NL2002891C2 - Aerial signal conductor holder. - Google Patents

Aerial signal conductor holder. Download PDF

Info

Publication number
NL2002891C2
NL2002891C2 NL2002891A NL2002891A NL2002891C2 NL 2002891 C2 NL2002891 C2 NL 2002891C2 NL 2002891 A NL2002891 A NL 2002891A NL 2002891 A NL2002891 A NL 2002891A NL 2002891 C2 NL2002891 C2 NL 2002891C2
Authority
NL
Netherlands
Prior art keywords
holder
container
weakening
reinforcement
section
Prior art date
Application number
NL2002891A
Other languages
Dutch (nl)
Inventor
Willem Griffioen
Original Assignee
Draka Comteq Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Draka Comteq Bv filed Critical Draka Comteq Bv
Priority to NL2002891A priority Critical patent/NL2002891C2/en
Priority to GB1007966.3A priority patent/GB2470284B/en
Application granted granted Critical
Publication of NL2002891C2 publication Critical patent/NL2002891C2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/48Overhead installation
    • G02B6/483Installation of aerial type

Description

P87938NL00
Title: Aerial signal conductor holder
The invention relates to an elongated aerial signal conductor holder, configured to hold one or more elongated signal conductors, the holder being provided with at least one elongated strength member.
Such a holder is known from practice. For example, 5 W02007/073386 discloses an aerial self-supporting optical fiber cable that can be suspended between poles. The cable is provided with a central strength member, which is capable of withstanding and controlling the significant tensile and thermo stresses that the cable may be subject to, while keeping the elongation of the signal conductor within predetermined 10 limits in all weather conditions.
Generally, an aerial signal conductor holder will be suspended from at least one support, for example between two supports, such as between two poles or between a pole and an end user location (a building, home). The elongated strength member strengthens the holder.
15 A problem of such configurations is a risk that an accidental grip of the signal conductor holder (for example caused by an object colliding with the holder) leads to breaking of a respective support.
The present invention aims to find a solution to this problem.
According to an aspect of the invention, to this aim, there is 20 provided an elongated aerial signal conductor holder that is characterized by the features of claim 1.
Preferably, the strength member contains at least one weakening section to locally weaken that member. In this way, the problem of breakage of a support (for example a wooden pole) due to a mechanical loading of the 25 signal conductor holder can be prevented in a relatively simple, inexpensive manner. Particularly, during use, the strength member breaks at a respective weakening section upon a predetermined loading of the respective aerial signal conductor holder, to prevent overloading a support from which the signal conductor holder has been suspended.
2
In a further elaboration, each weakening section locally weakens the strength member by 10% or more, for example at least 20%. For example, in yet a further embodiment, each weakening section locally weakens the strength member by a factor 2 (two) or more, for example a 5 factor 3 (three) or more (with respect to remaining non-weakened strength member sections).
For example, according to a further embodiment, each strength member of the signal conductor holder (for example an aerial tube or cable) can be weakened at regular intervals. Preferably, the weakening section 10 leads to a decrease of a maximum breaking load of the signal conductor holder (with respect to a holder that includes one or more strength members without weakening sections), whereas an elastic modulus of the holder is hardly affected. In this way, a minimal strain of the holder can be guaranteed at worst case load conditions.
15 The invention will now be further elucidated by means of, non limiting, examples referring to the drawings. Therein shows:
Fig. 1 schematically a side view of an embodiment;
Fig. 2 a perspective, partly opened cross-sectional view of part of a first non-limiting embodiment of the invention; 20 Fig 3 a similar view as Fig. 2 of a second embodiment;
Fig. 4 a longitudinal cross-section of part of the second embodiment, over line A-A of Fig. 3;
Fig. 5 a similar view as Fig. 2 of a third embodiment; and
Fig. 6 a similar view as Fig. 2 of a fourth embodiment.
25 Similar or corresponding features are denoted by similar or corresponding reference signs in this patent application.
Figure 1 shows an example of a signal transmission system. The present system includes supports si, s2, (in this case a wooden pole si and a support provided by a building s2), and one or more flexible, elongated 30 aerial signal conductor holders 1 (only one being shown), suspended from 3 (and extending between) the supports si, s2. In a further embodiment, two aerial signal conductor holders 1 are suspended between the supports si, s2.
Each holder 1 extends between mounting points pi, p2 of the supports si, s2, the mounting points for example having connector devices 5 (such as brackets) to connect the holder 1 to the supports si, s2.
Particularly, the holder 1 is aerial, extending above ground level G (for example at least at several meters height above ground level G).
In the example, the supports si, s2 are spaced-apart over a relatively large distance L, for example a distance larger than 5 m, and 10 particularly larger than 10 m and more particularly larger than 50 m. In a further elaboration, a maximum distance between the supports si, s2 can be 100 m. In the examples, a length of the holder 1 is larger than the distance L between the supports si, s2. For example, a length of the holder 1 can be least 50 m, for example more than 100 m. Preferably, the length of a holder 15 section that extends between the mounting points pi, p2 is slightly larger (for example significantly smaller than 1% during installation, and between 1% and 2% during heavy load conditions) than the distance L between those two points pi, p2. Thus, the flexible aerial signal conductor holder follows a slightly curved path between the supports si, s2.
20 An example of part of the holder 1 (at a section Q of Fig. 1) is schematically shown in Fig 2. The holder 1 can be configured in various ways. For example, the holder 1 can be a flexible tube or a cable, for example having a cylindrical shape (as in the examples) or another shape.
In the present example, the holder 1 has an elongated flexible wall 2. The 25 wall 2 as such can include one or more wall layers, and can be made of various materials, for example (substantially) a flexible plastic material, for example a polyetlwlene, HDPE (high density polyethylene) or a different material. In a further embodiment, the wall 2 is made of a plastic material having a density of about 1000 kg/m3 or lower (such as a HDPE); also, in a 30 further embodiment, the wall 2 is made of a plastic material having an 4 elastic modulus Ei (Young’s modulus) of 10 GPa or lower, for example 1 GPa or lower (such as a HOPE).
The holder 1 is provided with one or more elongated signal conductors 9. In the present example, a section of the holder 1 that extends 5 between the supports si, s2 is provided with at least one continuous signal conductor 9, extending at least over the same distance. For example, each elongated signal conductor 9 can be at least as long as the respective holder 1, or longer (depending for example on a stranding configuration -if any- of the conductor 9 with respect to the holder).
10 In a preferred embodiment, the signal conductor 9 is an optical signal conductor, for example having one or more optical waveguides (for example optical fibers, or bundles of optical fibers) to transmit optical signals. The holder 1 can also include one or more signal conductors for transmitting other types of signals, for example electrical signals.
15 Each signal conductor 9 can be held by the holder 1 in various ways, for example loose with respect to the wall, or fixed with respect to the wall. For example, a signal conductor 9 can be embedded in the wall 2, be located externally or internally with respect to the wall 2. The holder 1 may define at least one channel (for example a duct or a groove) receiving the at 20 least one signal conductor 9. The one or more signal conductors 9 can be provided in an interior space 2a defined by the wall 2 (as in the present examples), or one or more signal conductors 9 can be located along an exterior surface of the wall. An interior space 2a can be hollow, or it can be filled with a fluid, for example a liquid or liquid mixture, or a gas or gas 25 mixture. Alternatively, the interior space 2a can be filled with a solid substance or compound. Each signal conductor 9 can extend along various paths with respect to a central line of the holder 1 (for example a straight line, a spiral path, a SZ-stranded path, or differently). The skilled person will appreciate that the signal conductor 9 can also be held in a different 30 manner by the holder 1.
5
The holder 1 is also provided with at least one elongated strength member 4, two parallel members 4, in this example. The strength members 4 are dimensioned to keep an elongation of the signal conductor within predetermined limits. In a further example, the holder 1 can be provided with 5 more strength members 4, for example at least three (parallel) strength members 4.
In the embodiments, a section of the holder 1 extending between the supports si, s2 is provided with strength members 4 extending at least over the same distance (i.e., a length of the respective strength member 10 section is at least equal to the length of the respective section of the holder 1 extending between the points pi, p2). For example, each strength member 4 can be at least as long as the respective holder 1. Preferably, as in the present examples, each strength member 4 is an uninterrupted strength member 4. That is, the respective section of the holder 1 extending between 15 the points pi, p2 is continuously provided with the at least one strength member 4.
The one or more strength members 4 provide a strengthening of the holder 1. Particularly, each strength member 4 is configured to take up longitudinal tensile forces that can be experienced by the holder wall 2, for 20 example tensile forces due to gravity, ice and wind load, acting on the elongated holder 1. In this way, according to a further embodiment, the strength member(s) 4 can prevent or limit longitudinal deformation of the holder 1.
Each strength member 4 can be held by the holder 1 in various 25 ways. Preferably, the strength member 4 is joined with the wall 2 to take up said longitudinal tensile forces. In the present examples, to this aim, each member 4 is embedded in the wall 2. The skilled person will appreciate that the strength member 4 can also be connected to the wall 2 of the holder 1 in a different manner.
6
The strength members 4 can be made of various materials. For example, each strength member 4 can be metallic (e.g. steel). Preferably, each strength member is non-metallic. For example, the strength member 4 can be made of fiber reinforced plastic (FRP) or more particular glass fiber 5 reinforced plastic (GFRP). Preferably, the strength member 4 has a Young’s modulus higher than 40 GPa. The strength members 4 as such provide a main part of a total (longitudinal) strength and spring constant (quotient of force and elongation) of the holder 1 and respective signal conductor(s) 9.
In the present embodiments, each strength member 4 contains one 10 or more weakening sections 6 to locally weaken that member 4 (for example a local weakening by 10% or more, for example at least 20%, with respect to non-weakened strength member sections, or for example, a locally weakening by a factor two or more, for example a factor three or more, with respect to -weakened strength member sections).
15 In the present example, the two strength members 4 have respective weakening sections 6 located at the same longitudinal location in the holder l,to provide a joint locally weakening.
As an example, the one or more weakening sections 6 are configured to provide breaking of the holder upon a tensile load (on the 20 holder 1) between 1350 N and 1550 N, particularly in the case that two holders 1 are suspended from supports si, s2, and in case at least one of the supports is a wooden pole. In this way, the holder can break (at a respective the weakening section 6) upon the predetermined loading thereof, to prevent overloading the supports si, s2. In case only a single holder 1 is suspended 25 between the supports si, s2, the respective one or more weakening sections 6 may be configured to provide breaking of the holder upon a higher tensile load (on the holder 1), in this example between 2700 and 3100 N. However, the operator might prefer to select only one type of holder 1, with a maximum breaking load between 1350 N and 1550 N in this example, and 30 allowing a maximum number (two in this example) of holders 1 suspended 7 between the supports si, s2. It will be appreciated that a predetermined minimum loading level at which the support 1 will locally break (locally, at a respective weakening section 6 of the strength member(s)) can have other values than the above-mentioned examples, depending for example on the 5 configuration of the supports si, s2.
Preferably, at least one of the one or more strength member’s weakening sections 6 is spaced-apart from the supports si, s2 (see Figures 1-2). For example, each strength member 4 may contain a plurality of spaced-apart weakening sections 6. Typically, a distance between nearest 10 weakening sections 6 (in case of application of an array of weakening sections 6 in the strength member 4) can be about 1 to several meters (for example a range of about 1-10 meter).
According to a non-limiting embodiment, a sum of the length of the weakening sections 6 of the strength member 4 (measured in a longitudinal 15 direction along the holder 1) can be at most 5% of a length of the holder, particularly at most 1% of the length of a section of the holder 1 that extends between the mounting points pi, p2. For example, a sum of the lengths of the weakening sections 6 of the section of the strength member 4 that extends between the mounting points pi, p2, can be at most 10 cm, to 20 provide a local weakening of the strength member 4.
In the example of Figures 1-2, each weakening section 6 has a reduced cross-section with respect to remaining parts of the strength member 4. Thus, both a height and a width of the strength member 4 have been locally reduced, to provide the local weakening section 6.
25 Particularly, in the first embodiment, each strength members 4 may be provided with one or more weaker sections 6 having a smaller diameter than a diameter of the remaining parts strength members 4. For example the smallest diameter of the strength member at the weakening sections 6 can be at most 80%, and more particularly at most 50%, of the 8 diameter of the remaining strength member 4 part (i.e. the not-weakened part).
In the first embodiment, each strength member 4 has a rodlike cylinder shape. Each weakening section 6 is provided by tapered (frusco-5 conical or double conical) rodsections, extending towards an intermediate weakening section part of smallest diameter. Besides a reduced cross-sectional area in the weakening section 6, this also provides stress concentration at that section during operation, such that the two strength members 4 (and respective holder) will break at those weakened sections.
10 Particularly, during operation, a local breaking of the strength members 4 will lead to breaking (for example rupture) of the holder wall 2, at the same location. This can also hold for the signal conductor(s) 9, particularly in case the conductor(s) 9 is/are connected to the wall 2. The effect of stress concentration can be enhanced by providing relatively short weakening 15 sections 6 (for example having a maximum length of 1 cm, measured in a longitudinal direction along the holder 1).
Figures 3-4 depict a second embodiment (said signal conductor has not been shown), which differs from the example shown in Fig. 2 in that one transversal dimension (the height) of the strength member 4, measured in a 20 first orthogonal direction (i.e. a vertical direction), is constant along the strength member 4. Thus, that dimension remains the same at each weakening section 106. However, a second transversal dimension (the width) of the strength member 4, measured in a second orthogonal direction (i.e. a horizontal direction), has been varied to provide the local weakening 25 sections 106. Particularly, the lateral width of the strength member 4 is smaller at the weakening sections 106 than the width at a remaining part of the strength member 4 (see Fig. 4). For example the smallest width W1 of the strength member at the weakening sections 106 can be at most 80%, and more particularly at most 50%, of the width W2 of the remaining 30 strength member 4 part (i.e. the not-weakened part). For example, each 9 weakening section 106 can include two concave sections, located in opposite sides of the strength member (see Fig. 4). In the present example, each concave section 106 has a curved shape, inwardly located tops of the two curves being laterally aligned with respect to each other. In this way, a 5 reduction in bending stiffness in a horizontal longitudinal plane A-A can be minimal, resulting in minimal vulnerability to kinking. A bending stiffness in a virtual vertical plane (orthogonally to plane A-A), can be much larger, and is hardly influenced. In a preferred embodiment, the holder is provided with three or more (parallel) strength members; in that case, the stiffness of 10 the cable hardly depends anymore on the alignment (rotation) of the weakening sections.
Figure 5 depicts a further elaboration, in a third embodiment. In this case, each strength member 4’ consists of a bundle of fibers (filaments), for example aramide or polyester yarns 4’, or yarns made of different 15 materials. As in the embodiment of Fig. 3-4, in this case, weakening sections 206 can be provided by locally reducing the width of the bundle of fibers, for example by local cut-outs 206 (each cut out 206 including part of the fibers being locally removed, without cutting through all of the fibers of the respective bundle 4’). Preferably, in case each strength member 4’ is 20 provided with an array of spaced-apart weakening sections 206, the interval between those weakening sections 206 is selected such that slip between fibers in each bundle 4’ does not occur after mounting, or only over a short length For example, an interval between subsequent cuttings 206 of each bundle 4’ can be sufficiently large, such that the cut filaments slip only with 25 respect to the other filaments of the yarn 4’ over a length that is much shorter compared to said interval. In this way, the respective holder 1 can maintain a relatively high effective elastic modulus, approximately determined by a total amount of filaments in the yarns. Preferably, the configuration is such that a length over which internal slip between fibers in 30 the strength member 4’ occurs (if any) is shorter than a minimal span of the 10 holder 1 (i.e. a minimal length of a holder part that extends between mounting points pl.p2, after mounting to the supports si, s2).
Figure 6 shows a further alternative embodiment, which differs from the example of Fig. 5 in that each strength member 4” is a twisted fiber 5 bundle (i.e. the fibers being mutually twisted, with respect of a longitudinal virtual centre line thereof), having one or more cuts 306 to provide local weakening section(s). Thus, tangling of the fibers is enhanced, so that slip between fibers can be reduced.
Besides, according to a further embodiment, the holder 1 can be 10 provided with at least a first strength member made of a first material and a second strength member made of a second material, the first material being different from the second material. For example, combinations of rodlike strength members and yams as strength members, at least one of which contains one or more weakening sections, are also possible, for 15 example a combination with three rodlike strength members with weakening sections and polyester yarns without weakening.
Example 20 A test has been done on non-metallic strength members 4, consisting of elongated cylindrical GFRP rods of 1.15 mm diameter. Measuring stress (N) versus strain (elongation, in %) at a test bank on samples with effective sample lengths of 0.5 m resulted in a Young’s modulus of around 55 GPa. This was hardly affected after having weakened 25 the rod 4 by locally machining to provide concave sections 106 (as in Fig. 4) to 0.48, 0.40 and 0.33 mm, resulting in strengths of 0.47, 0.31 and 0.27 GPa, respectively (a measured strength of a non-weakened sample was at least 0.66 GPa). The Young’s modulus of the samples remained practically the same (about 53-55 GPa).
30 11
Therefore, the present invention can provide aerial drop tubes or cables 1, where strength members 4 are weakened (preferably at regular intervals). As follows from the above, a breaking strength can be tuned, for example by selecting dimensions (such as a depth of cut-outs) of the 5 weakening sections. Elastic properties of the holder 1 can remain almost unchanged. This makes it possible to design a drop tube or cable 1, being sufficiently durable for normal operating conditions, and providing a timely local breaking upon a mechanical impact (collision), to prevent overloading the supports si, s2.
10 In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.
15 In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other features or steps then those listed in a claim. Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a 20 plurality. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.

Claims (31)

1. Een langwerpige bovengrondse signaalgeleiderhouder, geconfigureerd om een of meer langwerpige signaalgeleiders te houden, waarbij de houder (1) is voorzien van ten minste één langwerpig verstevigingsdeel (4), met het kenmerk dat het verstevigingsdeel ten minste 5 één verzwakkingssectie (6, 106, 206, 306) bevat om dat deel locaal te verzwakken.An elongated above-ground signal conductor holder configured to hold one or more elongated signal conductors, the holder (1) comprising at least one elongated reinforcement member (4), characterized in that the reinforcement member comprises at least one attenuation section (6, 106 , 206, 306) to locally weaken that portion. 2. De houder volgens conclusie 1, waarbij het verstevigingsdeel (6, 106, 206, 306) verscheidene zich op afstand van elkaar bevindende verzwakkingssecties bevat.The container of claim 1, wherein the reinforcement member (6, 106, 206, 306) includes several spaced apart weakening sections. 3. De houder volgens een der voorgaande conclusies, waarbij elke verzwakkingssectie (6, 106, 206, 306) een verkleinde dwarsdoorsnede heeft ten opzichte van overige delen van het verstevigingsdeel.The container according to any one of the preceding claims, wherein each weakening section (6, 106, 206, 306) has a reduced cross-section with respect to other parts of the reinforcement part. 4. De houder volgens een der voorgaande conclusies, waarbij de houder (1) is geconfigureerd om te breken bij een trekbelasting in het bereik 15 van 1350 N- 1550 N.The container of any one of the preceding claims, wherein the container (1) is configured to break at a tensile load in the range 15 of 1350 N-1550 N. 5. De houder volgens een der voorgaande conclusies, waarbij het verstevigingsdeel (4) een Youngs modulus heeft die hoger is dan 40 GPa.The container according to any one of the preceding claims, wherein the reinforcement member (4) has a Youngs modulus that is higher than 40 GPa. 6. De houder volgens een der voorgaande conclusies, waarbij de houder (1) is voorzien van ten minste twee parallelle verstevigingsdelen (4), 20 waarvan ten minste één een verzwakkingssectie (6, 106, 206, 306) heeft.6. The holder according to any one of the preceding claims, wherein the holder (1) is provided with at least two parallel reinforcement parts (4), at least one of which has a weakening section (6, 106, 206, 306). 7. De houder volgens een der voorgaande conclusies, waarbij de houder (1) ten minste één kanaal bepaalt om ten minste één signaalgeleider te ontvangen.The holder of any one of the preceding claims, wherein the holder (1) defines at least one channel to receive at least one signal conductor. 8. De houder volgens een der voorgaande conclusies, waarbij de 25 houder is voorzien van ten minste één signaalgeleider (9).8. The holder according to any one of the preceding claims, wherein the holder is provided with at least one signal conductor (9). 9. De houder volgens een der voorgaande conclusies, waarbij ten minste één van de één of meer signaalgeleiders (9) ten minste één optische fiber bevat.The holder according to any one of the preceding claims, wherein at least one of the one or more signal conductors (9) contains at least one optical fiber. 10. De houder volgens een der voorgaande conclusies, waarbij een som 5 van de lengtes van de één of meer verzwakkingssecties (6, 106, 206, 306) van het verstevigingsdeel (4) ten hoogste 5% is van een lengte van de houder (1), en in het bijzonder ten hoogste 1% van de lengte van de houder (1) bevattende genoemde verzwakkingssecties.The container according to any one of the preceding claims, wherein a sum of 5 of the lengths of the one or more weakening sections (6, 106, 206, 306) of the reinforcement member (4) is at most 5% of a length of the container ( 1), and in particular at most 1% of the length of the container (1) containing said weakening sections. 11. De houder volgens een der voorgaande conclusies, waarbij een som 10 van de lengtes van de verzwakkingssectie (6, 106, 206, 306) van het verstevigingsdeel ten hoogste 10 cm is, en in het bijzonder ten hoogste 1 cm, op een lengte van de houder (1) bevattende genoemde verzwakkingssecties.The container according to any one of the preceding claims, wherein a sum of 10 of the lengths of the weakening section (6, 106, 206, 306) of the reinforcement member is at most 10 cm, and in particular at most 1 cm, at a length of the container (1) containing said weakening sections. 12. De houder volgens een der voorgaande conclusies, waarbij een lengte van de houder (1) ten minste 50 m bedraagt, bijvoorbeeld meer dan 15 100 m.The container according to any one of the preceding claims, wherein a length of the container (1) is at least 50 m, for example more than 100 m. 13. De houder volgens een der voorgaande conclusies, waarbij de houder (1) ten minste drie parallelle verstevigings delen (4) bevat, waarvan ten minste één is voorzien van een verzwakkingssectie (6,106, 206, 306).The container according to any one of the preceding claims, wherein the container (1) comprises at least three parallel reinforcement parts (4), at least one of which is provided with a weakening section (6,106, 206, 306). 14. De houder volgens een der voorgaande conclusies, waarbij een 20 lengte van de verzwakkingssectie (6, 106, 206, 306) van het verstevigingsdeel ten hoogste 1 cm bedraagt.14. The holder according to any one of the preceding claims, wherein a length of the weakening section (6, 106, 206, 306) of the reinforcement part is at most 1 cm. 15. De houder volgens een der voorgaande conclusies, waarbij een lengte van de houder (1) ten minste 5 m bedraagt, bijvoorbeeld meer dan 10 m.The container according to any one of the preceding claims, wherein a length of the container (1) is at least 5 m, for example more than 10 m. 16. De houder volgens een der voorgaande conclusies, waarbij het ten minste ene verstevigingsdeel (4) een stang of stangvormig verstevigingsdeel is.The holder according to any one of the preceding claims, wherein the at least one reinforcement part (4) is a rod or rod-shaped reinforcement part. 17. De houder volgens een der voorgaande conclusies, waarbij het verstevigingsdeel (4) van staal is vervaardigd.The holder according to any one of the preceding claims, wherein the reinforcement part (4) is made of steel. 18. De houder volgens een der voorgaande conclusies, waarbij genoemd verstevigingsdeel (4) van vezelversterkte kunststof is vervaardigd.The holder according to any one of the preceding claims, wherein said reinforcement part (4) is made of fiber-reinforced plastic. 19. De houder volgens een der voorgaande conclusies, waarbij genoemd verstevigingsdeel (4) van glasvezelversterkte kunststof is vervaardigd.The holder according to any one of the preceding claims, wherein said reinforcement part (4) is made of glass fiber-reinforced plastic. 20. De houder volgens een der voorgaande conclusies, waarbij genoemd verstevigingsdeel (4) een draad of een bundel van vezels is.The container of any one of the preceding claims, wherein said reinforcement member (4) is a wire or bundle of fibers. 21. De houder volgens conclusie 20, waarbij de draad of vezelbundel van polyester is vervaardigd.The container of claim 20, wherein the wire or fiber bundle is made of polyester. 22. De houder volgens conclusie 20, waarbij de draad of vezelbundel 10 van aramide is vervaardigd.The container of claim 20, wherein the wire or fiber bundle 10 is made of aramid. 23. De houder volgens een der voorgaande conclusies, waarbij de houder ten minste een eerste verstevigingsdeel heeft dat van een eerste materiaal is vervaardigd, en een tweede verstevigingsdeel dat van een tweede materiaal is vervaardigd, waarbij het eerste materiaal verschilt van 15 het tweede materiaal.23. The holder according to any one of the preceding claims, wherein the holder has at least a first reinforcement part made of a first material, and a second reinforcement part made of a second material, the first material being different from the second material. 24. De houder volgens een der voorgaande conclusies, waarbij de houder verder is voorzien van ten minste één langwerpig verstevigingsdeel dat niet is voorzien een verzwakkingssectie.The container of any one of the preceding claims, wherein the container is further provided with at least one elongated reinforcement member that is not provided with a weakening section. 25. De houder volgens een der voorgaande conclusies, waarbij de 20 verzwakkingssectie (6, 106, 206, 306) het verstevigingsdeel locaal verzwakt met 10% of meer.25. The holder of any one of the preceding claims, wherein the weakening section (6, 106, 206, 306) locally weakens the reinforcement member by 10% or more. 26. De houder volgens een der voorgaande conclusies, waarbij de verzwakkingssectie (6, 106, 206, 306) het verstevigingsdeel locaal verzwakt met een factor 2 of meer.The container of any one of the preceding claims, wherein the weakening section (6, 106, 206, 306) locally weakens the reinforcement member by a factor of 2 or more. 27. De houder volgens een der voorgaande conclusies, voorzien van ten minste twee verstevigingsdelen (4), waarbij de verstevigingsdelen respectieve verzwakkingssecties bezitten, gelokaliseerd op dezelfde longitudinale locatie, om een gemeenschappelijke locale verzwakking te leveren.The container of any one of the preceding claims, provided with at least two reinforcement members (4), the reinforcement members having respective weakening sections, located at the same longitudinal location, to provide a common local weakening. 28. Een signaaltransmissiesysteem, omvattende: -ten minste één steun (sl, s2); -ten minste één langwerpige bovengrondse signaalgeleiderhouder, die aan de steun is gehangen; waarbij de houder is voorzien van één of meer langwerpige signaalgeleiders (9), en van ten minste één langwerpig 5 verstevigingsdeel (4), met het kenmerk dat het verstevigingsdeel één of meer verzwakkingssecties (6,106, 206, 306) bevat om dat deel locaal te verzwakken.A signal transmission system, comprising: at least one support (s1, s2); at least one elongated above-ground signal conductor holder suspended from the support; wherein the holder is provided with one or more elongated signal conductors (9) and with at least one elongated reinforcement part (4), characterized in that the reinforcement part comprises one or more attenuation sections (6, 106, 206, 306) for locating that part locally weaken. 29. Het systeem volgens conclusie 28, omvattende ten minste twee steunen, waarbij de langwerpige bovengrondse signaalgeleiderhouder 10 tussen de steunen is gehangen.The system of claim 28, comprising at least two supports, wherein the elongated above-ground signal conductor holder 10 is suspended between the supports. 30. Het systeem volgens conclusie 28 of 29, waarbij ten minste één van de een of meer verzwakkingsdelen zich op afstand bevindt van de steun.The system of claim 28 or 29, wherein at least one of the one or more weakening members is remote from the support. 31. Gebruik van het systeem volgens een der conclusies 28-30 waarbij het verstevigingsdeel breekt bij een respectieve verzwakkingssectie bij een 15 voorafbepaalde belasting van de respectieve signaalgeleiderhouder, om overbelasting van de steun te voorkomen.31. Use of the system according to any of claims 28-30, wherein the reinforcing member breaks at a respective attenuation section with a predetermined load on the respective signal conductor holder, to prevent overloading of the support.
NL2002891A 2009-05-14 2009-05-14 Aerial signal conductor holder. NL2002891C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2002891A NL2002891C2 (en) 2009-05-14 2009-05-14 Aerial signal conductor holder.
GB1007966.3A GB2470284B (en) 2009-05-14 2010-05-12 Aerial signal conductor holder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2002891 2009-05-14
NL2002891A NL2002891C2 (en) 2009-05-14 2009-05-14 Aerial signal conductor holder.

Publications (1)

Publication Number Publication Date
NL2002891C2 true NL2002891C2 (en) 2010-11-18

Family

ID=41060074

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2002891A NL2002891C2 (en) 2009-05-14 2009-05-14 Aerial signal conductor holder.

Country Status (2)

Country Link
GB (1) GB2470284B (en)
NL (1) NL2002891C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214473B1 (en) * 2016-03-02 2023-08-30 ING3 Beteiligungs GmbH Support structure for an optical fiber cable
EP4115228A4 (en) * 2020-03-02 2024-04-03 Corning Res & Dev Corp Optical fiber cable tensile strength limiting system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131758A (en) * 1977-08-10 1978-12-26 United States Steel Corporation Double caged armored electromechanical cable
JPS5910904A (en) * 1982-07-12 1984-01-20 Nippon Telegr & Teleph Corp <Ntt> Optical cable
JPS59164507A (en) * 1983-03-08 1984-09-17 Hitachi Cable Ltd Method for suspending self-support type optical cable
US5789701A (en) * 1988-12-01 1998-08-04 British Telecommunictions Public Limited Company Drop cable
US6148130A (en) * 1997-10-14 2000-11-14 3M Innovative Properties Company Cable with predetermined discrete connectorization locations
DE20102848U1 (en) * 2001-02-16 2001-09-13 Dietz Volker Cable with connectors
US20050167149A1 (en) * 1999-10-16 2005-08-04 Raydex/Cdt Ltd. Cables including fillers
US20070044996A1 (en) * 1997-04-22 2007-03-01 Belden Technologies, Inc. Data cable with cross-twist cabled core
DE202006003872U1 (en) * 2006-03-11 2007-07-19 Leoni Kabel Holding Gmbh & Co. Kg electric wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1582851A (en) * 1977-01-26 1981-01-14 Bicc Ltd Optical cables
US6654525B2 (en) * 2001-10-10 2003-11-25 Alcatel Central strength member with reduced radial stiffness

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131758A (en) * 1977-08-10 1978-12-26 United States Steel Corporation Double caged armored electromechanical cable
JPS5910904A (en) * 1982-07-12 1984-01-20 Nippon Telegr & Teleph Corp <Ntt> Optical cable
JPS59164507A (en) * 1983-03-08 1984-09-17 Hitachi Cable Ltd Method for suspending self-support type optical cable
US5789701A (en) * 1988-12-01 1998-08-04 British Telecommunictions Public Limited Company Drop cable
US20070044996A1 (en) * 1997-04-22 2007-03-01 Belden Technologies, Inc. Data cable with cross-twist cabled core
US6148130A (en) * 1997-10-14 2000-11-14 3M Innovative Properties Company Cable with predetermined discrete connectorization locations
US20050167149A1 (en) * 1999-10-16 2005-08-04 Raydex/Cdt Ltd. Cables including fillers
DE20102848U1 (en) * 2001-02-16 2001-09-13 Dietz Volker Cable with connectors
DE202006003872U1 (en) * 2006-03-11 2007-07-19 Leoni Kabel Holding Gmbh & Co. Kg electric wire

Also Published As

Publication number Publication date
GB2470284B (en) 2014-05-14
GB201007966D0 (en) 2010-06-30
GB2470284A (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US6546175B1 (en) Self-supporting fiber optic cable
US8238706B2 (en) Flat drop cable with medial bump
EP1982222B1 (en) Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter
EP0256704A1 (en) Optical cables
US11042000B2 (en) Optical cable for terrestrial networks
ES2370342T3 (en) OPTICAL GUIDE HUB CABLE.
EP2652536B1 (en) Rugged fiber optic cable
CA2247677A1 (en) Fiber optic cable with ripcord
BRPI0520770B1 (en) FIBER OPTICAL CABLE
EP2287646A2 (en) Fiber optic arrangement using flat wide water swellable binder for subunit access
US20080219627A1 (en) Fiber optic cable with enhanced saltwater performance
AU2001275704B2 (en) Optical fibre cable
NO325540B1 (en) Umbilical and method of its preparation
EP3023823B1 (en) Multitube seismic cable
NL2002891C2 (en) Aerial signal conductor holder.
EP1895340A1 (en) A loose tube optical waveguide fiber cable
US9557232B2 (en) Structural strain sensing optical cable
US20200174209A1 (en) Compact indoor optical fiber backbone cable utilizing rollable ribbon
US20140140670A1 (en) Small-diameter high bending-resistance fiber optic cable
WO2022135075A1 (en) Optical cable
WO2015195095A1 (en) Central-tube optical-fiber cable
CN101661131B (en) Self-supporting fiber
US6987916B2 (en) Fiber optic central tube cable with bundled support member
KR100899036B1 (en) Optical fiber cable
KR100744289B1 (en) Indoor optical fiber cable

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20150601