NL1044073B1 - Differential pressure flow cone meter - Google Patents

Differential pressure flow cone meter Download PDF

Info

Publication number
NL1044073B1
NL1044073B1 NL1044073A NL1044073A NL1044073B1 NL 1044073 B1 NL1044073 B1 NL 1044073B1 NL 1044073 A NL1044073 A NL 1044073A NL 1044073 A NL1044073 A NL 1044073A NL 1044073 B1 NL1044073 B1 NL 1044073B1
Authority
NL
Netherlands
Prior art keywords
flow meter
conical
cone
conical body
meter according
Prior art date
Application number
NL1044073A
Other languages
Dutch (nl)
Other versions
NL1044073A (en
Inventor
Pascal Van Putten Ir
Original Assignee
Van Putten Instr Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Van Putten Instr Bv filed Critical Van Putten Instr Bv
Publication of NL1044073A publication Critical patent/NL1044073A/en
Application granted granted Critical
Publication of NL1044073B1 publication Critical patent/NL1044073B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Differential pressure flow cone meter, preferably following ISO 5167, including a cone shaped body, wherein the cone shaped body (1) is made from plastic and/or of one or more injection molded parts (11A, 11B), with an integral condensate shield. Also there is provided a differential pressure flow cone meter, preferably following ISO 5167, for including a cone shaped body, wherein the cone shaped body has a conical side wall and a top wall, that enclose a internal chamber, wherein the top wall includes a downstream fluid port allowing fluid communication between the internal chamber and an environment of the cone shaped body.

Description

Title: Differential pressure flow cone meter The invention relates to a differential pressure flow cone meter, preferably following the ISO 5167 standard.
Differential pressure-based flow meters are commonly used in mdustrial applications. Typically, they make use of an orifice, or venturi shaped channel which generates a pressure drop. This pressure drop is a function of the actual flow in the channel.
This invention is about a cone-type flow meter optimized for wet (multi- phase) gas flow, It can be used for compressed air applications, directly in the discharge pipe of an air compressor, where the air is 100% saturated with water and may contain pollutant such as oil, dust and VOC's from it's surrounding environment. In this harsh application, the temperatures can be high (100 degrees C) and installation length is often short.
According to an aspect, the present invention provides a method to manufacture a cone shaped flow meter in an economie way, by application of modern injection molding / 3D printing technology combined with traditional metal machined parts. Thanks to the use of this modern manufacturing technology, new features have been added to the pre- described design, which improve performance in multi-phase flow applications.
Compared to traditional welded structures, this invention offers a higher production quality at a fraction of the costs. Manual labor (welding, alignment, quality control) has been eliminated to a great extent, The new design integrates a condensate shield, an internal meander structure and an air-foil shaped support structure. The performance of this design in wet/ saturated compressed air or other multi- phase flows is much better compared to traditional cone meters, as water is prevented from dripping into the pressure sensing holes,
Further, according to an aspect, the invention provides a differential pressure flow cone meter, preferably following 150 5167, including a cone shaped body, wherein the cone shaped body (1) is made from plastic and/or of one or more injection molded parts, preferably with an integral condensate shield.
Advantageously, the meter includes one or more of the following features: ‘the cone shaped body integrally includes a plastic mounting structure for mounting the body in a fhud duct; -at least part of the cone shaped body of the flow meter is 3D printed; -the flow meter contains or is associated with a memory chip to store meter information: -the flow meter comprises a number of exchangeable components, for easy and quick service; -a temperature sensor to measure a temperature at or near the cone shaped body; the cone shaped body includes a downstream fluid port that is axially covered by a condensate shield; - the cone shaped body has a conical side wall and a top wall, eg. a conical top wall, that enclose a internal chamber, wherein the top wall includes a downstream fluid port, e.g. an aperture, allowing fluid communication between the internal chamber and an environment of the cone shaped body; -wherem the conical side wall internal chamber is divided by a partition wall into a downstream section and an upstream section, wherein an upstream tip section of the conical body meludes an upstream fluid port allowing fluid communication between the upstream section of the chamber and the environment of the tip section of the cone shaped body;
the conical side wall of the conical body includes at least one lateral fluid port for providing fluid communication to a laterally extending duct; wherein the conical body includes a shield structure, e.g. a labyrinth or meander structure, extending in the internal chamber between the lateral fluid port and the downstream fluid port; the conical body is provided with at least one laterally extending duct, wherein a center-line of the laterally extending duct includes an angle with an axial center line of the conical body that is smaller than 90 degrees, e.g. an angle in the range of 1-45 degrees; the cone shaped body is mounted, preferably centrally, in a duct or duct section; and/or -a sensor unit configured for detecting or measuring a differential pressure associated with the cone shaped body, in particular via at least one fluid communication between the sensor unit ant the cone shaped body.
Further, an aspect of the mvention, which can be combined with one or more of the above-mentioned aspects, 1s characterized by a differential pressure flow cone meter, preferably following ISO 5167, including a cone shaped body, wherein the cone shaped body has a conical side wall and a top wall, e.g. a conical top wall, that enclose a internal chamber, wherein the top wall includes a downstream fluid port, e.g. an aperture, allowing fluid communication between the internal chamber and an environment of the cone shaped body.
In a preferred embodiment, the conical side wall internal chamber is divided by a partition wall into a downstream section and an upstream section, wherein an upstream tip section of the conical body includes an upstream fluid port allowing fluid communication between the upstream section of the chamber and the environment of the tip section of the cone shaped body.
Preferably, the conical side wall of the conical body includes at least one lateral fluid port for providing fluid communication to a laterally extending duct.
Preferably, the conical body includes a shield structure, e.g. a labyrinth or meander structure, extending in the internal chamber between the lateral fluid port and the downstream fluid port.
Preferably, wherein the conical body is provided with at least one laterally extending duet, wherein a centerline of the laterally extending duet includes an angle with an axial center line of the conical body that is smaller than 90 degrees, e.g. an angle in the range of 1-45 degrees, Preferably, the cone shaped body is mounted, preferably centrally, in a duct or duet section.
Preferably the cone shaped body is made from plastic and/or of one or more injection molded parts, preferably with an integral condensate shield.
Preferably the cone shaped body integrally includes a plastic mounting structure for mounting the body in a fluid duct.
Preferably at least part of the cone shaped body of the flow meter is 3D printed Further there is provided a fluid duct including at least one flow meter according to the invention.
Also, there is provided a use of a flow meter according to the mvention, wherein the flow meter is arranged such that an axial center line of its cone shaped body is oriented in a substantially vertical direction.
SURVEY OP DRAWINGS Figure 1 shows a perspective view of a non-limiting embodiment of the mvention; Figure 2 shows a front view of the embodiment of Fig. 1;
Figure 3 shows a side view of the embodiment of Fig. 1, including a sensor unit; Figure 4 shows a cross-section over line IV-IV of Fig. 2; Figure 5 shows a perspective view of part of the embodiment of Fig. 1; 5 Figure 6 shows a cross-section, similar to Fig. 4, of the part shown in Figure 5; Figure 7 shows a front view of the part shown in Fig. 5; Figure 8 shows a side view of the part shown in Fig. 5; and Figure 9 shows a sensor unit of the embodiment of Fig. 1.
Similar or corresponding features are denoted by similar or corresponding reference signs in this application.
The drawings show a non-limiting implementation of the cone meter. The meter preferably includes two injection molded shapes 11A, 11B, which are joined by either glue, laser welding or ultrasonic welding. The shapes preferably feature an internal meander structure 13 and a special condensate protection cap 2 which are all integral part of the injection molded structure, Alternatively, these parts can be manufactured as separate components.
After the shapes have been joined together, they can be mounted nto a metal flange dise 4, which holds the pressure channels and an optional temperature sensor, The temperature sensor may be exposed directly to the medium or may be potted into the metal flange disc 4. The flange disc can be made intelligent by adding a small microchip which contains geometrical data of the assembly, can be needed for calculations by the transmitter 6 of a sensor unit W.
To facilitate service, all components are preferably designed in a modular way, and can be serviced individually. The transmitter of the sensor unit W is connected to the flange disc by means of a special process connector 5 which can be serviced when the unit is pressurized.
The transmitter can contain a differential pressure sensor, an absolute or gage pressure sensor and means to readout the temperature sensor.
Pressure ports P1B and P2B on the transmitter correspond with ports on the cone meter P1A and P2A.
The temperature sensor connector T1 provides an electrical contact to read out cone meter memory and temperature signal.
The transmitter 6 can calculate mass flow and volume flow based on these parameters and provides an output to the user via a display 7 and a connector 8 provides various digital / analog interfaces.
Also, as follows from the above, the drawings 1-9 show a differential pressure flow cone meter, preferably following ISO 5167, including a cone shaped body 1, wherein the cone shaped body 1 is made from plastic and/or of one or more injection molded parts 114, 118, preferably with an integral condensate shield.
The cone shaped body can integrally include a plastic mounting structure for mounting the body in a fluid duct.
At least part of the cone shaped body 1 of the flow meter, preferably the entire cone shaped body, can be 3D printed The flow meter can contain or be associated with a memory chip to store meter information, The meter preferably includes a temperature sensor measure a temperature at or near the cone shaped body.
The cone shaped hody can include a downstream fluid port that is axially covered by a condensate shield 2. As follows from the drawings the cone shaped body can include a conical side wall and a top wall, e.g. a conical top wall, that enclose a internal chamber, wherein the top wall includes a downstream fluid port, e.g. an aperture, allowing fluid communication between the internal chamber and an environment of the cone shaped body.
The conical side wall internal chamber can be divided by a partition wall 50 into a downstream section and an upstream section,
wherein an upstream tip section of the conical body includes an upstream fluid port allowing fluid communication between the upstream section of the chamber and the environment of the tip section of the cone shaped body.
The conical side wall of the conical body can elude at least one lateral fluid port for providing fluid communication to a laterally extending duct.
The conical body can includes a shield structure, e.g. a labyrinth or meander structure 18, extending in the internal chamber between the lateral fluid port and the downstream fluid port.
The conical body can be provided with at least one laterally extending duct, wherein a center-line of the laterally extending duct includes an angle with an axial center line of the conical body that is smaller than 90 degrees, e.g. an angle in the range of 1-45 degrees.
The cone shaped body is mounted, preferably centrally, in a duet or duct section (e.g. in the flange disc 4).
The meter preferably includes a sensor unit W configured for detecting or measuring a differential pressure associated with the cone shaped body, in particular via at least one fluid communication between the sensor unit ant the cone shaped body.
Also, as follows from the drawing the cone shaped body 1 can have a conical side wall and a top wall, e.g. a conical top wall, that enclose a internal chamber, wherein the top wall includes a downstream fluid port, e.g. an aperture, allowing fluid communication between the internal chamber and an environment of the cone shaped body.
For example, the flange disc 4 with further cone meter parts 1, W can be mounted in or be part of a fluid duct, During use the flow meter can be arranged in various ways. The present cone meter is particularly advantageous in case it is arranged such that an axial center line of its cone shaped body is oriented in a substantially vertical direction, e.g. in view of improved condensate drainage.
It is self-evident that the invention is not limited to the above-described exemplary embodiments.
Various modifications ave possible within the framework of the invention as set forth in the appended claims.

Claims (1)

ConclusiesConclusions 1. Debietmeter voor vloeibare of gasvormige media op basis van verschildruk, bij voorkeur ontworpen volgens de ISO 5167 norm, met inbegrip van cen kegelvormig lichaam, waarbij het kegelvormige lichaam (1) is gemaakt van kunststof en/of van een of meer spuit-gegoten delen (114, 11B), bij voorkeur met een integraal condensaatschild waarmee mstromen van vloeistof wordt verhinderd.1. Flowmeter for liquid or gaseous media based on differential pressure, preferably designed according to the ISO 5167 standard, including a conical body, the conical body (1) being made of plastic material and/or of one or more injection molded parts parts (114, 11B), preferably with an integral condensate shield to prevent fluid flow. 2. Debietmeter zoals vermeld in conclusie 1, waarin het kegelvormige lichaam integraal een structuur bevat voor de montage van het lichaam in een kanaal.A flow meter as claimed in claim 1, wherein the conical body integrally includes a structure for mounting the body in a channel. 3. Debietmeter zoals vermeld in een van de voorgaande conclusies, waarbij tenminste een deel van het kegelvormige lichaam (1) van de debietmeter 3D-geprimt1s.A flow meter as claimed in any one of the preceding claims, wherein at least a part of the conical body (1) of the flow meter is 3D primed. 4. Debietmeter zoals vermeld in een van de voorgaande conclusies, waarm de debietmeter een geheugenchip bevat om meterinformatie op te slaan.A flow meter as claimed in any preceding claim, wherein the flow meter includes a memory chip to store meter information. 8. Debietmeter volgens een van de voorgaande conclusies, waarin de debietmeter bestaat mt een aantal verwisselbare componenten, ten behoeve van eenvoudige en snelle service.A flow meter according to any one of the preceding claims, wherein the flow meter consists of a number of interchangeable components for the purpose of simple and fast service. 6. Debietmeter volgens een van de voorgaande conclusies, voorzien van een geïntegreerde temperatuursensor die de temperatuur op of nabij het kegelvormige lichaam meet.A flow meter according to any one of the preceding claims, provided with an integrated temperature sensor which measures the temperature on or near the conical body. 7. Debietmeter volgens een van de voorgaande conclusies, waarbij het kegelvormige lichaam een stroomafwaartse vloeistofpoort bevat die axiaal is afgedekt met cen condensaatschild.A flow meter according to any one of the preceding claims, wherein the conical body includes a downstream liquid port axially covered with a condensate shield. 8, Debietmeter volgens een van de voorgaande conclusies, waarbij het kegelvormige lichaam een kegelwand en een bovenwand heeft, bijvoorbeeld een kegelvormige bovenwand, die een interne kamer omshut, waarin de bovenwand een stroomafwaartse vloeistofpoort bevat, bijvoorbeeld een opening, waardoor medinmeommunicatie tussen de binnenkamer en de omgeving van het kegelvormige lichaam mogelijk is.A flow meter according to any one of the preceding claims, wherein the conical body has a cone wall and a top wall, e.g. a top cone wall, surrounding an internal chamber, wherein the top wall includes a downstream liquid port, e.g. an opening, through which media communication between the inner chamber and the environment of the conical body is possible. 9. Debietmeter volgens conelusie 8, waarin de kegelvormige zijwand de interne kamer door een scheidingswand in een stroomafwaartse sectie en een stroomopwaartse sectie wordt verdeeld, waarin een stroomopwaarts neusgedeelte van het kegelvormige lichaam een vloeistofpoort omvat welke communicatie tussen het stroomopwaartse gedeelte van de kamer en het medium aan de uiteindesectie van het kegelvormige lichaam toestaat.9. A flowmeter according to Conelusion 8, wherein the cone-shaped sidewall divides the internal chamber by a partition into a downstream section and an upstream section, wherein an upstream nose portion of the cone-shaped body includes a fluid port communicating between the upstream portion of the chamber and the medium at the end section of the conical body. 10. Debietmeter volgens conclusie 8 of 3, waarin de kegelvormige zijwand van het kegellichaam ten minste één laterale vloeistofpoort bevat voor het bewerkstelligen van mediumcommunicatie naar een zijwaarts weglopend kanaal.The flowmeter of claim 8 or 3, wherein the conical sidewall of the cone body includes at least one lateral fluid port for effecting fluid communication to a laterally exiting channel. 11. Debietmeter volgens conclusie 10, waarbij het conische lichaam een schildstructuur omvat, bijvoorbeeld een labyrint of meanderstructuur, welke zich in de binnenkamer uitstrekt tussen de mediumpoort aan de zijkant en de stroomafwaartse mediumpoort.A flow meter according to claim 10, wherein the conical body comprises a shield structure, e.g. a labyrinth or meander structure, extending in the inner chamber between the side fluid port and the downstream fluid port. 12. Debietmeter volgens een van de voorgaande conclusies, waarbij het kegellichaam is voorzien van ten minste één zijwaarts weglopend kanaal waarbij een middellijn van het zijwaarts weglopende kanaal onder afschot staat en daarom een hoek bevat met een axiale middenlijn van het kegellichaam dat kleiner is dan 90 graden, bijvoorbeeld een hoek in het bereik van 1-45 graden,A flow meter according to any one of the preceding claims, wherein the cone body comprises at least one laterally exiting channel wherein a diameter of the laterally exiting channel is sloped and therefore includes an angle with an axial centerline of the cone body that is less than 90 degrees. degrees, for example an angle in the range of 1-45 degrees, 13. Debietmeter volgens een van de voorgaande conclusies, waarbij het kegelvormige lichaam, bij voorkeur centraal in een kanaal- of kanaalsectie is gemonteerd.A flow meter according to any one of the preceding claims, wherein the conical body is preferably mounted centrally in a duct or duct section. 14. Debietmeter volgens een van de voorgaande conclusies, met inbegrip van een sensoreenheid die is geconfigureerd voor het detecteren of meten van de verschildruk over het kegelvormige lichaam, bij voorkeur via tenminste één directe verbinding tussen de sensoreenheid en het kegelvormige lichaam.A flow meter according to any one of the preceding claims, including a sensor unit configured to detect or measure the differential pressure across the cone-shaped body, preferably via at least one direct connection between the sensor unit and the cone-shaped body. 15, Debietmeter, bij voorkeur ontworpen volgens de ISO 5167 richtlijn, bijvoorbeeld een meter volgens een van de voorgaande conclusies, met inbegrip van een kegelvormig lichaam, waarbij het kegelvormige lichaam een kegelvormige zijwand en een bovenwand heeft, bijvoorbeeld een kegelvormige bovenwand, die een interne kamer omsluit, waarin de bovenste wand een stroomafwaartse mediumpoort bevat, bijvoorbeeld een. opening, waardoor een directe verbinding tussen de interne kamer en het medium rondom het kegellichaam wordt bewerkstelligd.A flow meter, preferably designed according to the ISO 5167 guideline, e.g. a meter according to any one of the preceding claims, including a conical body, wherein the conical body has a conical side wall and a top wall, e.g. a conical top wall, which has an internal chamber wherein the top wall includes a downstream fluid port, e.g., a. opening, establishing a direct connection between the internal chamber and the medium surrounding the cone body. 16. Debietmeter volgens conclusie 15, waarbij de kegelvormige zijwand van de interne kamer door een mtegrale scheidingswand wordt opgedeeld in een stroomafwaartse sectie en een stroomopwaartse sectie, waarin een stroomopwaartse neus gedeelte van het kegelvormige lichaam een mediumpoort bevat, waardoor mediumcommunicatie tussen het stroomopwaartse deel van de kamer en het medium rondom de neus van het kegelvormige lichaam wordt bewerkstelligd.The flowmeter of claim 15, wherein the conical sidewall of the internal chamber is divided by a integral partition wall into a downstream section and an upstream section, wherein an upstream nose portion of the conical body includes a fluid port through which fluid communication between the upstream portion of the conical body the chamber and medium around the nose of the conical body is effected. 17. Delietmeter volgens conlusie 15 of 16, waarin de kegelvormige zijwand van het kegellichaam ten minste òén mediumpoort omvat voor het verstrekken van mediumcommunicatie naar het zijwaarts weglopende kanaal.The delietmeter of claim 15 or 16, wherein the conical sidewall of the cone body includes at least one fluid port for providing fluid communication to the laterally exiting channel. 18. Debietmeter volgens conclusie 17, waarin het kegellichaam een schildstructuur omvat, b.v. een labyrint of meanderstructuur, die zich in de interne kamer tussen de zijvochtpoort en de stroomafwaartse vloeistofpoort uitstrekt,A flow meter according to claim 17, wherein the cone body comprises a shield structure, e.g. a labyrinth or meander structure, extending into the internal chamber between the side fluid port and the downstream fluid port, 19. Debietmeter volgens een van de voorgaande conclusies 15-18, waarin de conische lichaam 1s voorzien van ten minste een lateraal uitschuift kanaal, waarin een middellijn van het zijwaarts wegelopende kanaal een hoek met een axiale middenlijn van het kegellichaam vormt die kleiner 1s dan 90 graden, bijvoorbeeld een hoek in het bereik van 1-45 graden,A flow meter according to any one of the preceding claims 15-18, wherein the conical body 1s comprises at least one laterally extending channel, wherein a diameter of the laterally drained channel forms an angle with an axial diameter of the cone body which is less than 90 degrees. degrees, for example an angle in the range of 1-45 degrees, 20. Debietmeter volgens een van de voorgaande conclusies 15-18, waarbij de kegelvormige carrosserie, bij voorkeur centraal, in een kanaal of kanaalsectie is gemonteerd. 21, Debietmeter volgens een van de voorgaande conclusies 15-20, waarbij het kegelvormige lichaam (1) is gemaakt van kunststof en/of van een of meer spuitgegoten delen (114, 11B), bij voorkeur met een integraal condensaatschild.A flow meter according to any one of the preceding claims 15-18, wherein the conical body is mounted, preferably centrally, in a duct or duct section. A flow meter according to any one of the preceding claims 15-20, wherein the conical body (1) is made of plastic material and/or of one or more injection molded parts (114, 11B), preferably with an integral condensate shield. 22. Debietmeter zoals vermeld in conclusie 21, waarin het kegelvormige lichaam voorzien is van een integrale montagestructuur voor de montage van het kegelvormige lichaam in een vloeistofkanaal.A flow meter as claimed in claim 21, wherein the conical body includes an integral mounting structure for mounting the conical body in a liquid channel. 23. Debietmeter zoals vermeld in een van de voorgaande conclusies 21-22, waarbij ten minste een deel van de kegelvormige lichaam (1) van de debietmeter met 3D prmttechnologie is vervaardigd.A flow meter as claimed in any one of the preceding claims 21-22, wherein at least a part of the conical body (1) of the flow meter is made with 3D printing technology. 24E loeistofkanaal voorzien van tenminste één debietmeter volgens ec 5 ‚ Een vloeistofkanaal voorzien van tenminste één debietmeter volgens een van de voorgaande conclusies.24E liquid channel provided with at least one flow meter according to ec. A liquid channel provided with at least one flow meter according to one of the preceding claims. 25. Het gebruik van een debietmeter volgens een van de conclusies 1-24, waarbij de debietmeter zodanig is gemonteerd dat de axiale middellijn van zijn kegelvormige lichaam in verticale richting is georiënteerd.The use of a flow meter according to any one of claims 1-24, wherein the flow meter is mounted such that the axial diameter of its conical body is oriented in the vertical direction.
NL1044073A 2020-07-22 2021-06-23 Differential pressure flow cone meter NL1044073B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1043738 2020-07-22
NL1043926 2021-02-08

Publications (2)

Publication Number Publication Date
NL1044073A NL1044073A (en) 2022-03-21
NL1044073B1 true NL1044073B1 (en) 2022-07-04

Family

ID=80784496

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1044073A NL1044073B1 (en) 2020-07-22 2021-06-23 Differential pressure flow cone meter

Country Status (1)

Country Link
NL (1) NL1044073B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101705U (en) * 2011-06-15 2012-01-04 上海华强浮罗仪表有限公司 Blockage-resistant V-cone flowmeter
US9739651B1 (en) * 2016-05-23 2017-08-22 Saudi Arabian Oil Company Variable cone flow meter
US9880032B1 (en) * 2017-06-20 2018-01-30 Johnathan W. Linney Modular removable flow metering assembly with cone shaped differential pressure producer in a compact fluid conduit
NL2022125B1 (en) * 2018-12-03 2020-06-30 Suss Microtec Lithography Gmbh Apparatus for measuring a fluid flow through a pipe of a semiconductor manufacturing device
CN209639791U (en) * 2019-04-12 2019-11-15 江阴威尔胜仪表制造有限公司 A kind of Bidirectional V-cone flowmeter

Also Published As

Publication number Publication date
NL1044073A (en) 2022-03-21

Similar Documents

Publication Publication Date Title
EP2606318B1 (en) Flow sensor arrangement
AU2008223861B2 (en) Meter with standardised capsule-type ultrasound measuring cell
US8117920B2 (en) Pressure sensor
CN102829828B (en) Flow measurement device and volume control device
US7270143B2 (en) Offset variable-orifice flow sensor
WO2007143258A3 (en) Ceramic oscillation flow meter having cofired piezoresistive sensors
US20090056130A1 (en) Flow meter for measuring a flow rate of a flow of a fluid
KR100293749B1 (en) Vortex Flowmeter Sensor and Vortex Flowmeter
US10184817B2 (en) Sensor system for determining at least one parameter of a fluid medium flowing through a channel structure
CN106796129B (en) Tube for measuring the differential pressure of a medium flowing through the tube
KR20020047282A (en) Device for determining at least one parameter of a flowing medium
KR20020013745A (en) Split-flow-type flowmeter
KR102497876B1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a measurement channel
RU2491513C2 (en) Averaging diaphragm with holes located near inner wall of pipe
WO2007039394A3 (en) Device for determining or monitoring a medium volume or mass flow rate in a conduit
CN101784343A (en) Flow sensor and production method thereof
WO2012032901A1 (en) Thermal type fluid flow rate measuring device
NL1044073B1 (en) Differential pressure flow cone meter
US8033180B2 (en) Flow sensor apparatus and method with media isolated electrical connections
WO2009024803A2 (en) Differential pressure anemometer
CN108458756A (en) Flow measurement device and measured value route marker for process instrument
CN106030258A (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel
KR20140010082A (en) Apparatus for recording at least one property of a fluid medium
KR20170056552A (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel structure
KR102301752B1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel