NL1041760B1 - LED-lamp producing a daylight spectrum - Google Patents

LED-lamp producing a daylight spectrum Download PDF

Info

Publication number
NL1041760B1
NL1041760B1 NL1041760A NL1041760A NL1041760B1 NL 1041760 B1 NL1041760 B1 NL 1041760B1 NL 1041760 A NL1041760 A NL 1041760A NL 1041760 A NL1041760 A NL 1041760A NL 1041760 B1 NL1041760 B1 NL 1041760B1
Authority
NL
Netherlands
Prior art keywords
spectrum
light
led
daylight
leds
Prior art date
Application number
NL1041760A
Other languages
Dutch (nl)
Inventor
Johannes Van Og Marinus
Ir Sander Willem Hogewoning Dr
Original Assignee
Specialty Lighting Holland Ip B V
Ir Sander Willem Hogewoning Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Specialty Lighting Holland Ip B V, Ir Sander Willem Hogewoning Dr filed Critical Specialty Lighting Holland Ip B V
Priority to NL1041760A priority Critical patent/NL1041760B1/en
Application granted granted Critical
Publication of NL1041760B1 publication Critical patent/NL1041760B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Led Device Packages (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention relates to an LED-based light source producing light with a spectral composition similar to that of natural daylight. The similarity of the spectrum produced by this light source with natural daylight is limited to the spectral range well visible to the human eye, i.e. 400-700 nm, or slightly beyond. The present invention is particularly useful for scientific research (plant sciences in particular), horticulture, and medical applications. Furthermore, present invention is useful for general applications where light with a natural spectral composition is desired under conditions where natural daylight is absent, or nearly absent (e.g. showrooms, hangars, etc.).

Description

Patent application for Invention: LED-lamp producing a daylight spectrum
The present invention relates to an LED-based light source producing light with a spectral composition similar to that of natural daylight. The similarity of the spectrum produced by this light source with natural daylight is limited to the spectral range well visible to the human eye, i.e. 400-700 nm, or slightly beyond. The present invention is particularly useful for scientific research (plant sciences in particular), horticulture, and medical applications. Furthermore, present invention is useful for general applications where light with a natural spectral composition is desired under conditions where natural daylight is absent, or nearly absent (e.g. showrooms, hangars, etc.).
Background of the invention
Sunlight reaching the Earth's surface is comprised of a broadband wavelength range within a range of approximately 300-2500 nm. Within this broad range of wavelengths, the spectral range between 400 nm and 700 nm, or slightly beyond, is well visible to the human eye. This is also the wavelength range that is important for driving photosynthesis in green plants, in which the irradiance supplies the energy for the conversion of C02 and water into sugars and oxygen. Therefore, this wavelength range is vital for food production, and C02 depletion from and supply of oxygen to the Earth's atmosphere. Therefore the wavelength range 400-700nm is also called Photosynthetically Active Radiation (PAR). For plants, wavelengths slightly beyond the PAR-range have little capacity to drive photosynthesis, however do affect plant development via a signaling response, i.e. the sense of photoperiodism, photo morphogenesis and phototropism. At wavelengths greater than ~750 nm there is no evidence of any substantial plant photosynthesis of signaling responses.
Of the many different light sources commercially available, most light sources emit light with a spectral composition that is very different from that of any natural daylight spectrum, as illustrated in Figure 1. Therefore, both perception of colour by the human eye and responses of living organisms to such lamp-light is also different from the response to natural daylight. For research purposes there are some light sources available that emit a spectrum that is more similar to that of natural daylight. No LED-based light fixture is available that combines the claims as described heretofore. Below the advantages of the characteristics of this invention are described for several fields of application.
For research the high similarity in spectral composition between the lighting fixture described here and natural daylight spectra is particularly useful. Especially the combination of the spectral properties and the option for constant current driving and dimming makes the lighting fixture described here an important new tool for both scientific and applied research. Important fields of scientific research benefitting from this invention are (photo)biology, medical sciences, material sciences (e.g. lifetime tests, photovoltaic panels etc.).
In photobiology, scientists investigate the responses of living organisms to a wide variety of influences. Often research is done in daylight-deficient environments. Because the lighting conditions in such a research environment are unnatural, the responses of the organism will be unnatural. As an example, plant breeders investigate crops with varying genotypes in an environment without natural daylight, whereas they are eventually interested in the responses of these genotypes in the field (under natural daylight). The spectral composition of light has a large effect on the responses of plants (see (Hogewoning et al. 2010, http://ixb.oxfordiournals.Org/content/61/5/1267.full) and also on some other living organisms (e.g. birds mammals, humans). Beside the spectral composition of the light often being unnatural in daylight-deficient environments, some light sources emit rhythmically pulsing flickering light, such as fluorescent tubes and most LED-based light sources. The discontinuous photon flux produced by such light sources may result in responses of living organisms that are different from response to a continuous flux of photons likewise in natural daylight or optionally possible using the invention described here. Pulsing light has been reported to have detrimental effects in humans and other species (Inger et a 1,2014, http://iournals.plos.org/plosone/article?id=10.1371/ioumal.pone.0Q98631). See for the effect of pulsing light on plants e.g. http://www.ncbi.nlm.nih.gov/pubmed/24307096 and the spectral composition of some common light sources figure 1.

Claims (14)

1. De unieke eigenschappen van deze lichtbron omvatten de hoge mate van gelijkheid in lichtspectrum aan natuurlijk zonlicht/daglicht, constante stroombesturing, dimmen met behoud van het spectrum, en de mogelijkheid om het spectrum zo aan te passen voor een doelgerichte gewas beïnvloeding.1. The unique properties of this light source include the high degree of natural light / daylight equality in light spectrum, constant current control, spectrum preservation, and the ability to adjust the spectrum for targeted crop impact. 2. Een lichtarmatuur bestaande uit: Een array van Light Emitting Diodes (LEDs) welke een lichtspectrum produceert dat in hoge mate gelijk is aan het lichtspectrum van natuurlijk zonlicht/daglicht. De array kan samengesteld zijn uit LED-chips die golflengten uitstralen in een smalle bandbreedte met typerend 20nm - 50 nm "Full Width of Half Maximum (FWHM)", of in een brede bandbreedte met typerend 50 nm-450 nm FWHM, of een combinatie van smalband en breedband uitstralende chips. Binnen het golflengtegebied 400 tot 700 nm kan de spectrale samenstelling van het lichtarmatuur zo ingesteld worden dat het vergelijkbaar is met natuurlijke daglichtspectra zoals die gemeten worden bij het aardoppervlak. Typerend kan een zonlicht/daglichtspectrum zoals beschikbaar in de ASTM database (http://rredc.nrel.gOv/solar/spectra/aml.5/astmgl73/astmgl73.html) of een spectrum zoals overdag gemeten in Nederland (Hogewoning et al. 2010, Figure IA; http://ixb.oxfordiournals.Org/content/61/5/1267.full) worden uitgestraald door het belichtingsarmatuur. Binnen het golflengtegebied 400-700 nm kan het belichtingsarmatuur worden ingesteld zodat het tenminste voor 90% gelijk is aan de hierboven genoemde spectra binnen ieder 50-nm interval.2. A light fixture consisting of: An array of Light Emitting Diodes (LEDs) which produces a light spectrum that is highly similar to the light spectrum of natural sunlight / daylight. The array can be composed of LED chips that emit wavelengths in a narrow bandwidth with a typical 20nm - 50 nm "Full Width or Half Maximum (FWHM)", or in a wide bandwidth with a typical 50 nm-450 nm FWHM, or a combination of narrowband and broadband radiating chips. Within the wavelength range 400 to 700 nm, the spectral composition of the light fixture can be adjusted to be comparable to natural daylight spectra as measured at the earth's surface. Typically a sunlight / daylight spectrum as available in the ASTM database (http://rredc.nrel.gOv/solar/spectra/aml.5/astmgl73/astmgl73.html) or a spectrum as measured during the day in the Netherlands (Hogewoning et al. 2010, Figure IA; http://ixb.oxfordiournals.Org/content/61/5/1267.full) are emitted by the lighting fixture. The lighting fixture can be adjusted within the wavelength range 400-700 nm so that it is at least 90% equal to the above-mentioned spectra within each 50-nm interval. 3. Het lichtarmatuur van conclusie 1 kan worden gedimd met constante stroombesturing, waardoor tijdens dimmen ook een continue foton-flux wordt uitgestraald met behoud van de spectrale eigenschappen. Constante stroombesturing is uniek voor een op LED gebaseerde lichtbron met een spectrale samenstelling als beschreven in conclusie 1. Optioneel kan dimmen ook plaatsvinden volgens het PWM kanaalbesturing en dimming principe, resulterend in een pulserende flux fotonen met behoud van de spectrale eigenschappen, hetgeen de standaardtechniek is voor het dimmen van op LED gebaseerde lichtarmaturen.The light fitting of claim 1 can be dimmed with constant current control, whereby a continuous photon flux is also emitted during dimming while maintaining the spectral properties. Constant current control is unique for a LED-based light source with a spectral composition as described in claim 1. Optionally, dimming can also take place according to the PWM channel control and dimming principle, resulting in a pulsating flux photons while maintaining the spectral properties, which is the standard technique. for dimming LED-based light fixtures. 4. Het lichtarmatuur van conclusie 1, kan zo aangepast worden dat het UV gedeelte (golflengtegebied 350-400 nm) en een gedeelte van het spectrale gebied in het blauw (400-430nm) individueel gedimd kunnen worden, met als mogelijk doel gewas beïnvloeding voor tuinbouwkundige doeleinden en onderzoek in het algemeen (plantenonderzoek, materiaaltesten, etc.).The light fitting of claim 1, can be adjusted so that the UV portion (wavelength range 350-400 nm) and a portion of the spectral range in the blue (400-430 nm) can be individually dimmed, with the possible purpose of influencing crop horticultural purposes and research in general (plant research, material testing, etc.). 5. Het lichtarmatuur van conclusie 1, kan zo aangepast worden dat het verrode spectrale gebied (700-760 nm) individueel gedimd kan worden, met als mogelijk doel gewas beïnvloeding voor tuinbouwkundige doeleinden en onderzoek (plantenonderzoek).The light fixture of claim 1, can be adjusted so that the red-colored spectral region (700-760 nm) can be dimmed individually, with the possible aim of influencing crops for horticultural purposes and research (plant research). 6. Het lichtarmatuur van conclusie 1, produceert een foton-flux met een elektrische efficiëntie van op zijn minst 0.8 μιτιοΙ foton-flux per Joule elektrische energie input.The light fitting of claim 1, produces a photon flux with an electrical efficiency of at least 0.8 μιτιοΙ photon flux per joule of electrical energy input. 7. Het lichtarmatuur van conclusie 1, kan geconfigureerd worden in een versie > 200W vermogen (dus>160 μιτιοΙ foton-flux), zodat het geschikt is voor het verlichten van substantiële oppervlakken (typisch 0.25 tot 2 m2 voor gewasproductie of grote oppervlakken voor algemene belichtingsapplicaties)The light fixture of claim 1, can be configured in a version> 200W power (thus> 160 μιτιοΙ photon-flux), so that it is suitable for illuminating substantial surfaces (typically 0.25 to 2 m2 for crop production or large surfaces for general lighting applications) 8. De LED lichtbron is een multikanaals LED array samengesteld uit monochromatische en fosfor-gecoate LED's in een zodanige verhouding dat het uitgestraalde spectrum nagenoeg het spectrum van zonlicht/daglicht nabootst in de range van 400 tot 700 nm of optioneel van 360 tot 760 nm.8. The LED light source is a multi-channel LED array composed of monochromatic and phosphor-coated LEDs in such a ratio that the radiated spectrum virtually mimics the spectrum of sunlight / daylight in the range of 400 to 700 nm or optionally from 360 to 760 nm. 9. Het LED array is opgebouwd uit monochromatische en fosfor-gecoate (blend) LED's. De LED array kan samengesteld zijn uit de volgende smalband LED's: 360nm, 380nm, 405nm, 420nm, 450 nm, 470nm, 480nm, 485nm, 490nm, 495nm, 500nm, 630nm, 640 nm, 660 nm, 675nm, 705nm, 720nm, 730 nm, 745nm en 765nm. Het LED array kan ook mede samengesteld zijn uit één of meer typen fosfor-gecoate LEDs voor 3000K, 515nm, 530nm, 560nm,580nm en 630nm. Voor assemblage ('die bonding') van de LED chips maken we vooral gebruik van "Chip on board (COB) technologie". Voor het "die-bonding" proces maken we gebruik van standaard SMT processen voor plaatsing en het solderen van de led chips. Deze techniek geeft een betere warmtegeleiding van de LED-chip naar het substraat waardoor de efficiëntie van de LED-bron verbetert met een factor 9 ten opzichte van pakaged leds.9. The LED array is made up of monochromatic and phosphorus-coated (blend) LEDs. The LED array can be composed of the following narrow band LEDs: 360nm, 380nm, 405nm, 420nm, 450 nm, 470nm, 480nm, 485nm, 490nm, 495nm, 500nm, 630nm, 640 nm, 660 nm, 675nm, 705nm, 720nm, 730 nm, 745 nm and 765 nm. The LED array can also be composed of one or more types of phosphor-coated LEDs for 3000K, 515nm, 530nm, 560nm, 580nm and 630nm. For the assembly ('die bonding') of the LED chips, we mainly use "Chip on board (COB) technology". For the "die-bonding" process we use standard SMT processes for placement and soldering of the LED chips. This technique provides better heat conduction from the LED chip to the substrate, which improves the efficiency of the LED source by a factor of 9 compared to pakaged LEDs. 10. Het spectrum bevat 10 tot 20 groepen van LEDs met verschillende spectrale output. Deze groepen zijn verdeeld over 20 kanalen, overeenkomstig met een bepaalde bandbreedte van het spectrum en ze hebben allemaal hun eigen current (CC) driver(s) circuit. Deze CC circuit chips hebben een temperatuur compensatie input, welke wordt gebruikt voor tuning van de respons om ervoor te zorgen dat het spectrum nagenoeg het zonlicht/daglicht nabootst. Buiten de initiële fabriek instellingen kan deze input later gebruikt worden voor kalibratie van het spectrum.10. The spectrum contains 10 to 20 groups of LEDs with different spectral output. These groups are distributed over 20 channels, corresponding to a certain bandwidth of the spectrum and they all have their own current (CC) driver (s) circuit. These CC circuit chips have a temperature compensation input, which is used for tuning the response to ensure that the spectrum virtually mimics the sunlight / daylight. Outside of the initial factory settings, this input can later be used for calibration of the spectrum. 11. Het volledige spectrum is onderverdeeld in 3 hoofdgroepen bandbreedten namelijk UV (350nm tot 399nm), PAR (400nm tot 700nm) en verrood (701nm tot 770nm). Elk van deze 3 groepen zijn individueel dimbaar van 28% tot 100% licht output. Een minimaal niveau van 28% is nodig om de LED driver chip in CC mode te houden. Gedurende het dimmen blijft het spectrum nagenoeg het zonlicht/daglicht nabootsten wanneer de hoofdgroepen bandbreedten UV, PAR en verrood worden blootgesteld aan een vergelijkbaar dimming niveau/level.11. The full spectrum is subdivided into 3 main groups of bandwidths namely UV (350nm to 399nm), PAR (400nm to 700nm) and far red (701nm to 770nm). Each of these 3 groups can be individually dimmed from 28% to 100% light output. A minimum level of 28% is required to keep the LED driver chip in CC mode. During dimming, the spectrum virtually simulates sunlight / daylight when the main groups of bandwidths UV, PAR and far-red are exposed to a comparable dimming level / level. 12. Gedurende de opstart is er een korte tijd, een aantal minuten, benodigd om het spectrum te stabiliseren. Na deze stabilisatie zal het spectrum stabiel blijven ongeacht de omgevingstemperatuur van 10 tot 35 graden Celsius. De stabiliteit van het spectrum wordt bewerkstelligd door temperatuur compensatie input van de CC LED driver Chip. De input van de constant current driver welke lineair is met de temperatuurverandering zodat het integrerend netwerk een compensatie uitstuurt gerelateerd aan de temperatuur verandering.12. During the start-up, a short time, a few minutes, is required to stabilize the spectrum. After this stabilization, the spectrum will remain stable regardless of the ambient temperature of 10 to 35 degrees Celsius. The stability of the spectrum is achieved by temperature compensation input from the CC LED driver Chip. The input of the constant current driver which is linear with the temperature change so that the integrating network sends out compensation related to the temperature change. 13. Wanneer de omgevingstemperatuur of de temperatuur van de LED array te hoog wordt, dan zal een oververhitting beschermingscircuit in werking treden die de drie hoofdgroepen dim circuits zo aanpast dat het vermogen wordt gereduceerd. Ook gedurende deze reductie in vermogen zal het lichtspectrum stabiel blijven en zal alleen de lichtintensiteit lager worden. Wanneer de omgevingstemperatuur en/of de temperatuur van de LED array weer binnen de specificaties komt, zal het vermogen weer verhoogd/hersteld worden naar zijn meest recente voorgaande setting.13. If the ambient temperature or the temperature of the LED array becomes too high, an overheating protection circuit will be activated which adjusts the three main groups of dim circuits so that the power is reduced. Also during this reduction in power the light spectrum will remain stable and only the light intensity will be lower. When the ambient temperature and / or the temperature of the LED array comes within specifications again, the power will be increased / restored to its most recent previous setting. 14. Figuur 2, diagram van de lamp (zwart) laat het resultaat van het spectrum zien afgezet tegen natuurlijk daglicht bij voile zon (lichtgrijs) en zware bewolking (lichtgrijs). Het resultaat is een bijna 100% fit met twee natuurlijke zonlicht condities.14. Figure 2, diagram of the lamp (black) shows the result of the spectrum compared to natural daylight in full sun (light gray) and heavy clouds (light gray). The result is an almost 100% fit with two natural sunlight conditions.
NL1041760A 2016-03-11 2016-03-11 LED-lamp producing a daylight spectrum NL1041760B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1041760A NL1041760B1 (en) 2016-03-11 2016-03-11 LED-lamp producing a daylight spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1041760A NL1041760B1 (en) 2016-03-11 2016-03-11 LED-lamp producing a daylight spectrum

Publications (1)

Publication Number Publication Date
NL1041760B1 true NL1041760B1 (en) 2017-09-27

Family

ID=57104084

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1041760A NL1041760B1 (en) 2016-03-11 2016-03-11 LED-lamp producing a daylight spectrum

Country Status (1)

Country Link
NL (1) NL1041760B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013400A2 (en) * 2012-07-18 2014-01-23 Koninklijke Philips N.V. Method for providing horticulture light to a crop and lighting device for horticulture lighting
US20140123555A1 (en) * 2012-10-15 2014-05-08 Matthew McCord Narrowband photosynthetically active radiation ('PAR") substantially only at each of multiple emission wavelengths yields good photosynthesis at reduced energy cost
WO2014133374A1 (en) * 2013-02-28 2014-09-04 Vilnius University Solid-state sources of light for preferential colour rendition
WO2014188303A1 (en) * 2013-05-24 2014-11-27 Koninklijke Philips N.V. Dynamic light recipe for horticulture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013400A2 (en) * 2012-07-18 2014-01-23 Koninklijke Philips N.V. Method for providing horticulture light to a crop and lighting device for horticulture lighting
US20140123555A1 (en) * 2012-10-15 2014-05-08 Matthew McCord Narrowband photosynthetically active radiation ('PAR") substantially only at each of multiple emission wavelengths yields good photosynthesis at reduced energy cost
WO2014133374A1 (en) * 2013-02-28 2014-09-04 Vilnius University Solid-state sources of light for preferential colour rendition
WO2014188303A1 (en) * 2013-05-24 2014-11-27 Koninklijke Philips N.V. Dynamic light recipe for horticulture

Similar Documents

Publication Publication Date Title
US10257988B2 (en) Illumination and grow light system and associated methods
US9137874B2 (en) Illumination and grow light system and associated methods
JP2010512780A (en) Lighting device
US20170014538A1 (en) LED structure and luminaire for continuous disinfection
US11122747B2 (en) Diffused fiber-optic horticultural lighting
US11382280B1 (en) Diffused fiber-optic horticultural lighting
JP3163826U (en) Plant lighting system
Fujiwara Light sources
US20220007479A1 (en) Temporally modulated lighting system and method
KR20150076838A (en) Illumination system for plant cultivation and Control Methods of illumination System
TW201507605A (en) Led lighting module for plant-culture factory, and led lighting apparatus for plant-culture factory using the same
CA3098719C (en) Methods, systems and assemblies for supplementing the spectral content of light with non-visible light
NL1041760B1 (en) LED-lamp producing a daylight spectrum
RU191025U1 (en) LED lamp for plants
KR101183666B1 (en) Led lamp module for plant cultivating
Mashkov et al. LED equipment for light influence on photosynthesis investigations
RU2725003C1 (en) Irradiation system of plants in a greenhouse
Kopatsch et al. Reproducing solar spectral irradiance by LEDs
Kusuma et al. LEDs for extraterrestrial agriculture: tradeoffs between color perception and photon efficacy
KR102604933B1 (en) Lighting device for plant growth
TWI653931B (en) Multiple spectrum automatic dimmer
TWI739005B (en) Lamp structure for plant growth
Wu et al. Modeling irradiance levels of horticultural lighting systems
TW201328588A (en) Plant nurturing system and lighting modules thereof
BE1022336B1 (en) SYSTEM FOR PROMOTING THE GROWTH OF PLANTS