NL1037183C2 - New method in commercial mushroom harvesting. - Google Patents

New method in commercial mushroom harvesting. Download PDF

Info

Publication number
NL1037183C2
NL1037183C2 NL1037183A NL1037183A NL1037183C2 NL 1037183 C2 NL1037183 C2 NL 1037183C2 NL 1037183 A NL1037183 A NL 1037183A NL 1037183 A NL1037183 A NL 1037183A NL 1037183 C2 NL1037183 C2 NL 1037183C2
Authority
NL
Netherlands
Prior art keywords
mushrooms
container
apertures
harvesting
growing
Prior art date
Application number
NL1037183A
Other languages
Dutch (nl)
Inventor
Jacobus Henricus Johannes Verdellen
Nader Gheshlaghi
Original Assignee
Verdellen Beheer B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verdellen Beheer B V filed Critical Verdellen Beheer B V
Priority to NL1037183A priority Critical patent/NL1037183C2/en
Priority to CA2770295A priority patent/CA2770295A1/en
Priority to PCT/NL2010/050501 priority patent/WO2011016727A1/en
Priority to US13/389,100 priority patent/US20120247007A1/en
Priority to EP10742609A priority patent/EP2461663A1/en
Application granted granted Critical
Publication of NL1037183C2 publication Critical patent/NL1037183C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/50Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage
    • B65D85/52Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage for living plants; for growing bulbs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/60Cultivation rooms; Equipment therefor
    • A01G18/64Cultivation containers; Lids therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/70Harvesting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2069Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere
    • B65D81/2076Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere in an at least partially rigid container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/34Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for fruit, e.g. apples, oranges or tomatoes
    • B65D85/345Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for fruit, e.g. apples, oranges or tomatoes having a meshed or apertured closure to allow contents to breathe

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Mushroom Cultivation (AREA)

Description

New method in Commercial Mushroom Harvesting
DESCRIPTION
TECHNICAL FIELD OF THE INVENTION
5 The present invention relates to mushroom cultivation and provides a tool and method that eliminate or minimize the harvesting process and also packaging of mushrooms.
BACKGROUND OF THE INVENTION
Wherever food is harvested, manufactured or distributed there is a need for 10 containers to enable the food to travel securely and in good condition to a shop, warehouse or distribution depot. For many foods, especially those in their own individual containers, such as canned vegetables, the common container is the cardboard box, Cardboard boxes are manufactured from a relatively low grade card and they are available in many sizes.
15 In the modern developed world, a very wide range of food containers is now available made from many different materials, such as from plastic, metal and cardboard.
Many products use low density polyethylene formed into plastic bags or plastic boxes. There are a large number of manufactures and ranges of 20 plastic boxes.
Longer term storage or storage of items needing a higher degree of protection from the elements may use sheet metal. A common form of such storage is the biscuit tin.
Perhaps the most ubiquitous domestic item of food storage is the 25 fridge or fridge-freezer in which a wide variety of foodstuffs are contained and preserved through the use of low temperatures.
Vegetable-type foods packed in a container, and essentially surrounded in the closed container by either vacuum or a gas atmosphere preventing deterioration of the foods, such as carbon dioxide, nitrogen or mixtures 30 thereof, are known from European Patent Application EP-A-0,153,215.
It appears that when such a pack is used for accommodating mushrooms, their shelf life is limited, and there is rapid discolouration, which makes the product unattractive in appearance.
In EP 0564026 it has been found that the shelf life can increase 1037183 2 considerably and the colour also remains excellent if the mushrooms are present in at least a blanched form, and if the quantity of moisture present is limited to at most the quantity which the mushrooms comprise after blanching, after the adhering moisture has been essentially removed from them.
5 The container used can be in many different forms. If the medium surrounding the mushrooms is a vacuum, the container will preferably be a container made of flexible plastic such as polyethylene, polypropylene or polyester.
If the medium surrounding the mushrooms is a gas atmosphere, the container can comprise at least a slightly rigid self-supporting part made of plastic, 10 which can be closed by a plastic part which is rigid or flexible. The plastic of the container can in general be selected from transparent, uncolored plastic, transparent, coloured plastic, or coloured or uncolored plastic which is opaque to light, and combinations of such plastics. At least a part of the plastic of the container is preferably a thermoplastic material, so that the container can be sealed by the 15 known heat-sealing techniques.
Mushroom growth has been studied during centuries.
Many species of mushrooms seemingly appear overnight, growing or expanding rapidly. In actuality all species of mushrooms take several days to form primordial mushroom fruit bodies, though they do expand rapidly by the absorption 20 of fluids.
The cultivated mushroom as well as the common field mushroom initially form a minute fruiting body, referred to as the pin stage because of their small size (see fig. 19). Slightly expanded they are called buttons, once again because of the relative size and shape. Once such stages are formed, the 25 mushroom can rapidly pull in water from its mycelium and expand, mainly by inflating preformed cells that took several days to form in the primordia.
Most mushrooms that are sold in supermarkets have been commercially grown on mushroom farms. The most popular of these, Agaricus bisporus, is generally considered safe for most people to eat because it is grown in 30 controlled, sterilized environments, though some individuals do not tolerate it well. Several varieties of A. bisporus are grown commercially, including whites, criminy, and portobello. Other cultivated species now available at many grocers include shiitake, maitake or hen-of-the-woods, oyster, and enoki.
White mushrooms, like all mushrooms, grow from microscopic 3 spores, not seeds. Plant-like organisms growing from spores are called fungi. A mature mushroom will drop as many as 16 billion spores. Spores must be collected in the nearly sterile environment of a laboratory and then used to inoculate grains or seeds to produce a product called spawn (the mushroom farmer's equivalent of 5 seed).
Because mushrooms have no chlorophyll, they must get all their nutrients from organic matter in their growing medium. The medium-called compost is scientifically formulated of various materials such as straw, corn cobs, cotton seed and cocoa seed hulls, gypsum and nitrogen supplements. Preparing the 10 compost takes one to two weeks. Then it is pasteurized and placed in large trays or beds. Next the spawn is worked into the compost and the growing takes place in specially constructed houses, where the farmers can regulate crucial aspects as heat and humidity.
In two to three weeks, the compost becomes filled with the root 15 structure of the mushroom, a network of lacy white filaments called mycelium. At that point, a layer of pasteurized peat moss is spread over the compost. The temperature of the compost and the humidity of the room must be carefully controlled in order for the mycelium to develop fully. Eventually, tiny white protrusions form on the mycelium and push up through the surface of the peat moss. 20 Farmers call this pinning. The pins continue to grow, becoming the mushroom caps, which are actually the fruit of the plant, just as a tomato is the fruit of a tomato plant. It takes 10 to 25 days to produce mature mushrooms after the peat moss is applied. Size is no indication of maturity in mushrooms. Perfectly ripe ones vary from small buttons to large caps.
25 Each crop is harvested over a period of several weeks and then the house is emptied and steam-sterilized before the process begins again. The remaining compost is recycled for potting soil. Harvested mushrooms are set in carts, refrigerated and then packaged and shipped quickly to supermarkets, food processors and restaurants. The entire process from the time the farmer starts 30 preparing the compost until the mushrooms are harvested and shipped to market takes about two to three months.
Edible mushrooms are used extensively in cooking, in many cuisines (notably Chinese, European, and Japanese). Hundreds of million kilograms are produced yearly. Though mushrooms are commonly thought to have little 4 nutritional value, many species are high in fibre and provide vitamins such as thiamine, riboflavin, niacin, biotin, cobalamins, ascorbic acid. Though not normally a significant source of vitamin D, some mushrooms can become significant sources after exposure to ultraviolet light, though this also darkens their skin. Mushrooms 5 are also a source of some minerals, including selenium, potassium and phosphorus. Various species as well as their production conditions are discussed below.
Criminy mushrooms are grown and harvested in the same manner as the white mushroom. The reason they have a darker colour and slightly denser texture is that they come from a different strain of spores.
10 Porta bella mushrooms are also grown like the white mushrooms.
Actually, the Portabella is a mature Criminy. It's usually three to seven days older than the Criminy when harvested. As a result of their longer growing period, Portabellas develop much larger caps-ranging up to six inches in diameter.
Oyster mushrooms, like other mushrooms, are grown in mushroom 15 houses but they require a bit more humidity and fresh air than the white variety. They grow well on a range of agricultural and wood waste products including hardwood chips, chopped cereal straws or corn cobs. After the growing medium is pasteurized and cooled it is inoculated, that is, mixed with spawn and packed into long, tubular shaped plastic bags. The bags are hung up or set on racks in the 20 growing rooms. After about 14 days, the mushrooms have started growing and can be harvested subsequently. If straw is used as a growing medium, the substrate can be used as fertilizer after mushroom production is completed.
Shiitake mushrooms were originally cultivated on natural oak logs, a process which took two to four years before the mycelium colonized the wood 25 sufficiently to produce fruiting. Shiitakes were harvested on a seasonal basis (spring and fall) for about six years. Now, however, oak sawdust is packed into poly bags, sterilized, inoculated with spawn and placed in environmentally controlled rooms. These man-made "logs" produce Shiitakes in seven weeks. The total process, from spawning to the end of harvesting takes about four months as compared to the six 30 year cycle on natural logs.
For Enoki mushrooms, beach mushrooms and maitake mushrooms even more complex procedures are used, requiring specific control of e.g. temperature, carbon dioxide content, and humidity, as well as specific specially prepared substrate material. These mushrooms typically produces only one time, 5 then the substrate is recycled into agri-business products. The whole process, sometimes from lab to table, takes relatively Ion, e.g. from 10 to 14 weeks.
The demand for the partially prepared and pre-packaged foods for quick preparation is increasing day by day. Among some of the fresh products which 5 are higher in demand than ever before are the above mushrooms, as well as other vegetables, fruits and fresh herbs. The main cost involved int the production of mushrooms includes compost production, harvesting and packaging. The harvesting of mushroom is still done manually. Mushroom farmers in addition to basic procedures use their own techniques to make the process convenient, but still it is 10 very labourious, time consuming and expensive in terms of production cost. Thus, the involvement of manual labour increases the production cost and also increases the chances of potential contamination. This creates additional maintenance problems.
Although there are some mechanical devices and methods for 15 mushroom harvesting, these generally involve expensive technology i.e. video camera, mechanical platforms and other devices. Further, albeit chances of contamination by physically not touching the mushrooms are minimized, which in turn also enhances the shelf life, mechanically picking of mushrooms results in a much lesser quality of the product. As such, the mushrooms can only be used for 20 directly processing the mushrooms into food products, like conservatives..
Considerable effort has been made to reduce the costs involved in production it self, but less attention has been paid towards reducing costs in harvesting and packaging.
Thus, disadvantages of the prior art method are amongst others a 25 limited shelf life of mushrooms, due to e.g. methods of harvesting, contamination by human beings, and contamination from the growth and storing environment, labourious and therefore expensive methods of harvesting, limited area of markets, i.e. mushrooms have to be sold relatively close to a production facility, or otherwise transport costs increase dramatically, and mushrooms remain fresh only during a 30 limited amount of time and therefore need to be transported and sold quickly.
Thus there still is a need for improved methods for harvesting mushrooms, which methods overcome one or more of the above disadvantages, while at the same time not jeopardizing other favourable aspects of harvesting.
6
SUMMARY OF THE INVENTION
The present invention relates to a method for harvesting mushrooms, wherein a container is used for directly growing mushrooms therein, thereby storing the mushrooms in said container, and harvesting mushrooms by 5 removing the container comprising the mushrooms, to the container used in said harvesting method, as well as to use of said containers for harvesting mushrooms. The present invention provides a longer shelf life; due to the persistent conditions of moisture, temperature and inside of the bed, which remains the same even after mushrooms are detached. This technique of mushroom cultivation also enhances 10 the shelf life by minimizing the level of contamination due to direct human touch and minimum exposure to the outer environment. Thus mushrooms stay fresh for a longer period of time.
The present method will significantly reduce the cost of mushroom production by virtually eliminating the process of harvesting and packaging. 15 Nowadays, using prior art methods, mushroom pickers can harvest about 20-30 kg mushrooms per hour, depending on the size and type of mushrooms. With the present method a mushroom picker can easily harvest 100 kg per hour, that is at least 4-6 times as much as the prior art methods. In other words, in stead of picking one mushroom at a time, a picker can pick a container full in almost the same 20 amount of time, that is e.g. from 10-1000 gr at a time, depending on the size of the container. As a consequence the costs of harvesting are reduced by 80% or more, most likely by 90% or more.
Despite the apparent advantages of the present invention, mushroom harvesting has not been developed accordingly. Further, in view of the 25 huge market potential and turnover of mushroom, the present development is of the utmost importance to mushroom harvesting. The present combination of measures taken is, however, not disclosed in the prior art, nor is there a suggestion towards these measures.
Thus the present method provides a significantly longer shelf life of 30 mushrooms, virtually no contamination by human beings, and virtually no contamination from the growth and storing environment, a cheap and fast method of harvesting, expansion of area of markets, limited transport costs, and mushrooms remain longer fresh and therefore need not to be transported and sold quickly.
The present container, as well as the use thereof, provide the above 7 advantages as well.
Further advantages are mentioned below.
DETAILED DESCRIPTION OF THE INVENTION
In a first aspect the present invention relates to a method for 5 harvesting mushrooms, comprising the steps of placing a container for growing and storing mushrooms comprising a bottom part having a lower part, with said lower part on a surface of a substrate used for mushroom growth, which bottom part comprises one or more first apertures in the lower part thereof, 10 growing mushrooms through the one or more first apertures into the container, and harvesting grown mushrooms by removing the container comprising the mushrooms.
The invention is based on the idea that minimum exposure of the 15 mushrooms, especially when growing, to outside environment keeps them healthy and less prone to contamination. The cultivation of mushrooms in the claimed invention keeps the mushrooms untouched right from the beginning until reached to the consumer. As such a premium brand of mushrooms is obtained.
An important difference with prior art methods is that harvesting mushrooms is not 20 performed by human beings, at least not by picking them manually one by one. Further, the present method per se could be further automated, in the sense that harvesting could be done fully automatically with machines. Such machines are adapted to pick containers comprising mushrooms.
The term "mushroom" is used herein to refer to any type of 25 mushroom, specifically edible and medicinal mushrooms. The term therefor includes the most familiar cultivated mushroom, Agaricus bisporus, and also includes other types of mushrooms, such as oyster mushrooms, criminy mushrooms, portobello mushrooms and shiitake mushrooms, just to mention a few.
The Agaricus bisporus is the most important mushroom in terms of 30 units of production. A preferred embodiment of the present invention is therefore specifically applicable to Agaricus bisporus.
The present container should be suitable for growing and storing mushrooms. These containers are further detailed below. A container that is suitable for growing implies that at a point in time during growth a mushroom grows inside 8 said container, whereas the substrate comprising nutrients, is outside the container. It further implies that mushrooms are largely inside said container when growing, specifically with their cap and stem, and only their foot is outside the container, in other words mushrooms grow through the bottom plate of a container.
5 Each container is placed on a substrate for mushroom growth. The substrate may be spread out through a large production unit, as in prior art methods. Nowadays the substrate typically comprises one or more layers, typically a compost layer and a peat layer on top thereof, though some of the above mentioned mushrooms require specific other substrates and configurations. However, any 10 other type of substrate is envisaged, as long as the substrate is capable of producing mushrooms. The container is placed with it's bottom part on or close by the substrate.
As mushrooms start pinning, the mushrooms will grow through the one or more first apertures being present. Fruiting bodies will subsequently appear 15 and grow further into the container. Surprisingly, and rather unexpected, the mushrooms will mainly appear in the apertures available, and not or almost not underneath the bottom plate. This is even further unexpected in that in principle the full area of the growing bed is available, especially the total area underneath the bottom part of the container, and virtually no pins or mushrooms are formed there. 20 As a consequence the present method and containers are very effective in gathering growing mushrooms into the space available in the container. Virtually no mushrooms are lost in the harvesting process. Even further, any losses are already much less than those in prior art methods. As such in the present method the yield of mushrooms in terms of kilograms per unit area is equal, though in most cases 25 larger than the yield of prior art methods. On the other hand, losses during harvesting are largely avoided, e.g. as the mushrooms stay untouched by human beings. The growth conditions are typically comparable to prior art methods. However, due to the presence of a container the mushrooms grow more spontaneously, which may partly be atributed to a better protection of the 30 mushrooms.
.When mushrooms have reached a required size or age the containers can be harvested, either by hand or automatically.
Harvesting of a container can be done one by one, that is sequentially removing an individual container from the substrate, or by harvesting a 9 set of containers one by one, such as a set shown in figures 14-18. A set of containers can for instance be placed in a tray. A set may comprise from 2-20 containers, or more, as is possible from a practical point of view. The containers are removed from the substrate, preferably by rotating the present container forth and 5 back, preferably a few times. As a consequence of said method the mushrooms maintain longer healthy. Even further, the mushrooms, being situated in the container, can now be harvested by a machine, without jeopardizing the quality and/or health of the mushrooms. So also mushrooms harvested by a machine have the best possible quality.
10 Preferably the containers have a transparent part, preferably the top part thereof. The transparent part is then used to monitor the growth, either manually, or by visual aids, such as a camera. The camera can be monitored by an operator, or by a controller. Said operator or controller, e.g. a computer comprising software capable of interpreting visual information, is used to monitor growth of 15 mushrooms, and adapt growth conditions, such a temperature, humidity, and moisture level of the substrate, if applicable. Further, the controller or operator determines the moment of harvesting. Then either an automated system is started to harvest the mushrooms, or human beings are instructed to start harvesting.
When the mushrooms are harvested they can be stored in a cooled 20 environment, or shipped.
In a further preferred embodiment the present method is followed by the step of directly shipping and/or marketing of the container.
When the mushrooms have been harvested these are preferably directly shipped and placed on the market, being as fresh as possible. The present 25 method and container provide such direct action.
As a consequence the mushrooms appear on the market much quicker, and more fresh.
In a second aspect the present invention relates to a container for growing and storing mushrooms comprising a top part and a bottom part, preferably 30 being removably attached, wherein the bottom part comprises a substantially flat lower part with one or more first apertures and preferably a shallow base, and wherein the top part preferably comprises a maintainer for moisture level and one or more micro environment conditions.
The present container is suited for growing and storing mushrooms.
10
Important therein is e.g. that micro environmental conditions can be controlled for longer period of time, mushrooms can be grown directly in the container, mushrooms can be stored in the container, for instance mushrooms should remain fresh as long as possible, mushrooms should be protected from physical damage as 5 much as possible, etc.
Preferably the present container comprises a top and bottom part. Consumer can than by removing the top part obtain access to the mushrooms. Therefore the top and bottom part are preferably removably attached to each other. In a further preferred embodiment the top part and bottom part are attached by 10 means of pins in one part and holes for receiving said pins in the other part. As such the two part are easily detachable.
To allow growth of mushrooms the bottom part comprises one or more apertures. The apertures need to be present in the substantially flat lower part ("bottom") of the bottom part. The substantially flat lower part as such forms a plane, 15 in which the apertures appear. Depending on the size of the mushrooms grown, these apertures are preferably placed at a distance apart from each other, which distance is approximately half the diameter of the cap of the mushroom. Further, the first apertures are preferably placed at a similar distance from the side walls of the bottom part.
20 In order to improve pinning and further growth of mushrooms the bottom part preferably comprises a shallow base.
As micro environmental conditions and moisture level during growth and during storing are important, the top part preferably comprises a maintainer therefore.
25 In a preferred embodiment the present container comprises a maintainer that comprises one or more second apertures. Such second apertures maintain the micro environmental conditions and moisture level during growth and during storing. The size of the second apertures and the number thereof can be adjusted by the person skilled in the art to obtain the required maintenance, for each 30 respective case, i.e. for each type, size, and number of mushrooms grown, and combinations thereof. Typically 5-10 second apertures are present, each having an area of 0.2-1 cm2.
In a preferred embodiment the container according to the invention comprises further means for preventing and/or reducing effects of contamination.
11
Such means are for instance compositions comprising fungicide, insecticide, bactericide, etc, which are acceptable from a food point of view, that is not being poisonous of harmful to human beings.
In a further preferred embodiment the container according to the 5 invention, comprises a bottom part which comprises 0.01-1 first apertures/cm2, preferably 0.05-0.8 first apertures/cm2, more preferably 0.1-0.7 first apertures/cm2, even more preferably 0.25-0.6 first apertures/cm2. In a further method the number of apertures are used to control the number of mushrooms growing in the present container. As such, the mushrooms appear in a certain density, i.e. number of 10 mushrooms per unit area. The number of first apertures within the present container depends further on the size of container, that is the surface area of the bottom part of the container and number of apertures per unit area are limiting features.
The first apertures are preferably covered with a casing material for fruiting. Such a material supports the growth of mushrooms in an early stage of the 15 growth process.
In a further preferred embodiment the container comprises first apertures that have an area of 0.25-10 cm2/aperture, preferably of 0.5-5 cm2 /aperture. In a further method the size of apertures is used to control the size of the mushrooms growing, i.e. fewer apertures have large mushrooms growing, and more 20 apertures have smaller mushrooms growing. The above is based on the insight that mushrooms have to compete amongst them for nutrients being present in the substrate; fewer apertures allow for larger mushrooms, whereas more apertures allow for smaller mushrooms, as a consequence thereof. In a further method the size of the aperture is varied throughout the container. As such the container 25 comprises mushrooms in various sizes, as required. Further, the container is optimally filled with mushrooms, both in terms of space occupies as well as in terms of optimal conditions for growing and storing.
In a further preferred method size and number of mushrooms are controlled by adjusting the number of first apertures and sizes thereof. As such a 30 large variety of sizes and number of mushrooms can be obtained.
In a further preferred embodiment the container comprises first apertures that have a round shape, an oval shape, or a multigonal shape, such as a square or rectangular shape, a hexagonal shape, a octagonal shape, or combinations thereof. The round shape is preferred, as it relates best to the natural 12 shape of the stem of the mushroom. Other shapes are envisaged as well.
In a further preferred embodiment the container according to the invention is made of plastic, paper, soft board, cardboard, fibre, wood, or any synthetic material such as polyethylene, polystyrene or even made up of metal with 5 defined apertures/holes on the base, or combinations thereof, and preferably part of the material used is transparent to visible light.
The shape of the present container can be any shape, that is round, oval, square, multigonal, etc. For transport purposed the shape is preferably square, rectangular or hexagonal. Special shapes are also envisaged. For instance, a heart 10 shaped container could be used on Valentines day, star shaped at Christmas, but also special shapes for children, e.g. in the form of cartoon figures, are envisaged.
In a third aspect the present invention relates to use of a container according to the invention for harvesting mushrooms.
The invention is further detailed by the accompanying figures, which 15 are exemplary and explanatory of nature and are not limiting the scope of the invention.
DESCRIPTION OF THE DRAWINGS / FIGURES
The invention although described in detailed explanatory context may be best understood in conjunction with the accompanying figures and 20 photographs.
Fig. 1 is a view of a round substrate container composed of shallow base with three apertures and the deep top lid separated. The shallow base allows more room for growing mushrooms and poses less resistance to them.
Fig.2 A view of the round substrate container composed of base 25 with three apertures and the closed top lid. The secure lid is also perforated for air exchange and removal of excess moisture.
Fig.3 Is a small round mushroom container with a shallow base plate and a detachable lid. This small container also has 3 apertures for the emerging mushrooms.
30 Fig.4 A rectangular medium sized container with apertures at the bottom plate and perforation on the hinged lid.
Fig.5 Another type of round deep large container with a flat shallow top lid. The top cover has a specific perforation for gaseous exchange. The wider upper region of the container allows more space for the growing mushrooms.
13
Fig. 6 Is a square shaped small deep substrate container with detachable cover. It has lesser capacity for mushrooms and suitable for a consumer who do not require more mushrooms at a time.
Fig.7 Another view of rectangular container mounted on the 5 compost on the compost bed. The see through capability provide chance to view and monitor the growing mushrooms all the time.
Fig.8 The large round container placed on the compost tray and ready to initiate the process of growing.
Fig.9 View of the sequential arrangement of large round containers 10 on the small 2'x2'compost bed.
Fig. 10 The arrangement of large round containers with deep covers is being set on the tray.
Fig. 11 A view of the rectangular trays placed on the compost bed are equipped with case and are started to grow.
15 Fig. 12 A set of the small round containers with shallow base.
Fig. 13 Shows a large round containers on the compost bed with full of mushrooms and ready to be detached.
Fig. 14 A view of the small compost tray with small round containers shows growing mushrooms.
20 Fig. 15 Mushrooms are growing in the medium sized rectangular trays.
Fig. 16 A view of growing mushrooms in the shallow based round containers.
Fig. 17 Mushrooms started to grow in the deep based round 25 containers.
Fig. 18 A comparative view of the small round container with the shallow base.
Fig. 19 Shows a SEM picture of pinning mycelium of Agaricus bisporus.
30 Fig. 20 Shows a picture of mushrooms growing in a commercial mushroom farm.
DETAILED DESCRIPTION OF THE DRAWINGS Figure 1 is a view of a round substrate container composed of a shallow base with in this example three apertures in the bottom part thereof and a 14 top part which is separated from the bottom part. The shallow base allows for more space for growing mushrooms and further poses less resistance to the mushrooms. In Figure 1 no mushrooms are visible. A typical diameter of the container is 10 cm.
Figure 2 shows a round substrate container composed of a bottom 5 part with three apertures therein and a top part which forms a closed container with the bottom part. The top part also comprises second apertures for exchange of air and removal of excess moisture. A typical size of the container is 10 cm.
Figure 3 shows a small round mushroom container with a shallow bottom plate and a detachable top plate. The small container also has three 10 apertures in the bottom part for the emerging mushrooms, which are not visible in Figure 3. Further, the to part as one larger second aperture and a few smaller apertures. The shape of the top part is multigonal, whereas the shade of the bottom part is substantially circular.
Figure 4 shows a rectangular medium sized container, with various 15 first apertures in the bottom part thereof, and perforations in the hinged lid, being attached to the bottom part and forming the top part of the container. The size of this rectangular container is about 20 cm x 10 cm. The container offers space for some seven mushrooms, the mushrooms being of relatively large size. Bottom apertures are in the order of 1 cm2 area. The perforations in the hinged lid are in the order of 20 0.5 cm2.
Figure 5 shows another type of a circular deep and large container with a flat shallow top part. The top part has various second apertures visible for gaseous exchange and for removal of excess moisture. Various water droplets are visible on the flat shallow top part. The wider upper region of the container allows for 25 more space for the growing mushrooms. The bottom part has various first apertures. The diameter of the container is about 15 cm.
Figure 6 shows a square shaped small deep container, with a detachable top part. As a consequence of lesser space being available the container has lesser capacity for mushrooms, and is therefore suitable for a customer who 30 does not require many mushrooms at a time for consumption. The typical dimensions are 10 cm x 10 cm. In the top part no apertures are visible, whereas in the bottom part various first apertures are present.
Figure 7 relates to a rectangular container, which container is mounted on the compost on a compost bed. It has various first apertures in the 15 bottom part, of approximately 2 cm2 area, and it has openings in the top part in the hinged lid. The dimensions are about 15 cm x about 30 cm. The container is transparent, and therefore it provides a capability to view a monitor growing mushrooms over time. This ability provides the opportunity to control growth of 5 mushrooms adequately and to determine the most advantageous time of harvesting the mushrooms inside the container.
Figure 8 shows a relatively large circular container, placed on a compost tray and ready to initiate the process of growing mushrooms. It has two second apertures in the top part, and various apertures in the bottom part. The size 10 of the container is about 15 cm, whereas the area of the second aperture is about 1 cm2. Being transparent, the container offers similar advantages as the container of Figure 7.
Figure 9 shows a sequential arrangement of large round containers on a relatively small 2' x 2’ compost bed. Each container is about 20 cm in diameter. 15 The top part of each container comprises various relatively small second apertures.
Figure 10 shows an arrangement of large round containers with deep covers that is being set on a tray. The top part of the container comprises two second apertures, the diameter of the containers is about 20 cm. The arrangement of containers is in principle ready for transport.
20 Figure 11 shows a view of rectangular trays placed on a compost bed which are provided with casing material and are started to grow mushrooms. The mushrooms appear through the first apertures in the bottom part of the container. The size of the rectangular containers is about 15 cm x about 25 cm. The to part of the container comprises apertures in the hinged lid.
25 Figure 12 shows a set of small round containers with a shallow base, as described in Figure 3. These containers are placed on a compost bed of 2' x 2'.
Figure 13 shows one large container placed on a compost bed. The container is clearly full with mushrooms and is therefore ready to be harvested. The 30 top part has various second apertures, whereas the bottom part as various first apertures. Through the first apertures a large variety in terms of size of mushrooms is grown.
Figure 14 shows a view of a small compost tray with small round containers. Each of the containers comprises growing mushrooms. Again the large 16 variety in size of growing mushrooms can be observed. The top part of the container has grown larger second apertures, whereas the bottom part has various first apertures.
Figure 15 relates to a tray of rectangular containers. Each container 5 comprises various mushrooms. The hinged lid of the top part of the container comprises various second apertures. The set of containers is placed on a tray. Again it can be seen that the containers comprise a large variety in terms of size of mushrooms.
Figure 16 shows similar containers as those in Figure 10. A series 10 of containers is placed on a tray. Therein mushrooms are growing in the shallow based round containers.
Figure 17 shows mushrooms that are starting to grow in deep based round containers. The top part of the container comprises various second apertures.
Figure 18 shows a comparative view of small round containers with 15 a shallow base. Again therein various mushrooms are growing. The containers are comparable to those of Figure 14.
Fig. 19 Shows a SEM picture of pinning mycelium of Agaricus bisporus. The pins are the clear white areas in the SEM picture. Eventually these pins penetrate through the one or more first apertures of the present containers.
20 Fig. 20 Shows a picture of mushrooms (Agaricus Bisporus) growing in a commercial mushroom farm. The size of such a farm is typically in the order of tens of meters by a multitude thereof. The farm is subdivided in beds in order to allow access by human beings to the mushrooms to be harvested.
25 103 7 183

Claims (10)

1. Werkwijze voor het oogsten van paddestoelen, omvattend de stappen van 5 het plaatsen van een houder voor het groeien en opslaan van paddestoelen, omvattend een bodemgedeelte met een lager gedeelte, met het lager gedeelte op een oppervlak van een substraat bruikbaar voor paddestoelengroei, welk bodemgedeelte één of meer eerste openingen in het lagere deel daarvan omvat, 10 het groeien van paddestoelen door de een of meer eerste openingen in de houder, en het oogsten van gegroeide paddestoelen door het verwijderen van de houder die de paddestoelen omvat.A method for harvesting mushrooms, comprising the steps of placing a container for growing and storing mushrooms, comprising a bottom portion with a lower portion, with the lower portion on a surface of a substrate usable for mushroom growth, bottom part comprises one or more first openings in the lower part thereof, growing mushrooms through the one or more first openings in the holder, and harvesting grown mushrooms by removing the holder comprising the mushrooms. 2. Werkwijze voor het oogsten van de paddestoelen volgens conclusie 15 1, gevolgd door de stap van het direct verschepen en/of op de markt brengen van de houder.Method for harvesting the mushrooms according to claim 15, followed by the step of direct shipping and / or placing the container on the market. 3. Houder voor het groeien en opslaan van paddestoelen omvattend een bovengedeelte en een ondergedeelte, bij voorkeur verwijderbaar aan elkaar bevestigd, waarbij het bodemgedeelte een in hoofdzaak vlak ondergedeelte omvat 20 met één of meer eerste openingen en bij voorkeur een vlakke basis, en waarbij het bovengedeelte bij voorkeur een regelaar voor vochtgehalte en één of meer micro-omgevingsomstandigheden omvat.3. Mushroom growing and storage container comprising an upper part and a lower part, preferably removably attached to each other, the bottom part comprising a substantially flat lower part with one or more first openings and preferably a flat base, and wherein the upper portion preferably comprises a moisture content controller and one or more microenvironmental conditions. 4. Houder volgens conclusie 3, waarbij de regelaar één of meer tweede openingen omvat.The container of claim 3, wherein the controller comprises one or more second openings. 5. Houder volgens één van de conclusies 3-4, waarbij het bovengedeelte en ondergedeelte aan elkaar verbonden zijn door middel van pinnen in één gedeelte en gaten voor het ontvangen van de genoemde pinnen in het andere gedeelte.A holder according to any of claims 3-4, wherein the upper part and lower part are connected to each other by means of pins in one part and holes for receiving said pins in the other part. 6. Houder volgens één van de conclusies 3-5, verder omvattend 30 middelen voor het voorkomen en/of verminderen van verontreinigingseffecten.6. Container as claimed in any of the claims 3-5, further comprising means for preventing and / or reducing pollution effects. 7. Houder volgens één van de conclusies 3-6, waarbij het bodemgedeelte 0,2-1 eerste openingen/cm2 omvat, bij voorkeur 0,5-0,8 eerste openingen/cm2, waarbij de eerste openingen een oppervlak van 0,25-10 cm2/opening hebben, bij voorkeur 0,5-5 cm2/opening, waarbij de openingen 1037183 bij voorkeur een ronde vorm, een ovale vorm, of een meerhoekige vorm hebben, zoals een vierkante of rechthoekige vorm, een hexagonale vorm, een octagonale vorm, of combinaties daarvan.7. Container as claimed in any of the claims 3-6, wherein the bottom part comprises 0.2-1 first openings / cm 2, preferably 0.5-0.8 first openings / cm 2, wherein the first openings have a surface of 0.25 Have -10 cm 2 / aperture, preferably 0.5-5 cm 2 / aperture, the apertures 1037183 preferably having a round shape, an oval shape, or a polygonal shape, such as a square or rectangular shape, a hexagonal shape, a octagonal shape, or combinations thereof. 8. Houder volgens een van de eerdere conclusies, waarbij de houder 5 vervaardig is uit plastic, papier, zachtboard, karton, of combinaties daarvan, en waarbij bij voorkeur een gedeelte van het materiaal transparant is voor zichtbaar licht.8. Holder as claimed in any of the foregoing claims, wherein the holder is made of plastic, paper, soft board, cardboard, or combinations thereof, and wherein preferably a part of the material is transparent to visible light. 9. Gebruik van een container volgens één van de conclusies 3-8 voor het oogsten van paddestoelen.Use of a container according to any of claims 3-8 for harvesting mushrooms. 10 103718310 1037183
NL1037183A 2009-08-07 2009-08-07 New method in commercial mushroom harvesting. NL1037183C2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL1037183A NL1037183C2 (en) 2009-08-07 2009-08-07 New method in commercial mushroom harvesting.
CA2770295A CA2770295A1 (en) 2009-08-07 2010-08-09 New method in commercial mushroom harvesting
PCT/NL2010/050501 WO2011016727A1 (en) 2009-08-07 2010-08-09 New method in commercial mushroom harvesting
US13/389,100 US20120247007A1 (en) 2009-08-07 2010-08-09 Method in commercial mushroom harvesting
EP10742609A EP2461663A1 (en) 2009-08-07 2010-08-09 New method in commercial mushroom harvesting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1037183 2009-08-07
NL1037183A NL1037183C2 (en) 2009-08-07 2009-08-07 New method in commercial mushroom harvesting.

Publications (1)

Publication Number Publication Date
NL1037183C2 true NL1037183C2 (en) 2011-02-08

Family

ID=41724811

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1037183A NL1037183C2 (en) 2009-08-07 2009-08-07 New method in commercial mushroom harvesting.

Country Status (5)

Country Link
US (1) US20120247007A1 (en)
EP (1) EP2461663A1 (en)
CA (1) CA2770295A1 (en)
NL (1) NL1037183C2 (en)
WO (1) WO2011016727A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545915B2 (en) * 2008-05-02 2013-10-01 Oakshire Holdings, Inc. Method and apparatus for vitamin D enhancement in mushrooms
US9326540B2 (en) 2012-09-27 2016-05-03 Oakshire Holdings, Inc. Method and apparatus for vitamin D enhancement in mushrooms
US20160205981A1 (en) 2012-09-27 2016-07-21 Oakshire Holdings, Inc. Method and apparatus for vitamin d enhancement in mushrooms
BE1020875A4 (en) * 2013-06-28 2014-06-03 Archiduc Usil Bvba HOLDER AND METHOD FOR COMMERCIAL GROWING, STORAGE, TRANSPORTATION AND / OR SALE OF MUSHROOMS.
CN103519144A (en) * 2013-09-17 2014-01-22 李德新 Castanopsis hystrix mushroom production processing method
US9386751B2 (en) * 2013-11-15 2016-07-12 Donnie Lee Creekmore Apparatus, system and method for producing fungi for use in a ecosystem
US11657488B2 (en) * 2017-12-15 2023-05-23 Vineland Research And Innovation Centre Methods and systems related to mushroom ripeness determination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2457346A1 (en) * 1974-12-04 1976-06-10 Hans Joachim Dipl Ing Welz Producing mushrooms in individual, transportable containers - which contain a dry nutrient, opt. a substrate and seed, water being added when the food is needed
WO1991018498A1 (en) * 1990-06-04 1991-12-12 Home-Harvest Mushrooms Limited Improvements relating to the production of mushrooms
WO2003067961A1 (en) * 2002-02-18 2003-08-21 Meszaros Ferenc Process for mushroom cultivation and the storage device used in the method
WO2008076075A1 (en) * 2006-12-19 2008-06-26 Loong Keng Lim Packaging systems for the control of relative humidity of fresh fruits, vegetables and flowers with simultaneous regulation of carbon dioxide and oxygen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1224649A (en) * 1959-05-20 1960-06-24 Support for globular bodies such as fruit, egg, etc.
FR2559648B1 (en) 1984-02-16 1988-07-08 Air Liquide PROCESS FOR THE PRESERVATION OF PERISHABLE VEGETABLE FOODSTUFFS
NL9200541A (en) 1992-03-24 1993-10-18 Jacobus Adrianus Maria Oostvog METHOD FOR PACKING MUSHROOMS READY FOR USE IN AN INERT ATMOSPHERE.
US5590489A (en) * 1993-09-28 1997-01-07 House Foods Corporation Method for growing fruit body of Fistulina hepatica
FR2710492B1 (en) * 1993-09-29 1997-08-01 Compac Int Inc Bag for growing mushroom white.
US6016627A (en) * 1998-04-03 2000-01-25 Nobile; John R. Composite mushroom growing tray
US6109011A (en) * 1998-07-08 2000-08-29 Iyer; Satish R. Method and apparatus for cultivation and harvesting of mushrooms and other plant material
GB2339766A (en) * 1998-07-23 2000-02-09 Infia Srl A container suitable for fruit and vegetables and the like
US6367191B1 (en) * 1999-10-26 2002-04-09 Kabushiki Kaisha Hokken Method of sawdust-based cultivation of shiitake (Cortinellus shiitake) and a cultivation water tank used for the method
US6419930B2 (en) * 2000-05-12 2002-07-16 Kirin Beer Kabushiki Kaisha Pharmacological composition having blood pressure reductive activity
US6907691B2 (en) * 2002-06-26 2005-06-21 Stewart C. Miller Cultivation of morchella
US20080217330A1 (en) * 2007-03-08 2008-09-11 David Franz Baum Produce containers and interchangeable, high-density packing system using same
US8001719B2 (en) * 2008-06-16 2011-08-23 Ecovative Design, LLC Method for producing rapidly renewable chitinous material using fungal fruiting bodies and product made thereby
US20110277383A1 (en) * 2010-05-12 2011-11-17 B.T.T.R. Ventures Llc Methods, Devices and Kits for Mushroom Production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2457346A1 (en) * 1974-12-04 1976-06-10 Hans Joachim Dipl Ing Welz Producing mushrooms in individual, transportable containers - which contain a dry nutrient, opt. a substrate and seed, water being added when the food is needed
WO1991018498A1 (en) * 1990-06-04 1991-12-12 Home-Harvest Mushrooms Limited Improvements relating to the production of mushrooms
WO2003067961A1 (en) * 2002-02-18 2003-08-21 Meszaros Ferenc Process for mushroom cultivation and the storage device used in the method
WO2008076075A1 (en) * 2006-12-19 2008-06-26 Loong Keng Lim Packaging systems for the control of relative humidity of fresh fruits, vegetables and flowers with simultaneous regulation of carbon dioxide and oxygen

Also Published As

Publication number Publication date
CA2770295A1 (en) 2011-02-10
WO2011016727A1 (en) 2011-02-10
US20120247007A1 (en) 2012-10-04
EP2461663A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
NL1037183C2 (en) New method in commercial mushroom harvesting.
Hailu et al. Review on postharvest technology of banana fruit
Paltrinieri et al. Handling of fresh fruits, vegetables and root crops: A training manual for grenada
Faqeerzada et al. Postharvest technologies for fruits and vegetables in South Asian countries: a review
CN101637149A (en) Production method of predacious mite with characteristic of insect killing and mite killing
Filgueiras et al. Cashew apple for fresh consumption: research on harvest and postharvest technology in Brazil
Work The tomato
NL2008703C2 (en) Harvesting of mushrooms.
US20190000130A1 (en) Agricultural system and method for lettuce
Aribi Date Harvest
Paull et al. Pineapple harvesting and postharvest handling
Osei-Kwarteng et al. Harvesting, storage, postharvest management, and marketing of Hibiscus sabdariffa
Maurya et al. Cultivation Techniques of Oyster Mushroom (Pleurotus sp.)
Belay Review on factors of harvested banana fruits safety and quality and its effects
KR200365551Y1 (en) Mushroom planting receptacle
Abirami et al. Small/Large Scale Production, Cost Benefits Analysis, and Marketing of Milky Mushroom
CN115530235B (en) Method for storing and preserving fresh hazelnuts
Waghmare et al. Chapter-7 Post-Harvest Losses of Fruits
Greiby et al. Postharvest Handling of Dates
Gayathri et al. Production, Cost Benefit Analysis and Marketing of Oyster Mushroom
GB2266439A (en) Plant package; method of forming plant package.
EP2481278A1 (en) Kit for household production of forced / blanched vegetables and method for making the same
Verma et al. Harvesting and Handling of Fruits and Vegetable Crops for Higher Income
Rahman et al. Influence of storage temperature and packaging materials on post-harvest quality and shelf life of moringa (Moringa oleifera) pods
Joseph ARTISANAL FRUITS AND VEGETABLES

Legal Events

Date Code Title Description
SD Assignments of patents

Effective date: 20120717

V1 Lapsed because of non-payment of the annual fee

Effective date: 20150301