Description

P30478NL00/MVM
Title: A method and system for at least temporarily homogenizing a fluid flow in a pipeline.
The invention relates to method and system for at least temporarily homogenizing a fluid flow in a pipeline, in particular for analyzing the fluid flows.
Transfer pipelines often contain multiple fluids which are typically mutually immiscible, when kept in rest. During transport the liquids ascertain a certain velocity and 5 due to this velocity and friction, turbulence can occur and temporal mixing is possible.
However in most cases, mixing is far from adequate and no homogeneity mixture can evolve from the throughput.
Analyzing devices and/or samplers are used to analyze the properties and/or composition of the transferred fluids. These analyzers and samplers often concentrate on a 10 small cross-sectional area of the pipeline to determine the properties of this small area, as a representation of the total cross-sectional pipe area. To assure that this small area can be an accurate representation of the total pipeline, the composition variations of the fluids in the pipeline to be analysed should be as minimal as possible, i.e. the pipeline should be homogeneously mixed.
15 Mixing devices, such as static mixers and orifice plates, are often used to provide additional mixing, but are mainly dependent on the flow. More flow provides more mixing, lesser flow provides lesser mixing. But especially during lesser flows additional mixing is mostly required. In practice, especially during start-up and shut-down, flows become slow and stratification of liquids occur.
20 In the oil industry, for example, this is a problem as water and oil, both immiscible and present in most vessels or tanks, are being transported to another vessel or tank. At the start-up the small quantities of water are transported first. Because the flow is still slow, the water is transported over the bottom of the pipeline, not detected by any analyzing device or sampler, often positioned in a center area of the pipeline.
25 Dynamic mixers have the advantage of mixing independent of the flow velocity but have often moving parts, which require maintenance and need an external power source.
Over the years, mixing specialists introduced nozzle mixers, where external flows are injected into the pipeline to provide enough mixing energy to mix the total pipeline content. Most of these nozzle mixers, for instance discloses in patent publication GB 2 357 710 and 30 NL 2001803, comprise a vertical placed pipe with directional mixing tubes or nozzles which provided mixing by agitating the total pipeline content. This method is effective, but requires a lot of energy to agitate the total pipeline content.
-2-
Other known methods and devices also have a limited mixing length and/or a low energy efficiency, resulting in inadequate mixing and/or a large power consumption.
The aim of the present invention is to provide a method or system for at least temporarily homogenizing a fluid without one or more of the mentioned drawbacks, or at 5 least to provide an alternative therefor.
The invention provides a method for at least temporarily homogenizing a fluid flow in a pipeline for analyzing the fluid flow, in particular its composition, wherein the method comprises the step of feeding an injection fluid in the fluid flow, characterized by using an eductor, wherein the eductor comprises a pressure inlet, a suction inlet, and an outlet, 10 wherein the pressure inlet is connected to a source of pressurized injection fluid, wherein the suction inlet is arranged in or connected to a bottom region of the pipeline to suck in liquid from the bottom region, and wherein the outlet is arranged in the pipeline to discharge a mixture of at least the injection fluid and fluid from the bottom region of the pipeline into the pipeline, 15 wherein the step of feeding injection fluid into the pipeline comprises feeding pressurized injection fluid to the eductor, mixing the injection fluid with fluid sucked in from the bottom region of the pipeline and discharging the mixture into the pipeline to homogenize the fluid flow in the pipeline.
According to the invention an eductor is used to provide at least temporarily a 20 homogenised fluid flow over a cross section of the pipeline. This homogenizing of the fluid flow is ideally over substantially the whole cross section of the pipeline resulting in a substantially constant composition of the fluid flow over this cross section. As a result, a sample taken from the fluid flow at any location in the cross section is representative for the composition of the fluid flow over the whole cross section.
25 In practice, homogenization may not take place over the complete cross section, for example, due to boundary phenomenons. However, the method of the invention may lead to homogenisation in a substantial part of the cross section, for example over at least 40 % of the cross section, preferably over at least 60 % of the cross section of the pipeline, therewith providing a relative even distribution of the contents of the pipeline over this substantial part. 30 Within this substantial part a reliable measurement can be made or sample can be taken.
The use of an eductor has the advantage that relative little energy is required for sufficient mixing of the fluid flows to temporarily homogenize the fluid flows in the pipeline so that the contents of the pipeline can be reliably analyzed.
An eductor is a pump device which uses the Venturi effect to draw liquid into the 35 eductor by the energy of a pressurized fluid flow through the eductor.
The eductor comprises a pressure inlet connected to a source of pressurized fluid, a suction inlet arranged in or connected to the bottom region. When pressurized liquid is fed to -3- the pressure inlet of the eductor, fluid will be drawn in the suction inlet of the eductor. Since this suction inlet is arranged in or connected to the bottom region of the pipeline, liquid from the bottom region of the pipeline will be sucked into the eductor via the suction inlet.
In an embodiment, the eductor is arranged in the pipeline, in particular in the bottom 5 region of the pipeline. In such embodiment the eductor may directly take in fluid from the bottom region of the pipeline, and no additional fluid connection has to be provided between the bottom region and the location of the eductor.
In an embodiment, the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is arranged at least partially parallel to a direction 10 of the main flow in the pipeline. When the flow ejected from the eductor is at least partially parallel with the flow direction within the pipeline, dispersion of the mixture ejected from the eductor may be promoted. This dispersion increases the homogenisation of the fluid flows in the pipeline.
In this embodiment, the outflow direction of the outlet of the eductor is substantially 15 directed to an analyzing device arranged in the pipeline. By direction of the fluids ejected from the eductor towards the analyzing device, the fluid flow which is used for analysis in the analyzing device is relative homogeneous, and therefore representative for the contents of the fluid flows in the pipeline.
As an alternative, the outlet of the eductor is arranged in the pipeline such that an 20 outflow direction of a fluid from the outlet is arranged at least partially opposite to the main flow direction in the pipeline. In this embodiment the outflow of the eductor is directed at least partially opposite to the main flow in the pipeline. This may result in promotion of turbulent mixing of the outflow of the eductor and the other fluid flows in the pipeline.
In an embodiment, the injection fluid and the liquid from the bottom region of the 25 pipeline are further mixed in the eductor by an additional mixing device. Mixing of the injection liquid, which is preferably taken from the pipeline, and the fluid sucked in from the bottom region of the pipeline may improve homogenization of the fluid flows in the pipeline. The additional mixing device may be a static mixing device, for instance provided in the pressure inlet or in the outlet of the eductor.
30 In an embodiment, the pressurized injection fluid is obtained by taking fluid from the pipeline, preferably a downstream region of the pipeline. This fluid may subsequently be pressurized by a pump and fed to the pressure inlet of the eductor. As an alternative another source of fluid may be provided to provide pressurized fluid.
In an embodiment, the main flow of the pipeline comprises at least a first fluid flow in 35 the bottom region of the pipeline and a second fluid flow in a region above the bottom region of the pipeline, wherein a density of the first fluid flow is larger than a density of the second -4- fluid flow, and wherein the suction inlet is arranged to suck in fluid mainly from the first fluid flow.
The invention further provides a system for at least temporarily homogenizing a fluid flow in a pipeline for analyzing the fluid flow, in particular its composition, comprising: 5 - a source of pressurized injection fluid to provide a pressurized injection fluid, and - a device connected to the source of pressurized injection fluid, wherein the device is arranged to feed the pressurized injection fluid into the pipeline, characterized in that the device comprises an eductor comprising a pressure inlet, a suction inlet, and an outlet, wherein the pressure inlet is connected to the source of 10 pressurized injection fluid, wherein the suction inlet is arranged in or connected to a bottom region of the pipeline to suck in liquid from the bottom region, and wherein the outlet is arranged in the pipeline to discharge a mixture of at least the injection fluid and fluid from the bottom region of the pipeline into the pipeline.
By providing this system, wherein use is made of an eductor relative little energy is 15 required for sufficient mixing of the fluid flows to temporarily homogenize the fluid flows in the pipeline so that the contents of the pipeline can be reliably analyzed.
In an embodiment, the eductor comprises an additional mixing device to improve the mixing within the eductor.
In an embodiment, the source of pressurized injection fluid comprises a pressure 20 pump having a pump inlet and a pump outlet, wherein the pump inlet is connected to the pipeline to take fluid from the pipeline, and wherein the pump outlet is connected to the pressure inlet of the eductor.
In an embodiment, the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is arranged at least partially parallel to a direction 25 of the main flow in the pipeline.
In an embodiment, the outflow direction of the outlet is substantially directed to an analyzing device arranged in the pipeline.
In an embodiment, the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is arranged at least partially opposite to the main 30 flow direction in the pipeline.
In an embodiment, the system comprises an analyzing device arranged in the pipeline downstream of the eductor, wherein the analyzing device is configured for analyzing of the fluid flows in the pipeline.
The invention further relates to a kit comprising an eductor, wherein the kit is 35 intended to perform the method of any of the claims 1-10. The kit may further comprise a pump configured to provide the pressurized injection fluid and/or conduits to connect the -5- pump inlet to the pipeline and the pump outlet to the eductor. The kit may also comprise an analyzing device.
Examples of embodiments of a system and method of the invention will now be 5 described, whereby reference will be made to the appended drawings, wherein:
Figure 1 shows schematically a side view of an embodiment of a system according to the invention;
Figure 2 shows in more detail the eductor of Figure 1;
Figure 3 shows a cross section of the pipeline of Figure 1; and 10 - Figure 4 shows schematically a side view of an alternative embodiment of a system according to the invention;
Figure 1 shows a system 1 for at least temporarily homogenizing fluid flows in a fluid pipeline 20 for analyzing the fluid flows in the pipeline 20 by an analyzing device 15.
15 Through the pipeline 20 a main fluid flow runs as indicated by an arrow MF.
Upstream of the system 1 this main flow comprises two sub-flows a first sub flow LSF in a lower region of the pipeline 20 and a second sub flow HSF in regions of the pipeline above the lower region. The density of the fluid or fluids of the first fluid sub flow LSF is larger than the density of the fluid or fluids of the second fluid flow HSF resulting in the sub-flows. For 20 instance, the lower sub-flow may mainly consist of water and the higher sub-flow may mainly consist of oil. Since water is heavier than oil, the water will mainly flow in a lower region of the pipeline 20 and the oil will mainly flow in the upper region of the pipeline. It is remarked that the lower and upper are used to indicate relative positions of the sub-flows LSF, HSF. The sub-flows can be stratified, intermittent or partially dispersed.
25 The main flow is for instance a flow of crude oil with a water percentage of 0.1 - 1% through a pipeline such as a custody transfer line. The water may be present as bubbles in the crude oil flow, wherein the relative heavy bubbles will gradually sink to the bottom of the pipeline resulting in an uneven distribution of the contents of the fluid flow over the cross section of the pipeline.
30 The presence of the two sub-flows LSF, HSF, and the contents thereof results in an uneven distribution of the composition of the fluid flow over the cross section of the pipeline.
To analyze the composition of the main flow, it is of importance that the sub-flows LSF, HSF are at least temporarily mixed so that the composition of the fluid flow is substantially the same over the whole cross section of the pipeline. As a result, the fluid flow 35 can reliably analyzed with the analyzing device 15. After the analyzing device 15 is passed, the main flow MF may again segregate into the two sub-flows LSF, HSF.
-6-
The system comprises a pressure pump 2 and an eductor 3. The pump 2 comprises a pump inlet 4 and a pump outlet 5. The pump inlet 4 is connected with a first conduit 6 having a conduit inlet 7 arranged in the pipeline 20..
The eductor 3 comprises a pressure inlet 8, a suction inlet 9, and an outlet 10. The 5 pressure inlet 8 is connected to the pump outlet 5 via the second conduit 11. The eductor 3 is arranged in a bottom region 12 of the pipeline 20, so that the suction inlet 9 is directly arranged in this bottom region 12 to suck in liquid from this bottom region 12. The advantage of arranging the suction inlet 12 in the bottom region of the pipeline 20 is that the relative heavy part of the fluid flows in the pipeline 20 is introduced in the eductor which relatively 10 improves the temporarily mixing and therewith homogenizing of the fluid flows in the pipeline 20.
The eductor 3 is shown in more detail in Figure 2. Figure 3 shows a cross section 20 of the pipeline with the location of the eductor 3.
During use the pressure pump provides pressurized fluid to the eductor 3. Due to the 15 Venturi effect in the eductor 3 liquid from the bottom region 12 is drawn into the eductor 3 via the suction inlet 9. The injection liquid and the sucked in liquid from the bottom region 12 are thoroughly mixed in the eductor 3 and ejected from the outlet 10 into the pipeline 20.
To promote mixing of the injection liquid and the liquid sucked in from the bottom region 12, a first static mixing device 13 is arranged in the pressure inlet 8, and a second 20 static mixing device 14 is arranged in the interior of the eductor 3 close to the outlet 10.
In the pipeline 20 the mixture ejected from the outlet 10 is further mixed with fluids in the pipeline, resulting in a homogenized flow in the pipeline 20. As a result, the analyzing device 15 can reliably analyze the contents of the fluid flow in the pipeline.
The outlet 10 of the eductor 3 is arranged in the pipeline 20 such that an outflow 25 direction of a fluid ejected from the outlet 10 is arranged at least partially parallel to a direction of the main flow in the pipeline. This direction of the flow ejected from the outlet 10 promotes dispersion of the ejected flow in the main flow, therewith improving homogenization of the main flow MF.
Further, the outflow direction of the outlet 10 is substantially directed to an analyzing 30 device 15 arranged in the pipeline 20 or, as an alternative to conduit inlet 7, if containing an analyzing device 15, so that the homogenized flow in particular reaches the analyzing device 15 resulting in a more reliable analysis of the contents of the fluid flowing in the pipeline 20.
The eductor 3 and possibly the pump 2 and/or conduits 6 and 11 may be provided as 35 a kit intended to be mounted in or on a pipeline 20 to perform the method according to the invention.
-7-
Figure 4 shows an alternative embodiment of the system 1 of Figures 1-3. Same parts of the system 1 are indicated by the same reference numerals. Main difference between the embodiment of Figures 1-3 and the alternative embodiment of Figure 4 is the outflow direction of the eductor 10.
5 In the embodiment of Figure 4, the outlet 10 of the eductor 3 is arranged in the pipeline 20 such that an outflow direction of the eductor is arranged at least partially opposite to the main flow direction in the pipeline. This has the result that the mixture of injection fluid entering the eductor via pressure inlet 8 and fluid sucked in from a bottom region 12 of the pipeline into the eductor 3 ejected from the outlet enters the pipeline in a 10 direction at least partially opposite to the direction of the main flow MF in the pipeline.
This opposite direction promotes the turbulent mixing of this ejected mixture with the fluid flows in the pipeline 20 resulting in homogenization of the fluid flows in the pipeline.
Hereinabove two sub-flows LSF, HSF have been used to describe an uneven distribution over the cross section of the fluid flow in the pipeline. In practice the fluid flow in 15 the pipeline will not necessarily have two distinct sub-flows in the pipeline. The method and system according to the invention may however be used to temporarily homogenize any uneven distribution of contents of the fluid flow over the cross section of the fluid flow.
In the drawings an analyzing device 15 arranged in the pipeline 20 is shown. As an alternative, an analyzing device may be arranged outside the pipeline 20 and connected to 20 the pipeline 15 by a conduit, for instance the conduit 6. Such analyzing device 15a connected to conduit 6 is indicated in Figures 1 and 4 by a dashed lines. In such case the fluid entering the conduit inlet 7 will be used to analyze the composition of the fluid.

Claims (20)

1. Werkwijze voor het ten minste tijdelijke homogeniseren van een vloeistofstroom in een pijplijn voor het analyseren van de vloeistofstroom, waarbij de werkwijze de stap van het toevoeren van een injectievloeistof in de vloeistofstroom omvat, gekenmerkt door het gebruik van een eductor, waarbij de eductor een drukinlaat, een zuiginlaat en een uitlaat omvat, 5 waarbij de drukinlaat is verbonden met een bron van injectievloeistof onder druk, waarbij de zuiginlaat is aangebracht in of verbonden met een bodemgebied van de pijplijn om vloeistof uit het bodemgebied aan te zuigen, en waarbij de uitlaat is aangebracht in de pijplijn om een mengsel van ten minste de injectievloeistof en vloeistof uit het bodemgebied van de pijplijn in de pijplijn af te geven, 10 waarbij de stap van het voeden van injectievloeistof in de pijplijn het toevoeren van injectievloeistof onder druk aan de eductor omvat, het mengen van de injectievloeistof met vloeistof die wordt aangezogen uit het bodemgebied van de pijplijn en het afgeven van het mengsel in de pijplijn om de vloeistofstroom in de pijplijn te homogeniseren.A method for at least temporary homogenizing a fluid stream in a pipeline for analyzing the fluid flow, the method comprising the step of supplying an injection fluid into the fluid flow, characterized by the use of an eductor, wherein the eductor pressure inlet, a suction inlet and an outlet, wherein the pressure inlet is connected to a source of pressurized injection fluid, the suction inlet is arranged in or connected to a bottom region of the pipeline to suck in liquid from the bottom region, and wherein the outlet is arranged in the pipeline to dispense a mixture of at least the injection fluid and fluid from the bottom region of the pipeline into the pipeline, the step of feeding injection fluid into the pipeline comprising supplying injection fluid under pressure to the eductor mixing the injection liquid with liquid which is sucked in from the bottom region of the liquid pipeline and dispensing the mixture into the pipeline to homogenize the liquid flow in the pipeline. 2. Werkwijze volgens conclusie 1, waarbij de eductor is aangebracht in de pijplijn.The method of claim 1, wherein the eductor is disposed in the pipeline. 3. De werkwijze van conclusie 2, waarbij de eductor is aangebracht in het bodemgebied van de pijplijn.The method of claim 2, wherein the eductor is disposed in the bottom region of the pipeline. 4. De werkwijze volgens een van de voorgaande conclusies, waarbij de uitlaat van de eductor is aangebracht in de pijplijn zodanig dat een uitstroomrichting van een vloeistof uit de uitlaat ten minste gedeeltelijk evenwijdig aan een richting van de hoofdstroom in de pijplijn is gericht.The method according to any of the preceding claims, wherein the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is directed at least partially parallel to a direction of the main flow into the pipeline. 5. De werkwijze volgens conclusie 4, waarbij de uitstroomrichting van de uitlaat in hoofdzaak is gericht naar een analyse-inrichting aangebracht in de pijplijn of in hoofdzaak is gericht naar een leidinginlaat die is aangebracht in de pijplijn van een leiding die in vloeistofcommunicatie is met een analyse-inrichting.The method of claim 4, wherein the outflow direction of the outlet is directed essentially to an analyzer arranged in the pipeline or is directed essentially to a pipe inlet disposed in the pipeline of a pipe that is in fluid communication with a analysis device. 6. De werkwijze volgens een van de conclusies 1-3, waarbij de uitlaat van de eductor is aangebracht in de pijplijn zodanig dat een uitstroomrichting van een vloeistof uit de uitlaat ten minste gedeeltelijk tegengesteld aan de hoofdstroomrichting in de pijplijn is gericht.The method of any one of claims 1-3, wherein the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is directed at least partially opposite to the main flow direction in the pipeline. 7. De werkwijze volgens een van de voorgaande conclusies, waarbij de 35 injectievloeistof en de vloeistof uit het bodemgebied van de pijplijn verder worden gemengd in de eductor door een additionele menginrichting. -9-7. The method according to any of the preceding claims, wherein the injection liquid and the liquid from the bottom region of the pipeline are further mixed in the eductor by an additional mixer. -9- 8. De werkwijze volgens de voorgaande conclusie, waarbij de additionele menginrichting een statische menginrichting of een gekarteld profiel in de eductor is.The method according to the preceding claim, wherein the additional mixer is a static mixer or a serrated profile in the eductor. 9. De werkwijze volgens een van de voorgaande conclusies, waarbij de injectievloeistof onder druk wordt verkregen door het nemen van vloeistof uit de pijplijn, en het onder druk brengen van de vloeistof door middel van een pomp.The method of any one of the preceding claims, wherein the injection fluid under pressure is obtained by removing fluid from the pipeline, and pressurizing the fluid through a pump. 10. De werkwijze volgens een van de voorgaande conclusies, waarbij de hoofdstroom 10 van de pijplijn ten minste een eerste vloeistofstroom in het bodemgebied van de pijplijn omvat en een tweede vloeistofstroom in een gebied boven de eerste vloeistofstroom van de pijplijn, waarbij een dichtheid van de eerste vloeistofstroom groter is dan een dichtheid van de tweede vloeistofstroom, en waarbij de zuiginlaat is aangebracht om in hoofdzaak vloeistof van de eerste vloeistofstroom aan te zuigen. 15The method of any one of the preceding claims, wherein the main flow of the pipeline comprises at least a first fluid flow in the bottom region of the pipeline and a second fluid flow in an area above the first fluid flow of the pipeline, wherein a density of the first fluid flow is greater than a density of the second fluid flow, and wherein the suction inlet is arranged to substantially suck up fluid from the first fluid flow. 15 11. Een systeem voor het ten minste tijdelijk homogeniseren van een vloeistofstroom in een pijplijn voor het analyseren van de vloeistofstroom, omvattende: - een bron met injectievloeistof onder druk om een injectievloeistof onder druk te verschaffen, en 20. een inrichting die verbonden is met de bron met injectievloeistof onder druk, waarbij de inrichting is aangebracht om de injectievloeistof onder druk in de pijplijn te voeren, met het kenmerk, dat de inrichting een eductor omvat met een drukinlaat, een zuiginlaat en een uitlaat, waarbij de drukinlaat is verbonden met de bron met injectievloeistof onder druk, waarbij de zuiginlaat is aangebracht in of verbonden met een bodemgebied van de pijplijn om 25 vloeistof uit het bodemgebied aan te zuigen, en waarbij de uitlaat is aangebracht in de pijplijn om een mengsel van ten minste de injectievloeistof en vloeistof uit het bodemgebied van de pijplijn in de pijplijn af te geven.A system for at least temporarily homogenizing a fluid flow in a fluid flow pipeline, comprising: - a source of pressurized injection fluid to provide a pressurized fluid, and 20. a device connected to the source with pressurized injection liquid, the device being arranged for feeding the injected liquid under pressure into the pipeline, characterized in that the device comprises an eductor with a pressure inlet, a suction inlet and an outlet, the pressure inlet being connected to the source with pressurized injection fluid, wherein the suction inlet is arranged in or connected to a bottom region of the pipeline to suck in fluid from the bottom region, and wherein the outlet is arranged in the pipeline for a mixture of at least the injection fluid and fluid from the pipeline. bottom area of the pipeline into the pipeline. 12. Het systeem volgens conclusie 11, waarbij de eductor is aangebracht in de pijplijn. 30The system of claim 11, wherein the eductor is arranged in the pipeline. 30 13. Het systeem volgens conclusie 12, waarbij de eductor is aangebracht in het bodemgebied van de pijplijn.The system of claim 12, wherein the eductor is disposed in the bottom region of the pipeline. 14. Het systeem volgens een van de conclusies 11-13, waarbij de eductor een 35 additionele menginrichting omvat.14. The system according to any of claims 11-13, wherein the eductor comprises an additional mixer. 15. Het systeem volgens conclusie 14, waarbij de additionele menginrichting een statische menginrichting is of een gekarteld profiel in de eductor. - ΙΟΙ 6. Het systeem volgens een van de conclusies 11-15, waarbij de bron met injectievloeistof onder druk een drukpomp met een pompinlaat en een pompuitlaat omvat, waarbij de pompinlaat is verbonden met de pijplijn om vloeistof uit de pijplijn te nemen, en 5 waarbij de pompuitlaat is verbonden met de drukinlaat van de eductor.The system of claim 14, wherein the additional mixer is a static mixer or a serrated profile in the eductor. - The system according to any of claims 11-15, wherein the source of pressurized injection fluid comprises a pressure pump with a pump inlet and a pump outlet, the pump inlet being connected to the pipeline to take liquid out of the pipeline, and wherein the pump outlet is connected to the pressure inlet of the eductor. 17. Het systeem volgens een van de conclusies 11-16, waarbij de uitlaat van de eductor is aangebracht in de pijplijn zodanig dat een uitstroomrichting van een vloeistof uit de uitlaat ten minste gedeeltelijk evenwijdig aan een richting van de hoofdstroom in de pijplijn is 10 gericht.17. The system according to any of claims 11-16, wherein the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is directed at least partially parallel to a direction of the main flow in the pipeline . 18. Het systeem volgens conclusie 17, waarbij de uitstroomrichting van de uitlaat in hoofdzaak is gericht naar een analyse-inrichting die is aangebracht in de pijplijn of in hoofdzaak gericht naar een leidinginlaat aangebracht in de pijplijn van een leiding die in 15 vloeistofcommunicatie is met een analyse-inrichting.18. The system according to claim 17, wherein the outlet direction of the outlet is directed essentially to an analyzer arranged in the pipeline or directed essentially to a pipe inlet arranged in the pipeline of a pipe in fluid communication with a analysis device. 19. Het systeem volgens een van de conclusies 11-16, waarbij de uitlaat van de eductor is aangebracht in de pijplijn zodanig dat een uitstroomrichting van een vloeistof uit de uitlaat ten minste gedeeltelijk tegengesteld aan de hoofdstroomrichting in de pijplijn is gericht. 20The system according to any of claims 11-16, wherein the outlet of the eductor is arranged in the pipeline such that an outflow direction of a fluid from the outlet is directed at least partially opposite to the main flow direction in the pipeline. 20 20. Het systeem volgens een van de conclusies 11-19, waarbij het systeem een analyse-inrichting omvat die is aangebracht in de pijplijn stroomafwaarts van de eductor, waarbij de analyse-inrichting is ingericht voor het analyseren van de vloeistofstroom in de pijplijn. 25The system of any one of claims 11-19, wherein the system comprises an analyzer arranged in the pipeline downstream of the eductor, the analyzer adapted to analyze the fluid flow in the pipeline. 25 21. Kit omvattende een eductor, waarbij de kit is bedoeld de werkwijze volgens een van de conclusies 1-10 uit te voeren.A kit comprising an eductor, wherein the kit is intended to perform the method according to any of claims 1-10.
NL2005612A 2010-11-02 2010-11-02 A method and system for at least temporarily homogenizing a fluid flow in a pipeline. NL2005612C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2005612A NL2005612C2 (en) 2010-11-02 2010-11-02 A method and system for at least temporarily homogenizing a fluid flow in a pipeline.
EP11187523.3A EP2447698B1 (en) 2010-11-02 2011-11-02 A method and system for at least temporarily homogenizing a fluid flow in a pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2005612A NL2005612C2 (en) 2010-11-02 2010-11-02 A method and system for at least temporarily homogenizing a fluid flow in a pipeline.
NL2005612 2010-11-02

Publications (1)

Publication Number Publication Date
NL2005612C2 true NL2005612C2 (en) 2012-05-03

Family

ID=45098867

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2005612A NL2005612C2 (en) 2010-11-02 2010-11-02 A method and system for at least temporarily homogenizing a fluid flow in a pipeline.

Country Status (2)

Country Link
EP (1) EP2447698B1 (en)
NL (1) NL2005612C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610117C2 (en) * 2014-11-12 2017-02-08 Ильдар Ринатович Вальшин Method of different media pumping through pipeline and device for its implementation
US9909415B2 (en) * 2015-11-20 2018-03-06 Cameron International Corporation Method and apparatus for analyzing mixing of a fluid in a conduit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1060468A (en) * 1952-07-21 1954-04-02 Hauts Fourneaux Sa Device for mixing two gases and its applications in particular to the supply of superoxygenated air to cupolas
EP0044652A3 (en) * 1980-07-18 1983-03-16 Moore, Barrett & Redwood Limited Method and apparatus for blending a fluid
DE3262362D1 (en) * 1981-03-13 1985-03-28 Moore Barrett & Redwood Liquid sampling device
GB2164021A (en) * 1984-07-12 1986-03-12 Jiskoot Autocontrol Pipeline liquid sampling system
GB9930511D0 (en) 1999-12-24 2000-02-16 Jiskoot Auto Control Limited Apparatus for mixing liquid in a pipeline
GB2397996B (en) 2003-02-07 2005-01-19 Willacy Oil Services Ltd Sludge dispersal/inhibition in floating roof storage tanks
DE102006045088A1 (en) * 2006-09-21 2008-03-27 Basf Ag Mixing a liquid or suspension beneath a gas space in a closed container comprises supplying a stream of the liquid or suspension as a drive jet for a submerged ejector which aspirates gas from the gas space
NL2001803C2 (en) 2008-07-14 2010-01-18 Kimman Process Solutions B V A device for homogenizing fluids.
DE102008043408A1 (en) * 2008-11-03 2010-05-06 Robert Bosch Gmbh Device for mixing exhaust gas and e.g. urea solution, for treatment of exhaust gas of diesel engine of motor vehicle, has supply line ending in enclosing tube, which comprises diameter reduced outlet at end side

Also Published As

Publication number Publication date
EP2447698A1 (en) 2012-05-02
EP2447698B1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
CN211384571U (en) Blending system
US10677627B2 (en) Representative sampling of multiphase fluids
TW506853B (en) Whirlpool reduction cap
US4494413A (en) Homogeneous sampler for non-homogeneous flowing of fluid
JP2015536239A5 (en)
NL2005612C2 (en) A method and system for at least temporarily homogenizing a fluid flow in a pipeline.
EP3045891A1 (en) Optical characterization system for a process plant
EP2145676A1 (en) Device and method for homogenizing fluids
CN105600912B (en) A kind of multiple spot note oxygen, segmentation mix device for supercritical water oxidation tubular reactor
JPS61189400A (en) Homogenizing device for fluid transported by duct
FI107645B (en) An automatic sampling and processing system
US11002644B2 (en) Hybrid product sampling system employing suction and discharge lines
CN101000291A (en) Optical continuous water quality analytical system
US20010033525A1 (en) Mixing reservoir for an automated recirculating particle size analysis system
KR20140108175A (en) Mixer
CN103308375B (en) A kind of Novel crude oil sample detection mixer
RU2382813C1 (en) Reagent dosing method and equipment for implementation
EP2425890B1 (en) Flow Conditioning Apparatus
CN200989865Y (en) Optical continuous water quality analytical system
RU133898U1 (en) CHEMICAL REAGENT INPUT DEVICE
CN220932707U (en) In-situ on-line testing device for wide-angle laser light scattering instrument
FI116546B (en) Apparatus for continuous dilution of slurry sample
CN208465817U (en) A kind of multi-component liquid hybrid system for wastewater treatment
US3414238A (en) Continuous dilution apparatus
Şekerci et al. High pressure conduit: a good alternative to the air compressors used in the flotation process