NL2004120C2 - Simple rotation engine with variable compression and high gas flow. - Google Patents

Simple rotation engine with variable compression and high gas flow. Download PDF

Info

Publication number
NL2004120C2
NL2004120C2 NL2004120A NL2004120A NL2004120C2 NL 2004120 C2 NL2004120 C2 NL 2004120C2 NL 2004120 A NL2004120 A NL 2004120A NL 2004120 A NL2004120 A NL 2004120A NL 2004120 C2 NL2004120 C2 NL 2004120C2
Authority
NL
Netherlands
Prior art keywords
rotor
axis
distance
curve
deviation
Prior art date
Application number
NL2004120A
Other languages
Dutch (nl)
Inventor
Jan Hendrik Ate Wiekamp
Original Assignee
Jan Hendrik Ate Wiekamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan Hendrik Ate Wiekamp filed Critical Jan Hendrik Ate Wiekamp
Priority to NL2004120A priority Critical patent/NL2004120C2/en
Application granted granted Critical
Publication of NL2004120C2 publication Critical patent/NL2004120C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/46Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/04Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/322Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Simple rotation engine with variable compression and high gas flow Technology
The invention is to be applied as pump, motor, compressor or thermodynamic engine. 5
Objects of the Invention A design and way of constructing a simple engine with no valves and low restrictions. Low manufacturing cost, high durability, robust sealing, lubrication and cooling. For application as thermodynamic engine: variable compression, high swirl for 10 fast combustion, low emissions, high speeds, high fuel efficiency and high specific power.
Background of the Invention
The simple geometry of the reciprocating piston engine has made it the 15 dominant choice for pumps, compressors and combustion engines. Demands on efficiency and pollution have however increased complexity and added many auxiliary devices, and further improvements can only be made at great costs. A more adaptable simple geometry is sought after, that will allow higher thermodynamic efficiency by having faster combustion, variable compression and less restrictions to gas flow, 20 maintaining at the same time proper sealing, lubrication and cooling.
US patent 1,972,302 (Hutchington M.R., 04-09-1934), describes a pump with rockers and a rotor with intake and exhaust ports, with seals at the tips of the rockers.
US patent 1,983,033 US (Hutchington M.R., 04-12-1934) describes a pump with rockers and a flexible rotor, with the flexible rotor allowing for proper sealing. US patent 25 2,006,298 (Hutchington M.R., 25-06-1935) describes pumps with a rotor and rocking elements with rollers creating a seal. A specific feature of all these pumps is that the distance between the two rocker-rotor contact points is constant. Another description of machines of this type is given in German Patent DE 1,401,391 (A. J. Ignacio,21-10-1968). US patent 3,186,385 (Walker H., 01-06-65) shows such an engine with a elliptical 30 rotor, and two rockers, with ports inside the rotor, describing the advantages as 4 stroke engine.
2
In all these inventions the rocker has fixed contact zones and the distance between the two rocker-rotor contact zones is constant. In our invention the two rocker contact zones move along the flat surface of the rocker, and the distance between the two rocker-rotor contact zones is not constant. A first advantage of this being much 5 lower thermal pressure on the seal and distributed wear on the rocker. Also the geometry now allows for relatively larger variable volumes .
US patent 3,302,870 (Schell, Carl M, 1967-02-07) describes a pump with an elliptical rotor and two "oscillatable rocker members". The patent however fails to describe a construction method for the rockers, which is not obvious for someone skilled 10 in the art, who will find it difficult if not impossible to construct an engine with the information provided.
We present in this document the construction of engines, including asymmetric and non-elliptical rotors, with rockers with two perpendicular arms, which each have a flat contact zone towards the rotor, and have their juncture point, which is also their 15 center of rotation, at a distance from the center of rotation of the rotor of squareroot(s*s+t*t), with s halve the length and t halve the width of the rotor. That these engines can be constructed follows from the insight that the junction point of any straightedge encompassing any ellipse creates a circle (Apollonius-Fermat circle).
20 3
Brief Description of the Drawings 5 Fig.1 rotation of elliptical rotor and two straightedged rockers Fig.2 planar view of engine with non-elliptical rotor Fig.3 rotation of non-elliptical rotor in engine (e.g. HCCI)
Fig.4 side views of Fig.2 Fig.5 side views of rotor of Fig.2 10 Fig.6 side views of rocker of Fig.2
Fig.7 side views of housing and top seal of Fig.2 Fig.8 geometry of rotor and rocker
Description of the Drawings 15
Fig.1 shows a cross-section of a machine comprising in essence of one rotor(l), two rockers (3) and a housing (10), creating inside the housing eighth separate variable volumes. One volume between each rocker and the rotor (5),(7), two volumes between the first rocker and the housing (5a),(8a), two volumes between the second rocker and 20 the housing (6a),(7a) and two volumes between housing, rotor and rockers (6),(8), all volumes being constrained in the axial direction by the housing(lO) at the bottom and a plate or co-rotating seal at the top, which in case of uniform cross-sections would be flat. In case the cross-sections linearly increase in size from bottom to top, the axes of the rockers are no longer parallel to the rotating axis of the rotor, but the arms of the 25 rockers will still make a right angle in any plane perpendicular to the rotating axis of the rotor, but will make an obtuse angle in any plane perpendicular to the respective rocker axis. Shaping the bottom and top bodies spherically, with the rotor axis and both rocker axes normal to the spherical shapes, a full enclosure of the eighth volumes can be guaranteed. An advantage of this more complex construction could be expansion 30 towards one end.
4
In operation, the rotor (1), here shown an ellipse, rotates around an axis (2), and contacts two rockers (3), that pivot around their axes (4) inside a housing (10). For an ellipse, with major semi-axis t and minor semi-axis s, it can be shown that a pivoting straightedge, centered at a distance of squareroot{ t squared plus s squared} will always 5 have two, and only two contact points (9). As shown here, it is sufficient that the rocker has a straightedge shape only on the contacting path with the ellipse. In this way, four expanding and compressing internal volumes (5), (6), (7) and (8) are created, which can be filled or emptied through openings in the rotor, the straightedges, top or bottom. Additionally four secondary expanding and compressing volumes are created (5a), (6a), 10 (7a) and (8a), between the housing and the straightedges. Here shown are four stages of one quarter of a rotor rotation, in which top and bottom volumes (5) and (7) expand from minimum to maximum, right and left volumes (6) and (8) contract from maximum to minimum, secondary volumes (5a) and (7a) are first expanding and then contracting, and secondary volumes (6a) and (8a) are first contracting and then expanding. Mirroring 15 and reversing the order of the pictures can easily show the other three quarters of the rotor rotation. Applications can be for instance as pump, compressor, steam or Stirling engine.
A not so obvious part of this invention is the use as a progressive cavity pump, made by stacking sections on top of each other. We could do this by taking sections according to 20 each picture of Fig.1 with certain thickness, aligning the rotor sections on top of each other as if it were extruded, and rotating housing and rockers. Looking in we would see a cavity progressing when the rotor is turned. Of course with more sections with smaller angles between each next section and the previous, the cavity shapes can be more continuous axially. This could be extended to continuously shaped cavities using flexible 25 rockers spiraling around the rotor. If we would increase or decrease the shape of rotor and rockers linearly from top to bottom, as described above, we could have expansion respectively compression axially as well.
In Fig.2 a possible application is shown with a non-elliptical rotor (11) with inlet (21) and 30 exhaust (22). The rotor has a bearing (12) and the rockers (13) have bearings (14) and are rotating inside the housing (20). Together they create volumes (15), (16), (17) and 5 (18) , and secondary volumes (15a), (16a), (17a) and (18a). The contact areas on the rockers here are made of separate glide plates (19) that act as mating surfaces for the rotor material, and act as sideway seals to compensate for manufacturing tolerances and wear. Inside the housing (20) and rockers (13), and through the bottom of housing 5 (20), cylindrical bodies (24) are inserted, which can move along their axis, and which can change the expansion ratio's of volumes (15), (16), (17) and (18). In, on, or instead of these bodies (24), spark plugs (25), fuel injectors (23), valves and other devices can be inserted, for instance to facilitate venting, inlet/exhaust timing, ignition timing, addition or recirculation of gasses or fuel. Next to the glide seals (19), each primary volume (15), 10 (16), (17) and (18), is sealed from the top and bottom by seals on the housing (26), rockers (27) and rotor (28), pressed down by the top seal (31) and body (33) (as shown in Fig.7). Lubricating oil is supplied to the gliding plates by bodies (29) or from inside the rockers (13). Cooling and lubricating fluid can be transported in the rotor (11) through the bearing (12) radius, inside the rockers (13) through their bearing (14) radii, and 15 inside the housing (20). Additional (e.g. steam) cooling can be applied through the secondary volumes (15a), (16a), (17a) and (18a), possibly creating additional power, and possible air cooling along the rotor(ll) axis, heat pipes and cooling fins. Bearings can be large, long and robust to accept fast combustion. Concatenation of units can minimize vibrations. Application for instance as Controlled Auto Ignition (HCCI) combustion 20 engine.
In Fig.3 half a rotation is shown of the configuration of Fig.2
In Fig.4 several views are shown of the configuration of Fig.2 25
In Fig.5 several views are shown of the rotor of configuration of Fig.2
In Fig.6 several views are shown of a rocker of configuration of Fig.2. The glide plates (19) are inserted into recesses, where they can move within the recesses, and be 30 pressurized externally or through openings (30) by combustion gasses.
6
In Fig.7 the housing (20) and top cover (33) are shown. If tolerances allow, a fixed top plate (33) is sufficient. Otherwise, the top plate (33) and seal (31) can co-rotate with the rotor and take up axial tolerances and wear. In this case a small hole (32) can be used, allowing high pressure combustion gasses to enter, to pressurize the seal downwards 5 towards the rotor, pivoting bodies and housing.
In Fig.8 a cross-section of a rotor (41) is shown, in a plane perpendicular to its rotating central axis, its point-symmetric boundary curve made up out of (infinitesimal) sections of ellipses with equal origin, with t'*t'+s'*s'=R*R, with t'=t(m) the maximum semi-axis 10 and s'=s(m)the minimum semi-axis of an ellipse, both function of the origin based vector i]i of the boundary curve, and R the distance between central axis and axis of a rocker(44) in this cross-section plane, where on the boundary an inscribed rectangle (46) can be defined, such that (a,b), (-a,b), (a,-b) and (-a,-b), lie on the boundary, with a+b=R. The boundary curve of the rotor has a continuous mapping by its normal vector n, (-pi< 15 angle(n) <= pi) to the origin based vector m of a boundary point (—pi< angle(m) <= pi), where the mapping can be bijective (one-to-one) as on point (36) of rotor (42), or surjective (one-or-more-to-one) as on point (35) and (35a) of rotor (41). In either case the boundary can be cut up into connected smooth sections (34) and (34a), and the direction of rotation of the normal vector n follows the direction of rotation of m on the 20 boundary curve. In effect, the straightedge is the operator, mapping one section (34) on the next section (34a), and this section (34a) on the next (34), continuing back to the first section. This means shapes will be point symmetric (45) and for any given phi, a part of a boundary curve with m defined for phi<angle(n)<=phi+pi/2 defines the whole boundary curve.
25
Shown is an ellipse (43), which could be defined for any point of the boundary curve, by the point and its normal vector (37) and a perpendicular normal vector (38) at another point on the boundary. This meaning a straightedge (44) would contact these points precisely. Within some mathematically definable boundaries, tolerances and some 30 curvature can be allowed on the straightedge (47), which will slightly differently map one point on the boundary, to another point on the boundary. A remaining property is 7 that, on each arm of the straightedge, a plane through the rocker axis and any rocker contact point at distance sqrt(2)*a will go through any rocker contact point at sqrt(2)*b, and the cross-section lines of these contact planes of the two arms with a plane perpendicular to the central axis are perpendicular. Even though approximate, the rotor 5 will now not be made up out of (infinitesimal) ellipses as describe above, but will be close.

Claims (6)

1. Een rotatie machine voor het verpompen, comprimeren of expanderen van een gas of vloeistof met acht variabele volumes gecreëerd tussen een behuizing, een rotor op 5 een centrale as, axiaal symmetrisch ten opzichte van de centrale as, en twee zwenklichamen, de laatste ieder zwenkend op een parallelle as, niet meer dan 90 graden in beide richtingen, ingeklemd tussen vlakke boven- en onderlichamen, waarbij de twee contactvlakken van ieder zwenklichaam met de rotor vlak zijn en onderling loodrecht op elkaar staan, en waarbij de twee contactzones tussen een zwenklichaam 10 en het roterend lichaam zich verplaatsten over de vlakke contact oppervlakten van het zwenklichaam en onderling een variabele afstand hebben, en waarbij in iedere doorsnede in een vlak loodrecht op de centrale as, binnen de gesloten curve gevormd door het contact oppervlak van de rotor een rechthoek geplaatst kan worden zodanig dat de hoekpunten (a,b), (-a,b), (a,-b) en (-a,-b) op deze curve liggen en a+b=R, waarbij 15 R de afstand is tussen het snijpunt van de centrale as (0,0) en het snijpunt van de as van hetwelk zwenkende lichaam, en waarbij de gesloten curve met iedere gewenste precisie benaderd kan worden door (infinitesimale) delen van ellipsen met gelijke oorsprong, met semi-assen t'=t(hoek(n)), s'=s(hoek(n)), waar n de lokale normaal vector (-pi<hoek(n)<=pi), en t'*t'+s'*s'=R*R, waar de curve volgend, de normaal vector 20 meedraait in dezelfde richting, maar met verschillende snelheid, en geen twee punten dezelfde normaal vector hebben, waarbij de rotor desgewenst asymmetrisch en niet elliptisch kan zijn.1. A rotary machine for pumping, compressing or expanding a gas or liquid with eight variable volumes created between a housing, a rotor on a central axis, axially symmetrical with respect to the central axis, and two swiveling bodies, the last one each pivoting on a parallel axis, not more than 90 degrees in both directions, sandwiched between flat upper and lower bodies, the two contact surfaces of each swiveling body with the rotor being flat and mutually perpendicular to each other, and wherein the two contact zones between a swiveling body 10 and the rotating body move across the flat contact surfaces of the pivot body and have a variable distance from each other, and wherein in each section in a plane perpendicular to the central axis, within the closed curve formed by the contact surface of the rotor a rectangle can be positioned so that the angular points (a, b), (-a, b), (a, -b) and (-a, -b) lie on this curve and a + b = R, where R is the distance between the intersection of the central axis (0,0) and the intersection of the axis of the pivoting body, and where the closed curve can be approximated with (desired) precision by (infinitesimal) parts of ellipses of equal origin , with semi-axes t '= t (angle (n)), s' = s (angle (n)), where n is the local normal vector (-pi <angle (n) <= pi), and t' * t '+ s' * s' = R * R, where the curve follows, the normal vector 20 rotates in the same direction but with different speed, and no two points have the same normal vector, whereby the rotor can be asymmetrical and not elliptical if desired to be. 2. Een machine volgens conclusie 1, waarbij er een afwijking van de afstand R van 25 minder dan 5% is toegestaan en een afwijking van de vlakheid van de contactvlakken van de zwenklichamen van minder dan 5% is toegestaan, waarbij de vlakheid gegeven wordt door de maximale afstand van een contactpunt tot het dichtstbijzijnde in conclusie 1 genoemde vlakke contactvlak, gedeeld door de afstand van dit contactpunt tot de rotatie as van het zwenklichaam, en waarbij een afwijking van de vorm van het 30 roterende lichaam van 5% is toegestaan, waarbij deze afwijking wordt gegeven door de maximale afstand van een punt op de curve gevormd door het contactvlak van de rotor in een vlak loodrecht op de rotatie as van de rotor, tot de curve genoemd in conclusie 1 in dit loodrechte vlak, gedeeld door de afstand van dit punt tot de rotatie as van de rotor. 52. A machine according to claim 1, wherein a deviation of the distance R of less than 5% is allowed and a deviation of the flatness of the contact surfaces of the pivot bodies of less than 5% is allowed, the flatness being given by the maximum distance from a contact point to the closest flat contact surface mentioned in claim 1, divided by the distance from this contact point to the axis of rotation of the swiveling body, and wherein a deviation of the shape of the rotating body of 5% is allowed, wherein this deviation is given by the maximum distance of a point on the curve formed by the contact surface of the rotor in a plane perpendicular to the axis of rotation of the rotor, to the curve mentioned in claim 1 in said perpendicular plane divided by the distance of this point to the axis of rotation of the rotor. 5 3. Een rotatie machine voor het verpompen, comprimeren of expanderen van een gas of vloeistof met acht variabele volumes gecreëerd tussen een behuizing, een roterend lichaam op een centrale as, en twee zwenklichamen, de laatste ieder zwenkend op een NIET parallelle as, niet meer dan 90 graden in beide richtingen, ingeklemd tussen een 10 sferisch hol bovenlichaam en een sferisch bol onderlichaam, waarbij de twee contactvlakken van ieder zwenklichaam met de rotor vlak zijn, en waarbij de twee contactzones tussen een zwenklichaam en het roterend lichaam zich verplaatsten over de vlakke contact oppervlakten van het zwenklichaam en onderling een variabele afstand hebben, en waarbij in iedere doorsnede in een vlak loodrecht op de centrale 15 as, binnen de gesloten curve gevormd door het contact oppervlak van de rotor een rechthoek geplaatst kan worden zodanig dat de hoekpunten (a,b), (-a,b), (a,-b) en (-a,-b) op deze curve liggen en a+b=R, waarbij R de afstand is tussen het snijpunt van de centrale as (0,0) en het snijpunt van de as van hetwelk zwenkende lichaam, en waarbij de gesloten curve met iedere gewenste precisie benaderd kan worden door 20 (infinitesimale) delen van ellipsen met gelijke oorsprong, met semi-assen t'=t(hoek(n)), s'=s(hoek(n)), waar n de lokale normaal vector (-pi<hoek(n)<=pi), en t'*t'+s'*s'=R*R, waar de curve volgend, de normaal vector meedraait in dezelfde richting, maar met verschillende snelheid, en geen twee punten dezelfde normaal vector hebben, waarbij de rotor desgewenst asymmetrisch en niet elliptisch kan zijn. 253. A rotary machine for pumping, compressing or expanding a gas or liquid with eight variable volumes created between a housing, a rotating body on a central axis, and two swiveling bodies, the latter each pivoting on a NOT parallel axis, no longer then 90 degrees in both directions, sandwiched between a spherical hollow upper body and a spherical spherical lower body, the two contact surfaces of each swiveling body with the rotor being flat, and wherein the two contact zones between a swiveling body and the rotating body moved over the flat surface contact surfaces of the pivot body and have a variable distance from each other, and wherein in every section in a plane perpendicular to the central axis, within the closed curve formed by the contact surface of the rotor a rectangle can be placed such that the angular points (a , b), (-a, b), (a, -b) and (-a, -b) are on this curve and a + b = R, where R is the distance between the intersection of d The central axis (0,0) and the intersection of the axis of the pivoting body, and where the closed curve can be approached with any desired precision through 20 (infinitesimal) parts of ellipses of equal origin, with semi-axes t '= t (angle (n)), s' = s (angle (n)), where n is the local normal vector (-pi <angle (n) <= pi), and t '* t' + s' * s' = R * R, where the curve follows, the normal vector rotates in the same direction, but at different speeds, and no two points have the same normal vector, where the rotor can be asymmetrical and not elliptical if desired. 25 4. Een machine volgens conclusie 3, waarbij er een afwijking van de afstand R van minder dan 5% is toegestaan en een afwijking van de vlakheid van de contactvlakken van de zwenklichamen van minder dan 5% is toegestaan, waarbij de vlakheid gegeven wordt door de maximale afstand van een contactpunt tot het dichtstbijzijnde in 30 conclusie 3 genoemde vlakke contactvlak, gedeeld door de afstand van dit contactpunt tot de rotatie as van het zwenklichaam, en waarbij een afwijking van de vorm van de rotor van 5% is toegestaan, waarbij deze afwijking wordt gegeven door de maximale afstand van een punt op de curve gevormd door het contactvlak van het roterende lichaam in een vlak loodrecht op de rotatie as van het roterende lichaam, tot de curve genoemd in conclusie 3 in dit loodrechte vlak, gedeeld door de afstand van dit punt tot 5 de rotatie as van de rotor.A machine according to claim 3, wherein a deviation of the distance R of less than 5% is allowed and a deviation of the flatness of the contact surfaces of the pivot bodies of less than 5% is allowed, the flatness being given by the maximum distance from a contact point to the nearest flat contact surface mentioned in claim 3, divided by the distance from this contact point to the axis of rotation of the pivot body, and wherein a deviation of the shape of the rotor of 5% is allowed, said deviation is given by the maximum distance of a point on the curve formed by the contact surface of the rotating body in a plane perpendicular to the axis of rotation of the rotating body, to the curve mentioned in claim 3 in said perpendicular plane divided by the distance of this point to the rotor's axis of rotation. 5. Een machine gevormd volgens enige van de conclusies 1 tot en met 4, waarbij de rotor in de axiale richting uniform is, en secties behuizing met zwenklichamen in axiale richting opeen gestapeld zijn, doch steeds enkele graden verspringend, zodat er in 10 axiale richting acht variabele volumes ontstaan, die zich in axiale richting voortbewegen als de het roterende lichaam draait.5. A machine formed according to any of claims 1 to 4, wherein the rotor is uniform in the axial direction, and housing sections with pivot bodies are stacked together in the axial direction, but always offset by a few degrees, so that in the axial direction eight variable volumes arise, which move in axial direction as the rotating body rotates. 6. Een machine gevormd volgens enige van de conclusies 1 tot en met 4, waarbij de rotor in de axiale richting uniform is, en de zwenklichamen flexibel zijn en zich als een 15 spiraal om de rotor winden, waarbij zich acht volumes vormen die zich bij draaien van de rotor axiaal verplaatsen.6. A machine formed according to any of claims 1 to 4, wherein the rotor is uniform in the axial direction, and the pivot bodies are flexible and wrap around the rotor as a spiral, with eight volumes forming at rotate the rotor axially.
NL2004120A 2010-01-20 2010-01-20 Simple rotation engine with variable compression and high gas flow. NL2004120C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2004120A NL2004120C2 (en) 2010-01-20 2010-01-20 Simple rotation engine with variable compression and high gas flow.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2004120A NL2004120C2 (en) 2010-01-20 2010-01-20 Simple rotation engine with variable compression and high gas flow.
NL2004120 2010-01-20

Publications (1)

Publication Number Publication Date
NL2004120C2 true NL2004120C2 (en) 2011-07-21

Family

ID=42710772

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2004120A NL2004120C2 (en) 2010-01-20 2010-01-20 Simple rotation engine with variable compression and high gas flow.

Country Status (1)

Country Link
NL (1) NL2004120C2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1660183A (en) * 1926-10-21 1928-02-21 Ella M Freeman Rotary pump
US1972302A (en) * 1932-11-08 1934-09-04 Multicycol Pump & Engine Corp Rotary pump, compressor, or the like
US1983033A (en) * 1932-11-30 1934-12-04 Multicycol Pump & Engine Corp Rotary pump, compressor, or the like
US2006298A (en) * 1933-04-21 1935-06-25 Multicycol Pump & Engine Corp Rotary pump compressor, engine, and the like
US3302870A (en) * 1966-02-25 1967-02-07 Gen Motors Corp Rotary compressor
DE1401391A1 (en) * 1961-11-20 1968-10-24 Artajo Jose Ignacio Martin Thermal engine
GB2131093A (en) * 1982-11-24 1984-06-13 Danfoss As Gerotor-type rotary fluid pressure machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1660183A (en) * 1926-10-21 1928-02-21 Ella M Freeman Rotary pump
US1972302A (en) * 1932-11-08 1934-09-04 Multicycol Pump & Engine Corp Rotary pump, compressor, or the like
US1983033A (en) * 1932-11-30 1934-12-04 Multicycol Pump & Engine Corp Rotary pump, compressor, or the like
US2006298A (en) * 1933-04-21 1935-06-25 Multicycol Pump & Engine Corp Rotary pump compressor, engine, and the like
DE1401391A1 (en) * 1961-11-20 1968-10-24 Artajo Jose Ignacio Martin Thermal engine
US3302870A (en) * 1966-02-25 1967-02-07 Gen Motors Corp Rotary compressor
GB2131093A (en) * 1982-11-24 1984-06-13 Danfoss As Gerotor-type rotary fluid pressure machine

Similar Documents

Publication Publication Date Title
NZ546000A (en) Rotary mechanism
KR101032262B1 (en) Rotary combustion apparatus
JP2010540833A (en) Variable displacement rotating device, high performance 2-stroke spherical engine
EP1016785A1 (en) Eccentric sliding vane equilibrium rotor device and its applications
US20110100321A1 (en) Rotary power device
CN106194267B (en) Pressure changing device
CA2569844A1 (en) Reciprocating and rotary piston engine
US5681156A (en) Piston machine having a piston mounted on synchronously rotating crankshafts
AU2001282623B2 (en) Rotary fluid machinery
NL2004120C2 (en) Simple rotation engine with variable compression and high gas flow.
US20090148323A1 (en) Rotary Machine and Combustion Engine
WO2021027524A1 (en) Translational rotor pump and engine
US20130259731A1 (en) Simple rotation engine with variable compression and high gas flow
US7621254B2 (en) Internal combustion engine with toroidal cylinders
US20030062020A1 (en) Balanced rotary internal combustion engine or cycling volume machine
US20070280844A1 (en) Rotary Machine and Internal Combustion Engine
RU2373400C2 (en) Double-auger unit of movable working chambers of mechanical compression or using pressure of liquid and/or gaseous working body, method of producing spherical helical wall of spherical auger of double-auger unit
CN210317486U (en) Cylinder-aligning engine
CN1548703A (en) Multi-arc cylinder body sliding sheet rotor positive displacement machinery
CN203515678U (en) Vane type energy conversion device
US6799542B2 (en) Engine having piston-cam assembly powertrain
TW201433686A (en) Piston mechanism assembly
EP0187148A1 (en) Rotary machine.
CN103527252A (en) Vane type energy conversion device
US9206801B2 (en) Rotary three dimensional variable volume machine

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20160201