MXPA99005077A - - Google Patents
Info
- Publication number
- MXPA99005077A MXPA99005077A MXPA/A/1999/005077A MX9905077A MXPA99005077A MX PA99005077 A MXPA99005077 A MX PA99005077A MX 9905077 A MX9905077 A MX 9905077A MX PA99005077 A MXPA99005077 A MX PA99005077A
- Authority
- MX
- Mexico
- Prior art keywords
- further characterized
- granules according
- formula
- atom
- alkoxy
- Prior art date
Links
- 239000000203 mixture Substances 0.000 claims description 77
- -1 alkoxy alcohol Chemical compound 0.000 claims description 41
- 239000008187 granular material Substances 0.000 claims description 38
- 239000011780 sodium chloride Substances 0.000 claims description 38
- 238000004061 bleaching Methods 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 30
- 125000004429 atoms Chemical group 0.000 claims description 29
- 150000003839 salts Chemical class 0.000 claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 15
- 239000004094 surface-active agent Substances 0.000 claims description 15
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 239000007844 bleaching agent Substances 0.000 claims description 13
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 12
- 102000004190 Enzymes Human genes 0.000 claims description 11
- 108090000790 Enzymes Proteins 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000002738 chelating agent Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 239000004927 clay Substances 0.000 claims description 9
- 229910052570 clay Inorganic materials 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 9
- 230000002378 acidificating Effects 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N al2o3 Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 8
- PZZYQPZGQPZBDN-UHFFFAOYSA-N Aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 claims description 7
- RMAQACBXLXPBSY-UHFFFAOYSA-N Silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 7
- 125000004432 carbon atoms Chemical group C* 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 150000001412 amines Chemical group 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 125000004367 cycloalkylaryl group Chemical group 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 230000036571 hydration Effects 0.000 claims description 4
- 238000006703 hydration reaction Methods 0.000 claims description 4
- 125000004430 oxygen atoms Chemical group O* 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000004434 sulfur atoms Chemical group 0.000 claims description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000004433 nitrogen atoms Chemical group N* 0.000 claims description 2
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N silicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000011236 particulate material Substances 0.000 claims 3
- 238000005282 brightening Methods 0.000 claims 1
- 150000003335 secondary amines Chemical class 0.000 claims 1
- 150000003512 tertiary amines Chemical class 0.000 claims 1
- 150000002825 nitriles Chemical group 0.000 description 37
- 238000007792 addition Methods 0.000 description 25
- 239000012190 activator Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- WEVYAHXRMPXWCK-UHFFFAOYSA-N acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 14
- 238000004140 cleaning Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- LELOWRISYMNNSU-UHFFFAOYSA-N Hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- YNAVUWVOSKDBBP-UHFFFAOYSA-N morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 11
- 229940113083 morpholine Drugs 0.000 description 11
- 150000004965 peroxy acids Chemical class 0.000 description 11
- 230000002829 reduced Effects 0.000 description 11
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 239000003599 detergent Substances 0.000 description 10
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 239000010457 zeolite Substances 0.000 description 10
- 239000000975 dye Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000002978 peroxides Chemical class 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- LTYRAPJYLUPLCI-UHFFFAOYSA-N 2-hydroxyacetonitrile Chemical class OCC#N LTYRAPJYLUPLCI-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 235000019256 formaldehyde Nutrition 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N oxane Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- OZAIFHULBGXAKX-UHFFFAOYSA-N precursor Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 102000013142 Amylases Human genes 0.000 description 5
- 108010065511 Amylases Proteins 0.000 description 5
- 102000014961 Protein Precursors Human genes 0.000 description 5
- 108010078762 Protein Precursors Proteins 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 230000000240 adjuvant Effects 0.000 description 5
- 239000002168 alkylating agent Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000001187 sodium carbonate Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 239000008247 solid mixture Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- DFNYGALUNNFWKJ-UHFFFAOYSA-N Aminoacetonitrile Chemical compound NCC#N DFNYGALUNNFWKJ-UHFFFAOYSA-N 0.000 description 4
- 108091005771 Peptidases Proteins 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 150000008051 alkyl sulfates Chemical class 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000005624 silicic acid group Chemical class 0.000 description 4
- OOSOCAXREAGIGA-UHFFFAOYSA-N 2-morpholin-4-ylacetonitrile Chemical compound N#CCN1CCOCC1 OOSOCAXREAGIGA-UHFFFAOYSA-N 0.000 description 3
- 229940025131 Amylases Drugs 0.000 description 3
- 108091005650 Basic proteases Proteins 0.000 description 3
- 229940088598 Enzyme Drugs 0.000 description 3
- JBUKJLNBQDQXLI-UHFFFAOYSA-N Sodium perborate Chemical compound [Na+].[Na+].O[B-]1(O)OO[B-](O)(O)OO1 JBUKJLNBQDQXLI-UHFFFAOYSA-N 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N Sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical class [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- WFACTXCBWPYESL-UHFFFAOYSA-O acetonitrile;4-methylmorpholin-4-ium Chemical compound CC#N.C[NH+]1CCOCC1 WFACTXCBWPYESL-UHFFFAOYSA-O 0.000 description 3
- 230000003213 activating Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000005712 crystallization Effects 0.000 description 3
- VFNGKCDDZUSWLR-UHFFFAOYSA-L disulfate(2-) Chemical compound [O-]S(=O)(=O)OS([O-])(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-L 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-O methylammonium Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 230000001590 oxidative Effects 0.000 description 3
- PNIJRIIGBGFYHF-UHFFFAOYSA-N perborate(2-) Chemical compound O[B-]1(O)OO[B-](O)(O)OO1 PNIJRIIGBGFYHF-UHFFFAOYSA-N 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 230000001603 reducing Effects 0.000 description 3
- 230000001105 regulatory Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 229960001922 sodium perborate Drugs 0.000 description 3
- VQOIVBPFDDLTSX-UHFFFAOYSA-M sodium;3-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC(S([O-])(=O)=O)=C1 VQOIVBPFDDLTSX-UHFFFAOYSA-M 0.000 description 3
- MDGXUEVTGARGDK-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane;hydrate Chemical compound O.[Na+].[O-]OB=O MDGXUEVTGARGDK-UHFFFAOYSA-M 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000002194 synthesizing Effects 0.000 description 3
- 230000002087 whitening Effects 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate dianion Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N Citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N Dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- 102000033147 ERVK-25 Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- MBABOKRGFJTBAE-UHFFFAOYSA-N Methyl methanesulfonate Chemical compound COS(C)(=O)=O MBABOKRGFJTBAE-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N Palmitic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 102000035443 Peptidases Human genes 0.000 description 2
- 229920002266 Pluriol® Polymers 0.000 description 2
- WYTGDNHDOZPMIW-UHOFOFEASA-O Serpentine Natural products O=C(OC)C=1[C@@H]2[C@@H]([C@@H](C)OC=1)C[n+]1c(c3[nH]c4c(c3cc1)cccc4)C2 WYTGDNHDOZPMIW-UHOFOFEASA-O 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000008052 alkyl sulfonates Chemical class 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 230000000903 blocking Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- VRZVPALEJCLXPR-UHFFFAOYSA-N ethyl 4-methylbenzenesulfonate Chemical compound CCOS(=O)(=O)C1=CC=C(C)C=C1 VRZVPALEJCLXPR-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000004882 lipase Human genes 0.000 description 2
- 108090001060 lipase Proteins 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L mgso4 Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 150000002829 nitrogen Chemical group 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- 229910052904 quartz Inorganic materials 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N 1,2-Diaminopropane Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N 1,2-ethanediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- PDELQDSYLBLPQO-UHFFFAOYSA-N 2,3,3a,4,5,6,7,7a-octahydro-1H-indole Chemical compound C1CCCC2NCCC21 PDELQDSYLBLPQO-UHFFFAOYSA-N 0.000 description 1
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 description 1
- SJRJJKPEHAURKC-UHFFFAOYSA-O 4-methylmorpholin-4-ium Chemical compound C[NH+]1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-O 0.000 description 1
- WXICWQGWDGVMIP-UHFFFAOYSA-N 4-methylmorpholin-4-ium;methyl sulfate Chemical compound COS([O-])(=O)=O.C[NH+]1CCOCC1 WXICWQGWDGVMIP-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N ATMP Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K Aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N Ammonium carbamate Chemical class [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N Anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-N Azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N Benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N Boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- QCPFJPZWONXMQL-UHFFFAOYSA-O CC#N.CC[NH+]1CCOCC1 Chemical compound CC#N.CC[NH+]1CCOCC1 QCPFJPZWONXMQL-UHFFFAOYSA-O 0.000 description 1
- BPKZVJPBJFSFKI-UHFFFAOYSA-N CC#N.C[NH+]1CCOCC1.Cc1ccc(cc1)S([O-])(=O)=O Chemical compound CC#N.C[NH+]1CCOCC1.Cc1ccc(cc1)S([O-])(=O)=O BPKZVJPBJFSFKI-UHFFFAOYSA-N 0.000 description 1
- 229940106157 CELLULASE Drugs 0.000 description 1
- 102100007082 CYP51A1 Human genes 0.000 description 1
- 101710037807 CYP51A1 Proteins 0.000 description 1
- SXVBHNXTPNLOKR-FCLWLKJISA-L Calcium alginate Chemical compound [Ca+2].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O SXVBHNXTPNLOKR-FCLWLKJISA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Didronel Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N Diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N Diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N Dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 229940040461 Lipase Drugs 0.000 description 1
- 102100005475 MMAB Human genes 0.000 description 1
- 101700045755 MMAB Proteins 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 235000008098 Oxalis acetosella Nutrition 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N Simethicone Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-M Sodium percarbonate Chemical compound [Na+].OOC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- MRQIXHXHHPWVIL-ISLYRVAYSA-N Sudan I Chemical compound OC1=CC=C2C=CC=CC2=C1\N=N\C1=CC=CC=C1 MRQIXHXHHPWVIL-ISLYRVAYSA-N 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N Sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 240000008214 Trifolium repens Species 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N Trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Tris Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XLRPYZSEQKXZAA-OCAPTIKFSA-N Tropane Chemical compound C1CC[C@H]2CC[C@@H]1N2C XLRPYZSEQKXZAA-OCAPTIKFSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- LCBBGWNPTCIBSY-UHFFFAOYSA-O acetonitrile;4-butylmorpholin-4-ium Chemical compound CC#N.CCCC[NH+]1CCOCC1 LCBBGWNPTCIBSY-UHFFFAOYSA-O 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000008361 aminoacetonitriles Chemical class 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940027983 antiseptics and disinfectants Quaternary ammonium compounds Drugs 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical class [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 description 1
- WXQWKYFPCLREEY-UHFFFAOYSA-O azanium;ethanol Chemical class [NH4+].CCO.CCO.CCO WXQWKYFPCLREEY-UHFFFAOYSA-O 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-O azepan-1-ium Chemical compound C1CCC[NH2+]CC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-O 0.000 description 1
- HONIICLYMWZJFZ-UHFFFAOYSA-O azetidin-1-ium Chemical compound C1C[NH2+]C1 HONIICLYMWZJFZ-UHFFFAOYSA-O 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-O aziridinium Chemical compound C1C[NH2+]1 NOWKCMXCCJGMRR-UHFFFAOYSA-O 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- KXEMXOYVVPLGSD-UHFFFAOYSA-N benzene-1,3-dicarboperoxoic acid Chemical compound OOC(=O)C1=CC=CC(C(=O)OO)=C1 KXEMXOYVVPLGSD-UHFFFAOYSA-N 0.000 description 1
- 230000001851 biosynthetic Effects 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N borate Chemical class [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbamate Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 230000001112 coagulant Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- PVIDQNKZSHDOQA-UHFFFAOYSA-N diethyl 2-hexanoylpropanedioate Chemical compound CCCCCC(=O)C(C(=O)OCC)C(=O)OCC PVIDQNKZSHDOQA-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- NJXPQVNXQNPYRT-UHFFFAOYSA-L disodium;3-amino-4-[[4-[4-[[4-(4-methylphenyl)sulfonyloxyphenyl]diazenyl]phenyl]phenyl]diazenyl]naphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].C1=CC(C)=CC=C1S(=O)(=O)OC1=CC=C(N=NC=2C=CC(=CC=2)C=2C=CC(=CC=2)N=NC=2C3=CC=C(C=C3C=C(C=2N)S([O-])(=O)=O)S([O-])(=O)=O)C=C1 NJXPQVNXQNPYRT-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N ethanolamine Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N fumaric acid Chemical compound OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing Effects 0.000 description 1
- 230000002209 hydrophobic Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory Effects 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LRPCLTPZMUIPFK-UHFFFAOYSA-L methane;sulfate Chemical compound C.[O-]S([O-])(=O)=O LRPCLTPZMUIPFK-UHFFFAOYSA-L 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate Chemical class CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L na2so4 Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 230000001264 neutralization Effects 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N p-acetaminophenol Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 229940044652 phenolsulfonate Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-O piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001888 polyacrylic acid Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- FZNRKIBWFTTZJK-UHFFFAOYSA-N prop-1-en-2-yl hexanoate Chemical compound CCCCCC(=O)OC(C)=C FZNRKIBWFTTZJK-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000001698 pyrogenic Effects 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O pyrrolidinium Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000007921 spray Chemical class 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Description
GRANULATED COMPOSITIONS OF N-ALKYLAMONIO ACETONITRILE PE COMPOUNDS
FIELD OF THE INVENTION
The present invention generally relates to n-alkylammonium acetonitrile compounds useful in applications such as bleaching and cleaning, and particularly in the form of granules useful for oxidative applications when dissolved in the presence of an active oxygen source. This application is a continuation in part of serial number 08 / 475,292, filed on June 7, 1995, entitled "N-alkyl ammonium acetonitrile bleach activators," inventors Arbogast et al .; of common allocation in the present.
BACKGROUND OF THE INVENTION
Peroxy compounds are effective bleaching agents, and compositions that include mono- or diperoxy acid compounds are useful for the operations of industrial or domestic laundries. For example, the Patent of E.U.A. 3,996,152, issued December 7, 1976, Edwards et al., Describe bleaching compositions including peroxygen compounds such as diperazelaic acid and diperisophthalic acid.
Peroxyacids (also known as "perished") have typically been prepared by the reaction of carboxylic acids with hydrogen peroxide in the presence of sulfuric acid. For example, the patent of E.U.A. 4,337,213, inventors Marynowski et al., Issued June 29, 1982, describe a method for making diperoxy acids in which high solids yield can be achieved. However, granulated bleach products containing peroxyacid compounds tend to lose bleaching activity during storage, due to the decomposition of the peroxyacid. The relative instability of the peroxyacid may present a problem of storage stability to the compositions consisting or including peroxyacids. One approach to the problem of the reduced bleaching activity of the peroxyacid compositions has been to include activators of hydrogen peroxide or an active oxygen source. The patent of E.U.A. No. 4,283,301, inventor Diehl, issued August 11, 1981, discloses bleaching compositions including peroxygen bleaching compounds, such as sodium perborate monohydrate or sodium perborate tetrahydrate, and activating compounds such as isopropenyl hexanoate and hexanoylmalonic acid diethyl ester. Other examples of activators include tetraacetylethylenediamine
(TAED), nonanoyloxybenzenesulfonate (NOBS), and nonanoylglycolate phenolsulfonate (NOGPS). NOBS and TAED are described, for example, in the U.S. Patent. 4,417,934, Chung et al., And NOGPS is described, for example, in the U.S. Patent. 4,778,618, Fong et al., The descriptions of which are incorporated herein by reference. In this way, the patent of E.U.A. 4,778, 618, Fong and others; issued on October 18, 1988, provides new bleaching compositions comprising perishing precursors with the general structure
GOLD
II I II R-C-O-C-C- L I Fí¬
wherein R is branched linear alkyl of C 1-20, alkylethyloxy, cycloalkyl, aryl, substituted aryl; R 'and R "are independently H, C1-20 alkyl, aryl, C1-20 alkylaryl, substituted aryl, and N + R3, wherein Ra is C1-30 alkyl, and wherein L is a leaving group which can be displaced in peroxygen bleach solution by the peroxide anion US Patents 5,182,045 issued January 26, 1993, and 5,391,812, issued February 21, 1995, inventors Rowland et al. similar, but are polyglycolates of the precursors, or activators of Fong monoglycolate and others US Patent 4,915,963, issued April 10, 1990, Aoyagi et al., discloses that said compounds are peracid precursors having nitrile moieties. U.S. Patent 5,236,616, issued August 17, 1993, inventors Oakes et al., describes that said compounds are cationic peroxyacid precursors having nitrile portions. Such nitrile-containing activators do not contain a leaving group, such as the Fong and other leaving groups, but instead include a quaternary ammonium group suggested to activate the nitrile and, under the reaction or perhydrolysis in the presence of hydrogen peroxide , generate a peroxyimidic acid as bleaching species. Activators of Aoyagi and others include an aromatic ring, which tends to cause yellowing of the fabric. The German patent application P4431212.1, published on March 7, 1996 describes the production of quaternized glycinonitriles in the form of stable aqueous solutions. New peroxygen activators that provide excellent bleaching and that can be formulated for liquid or solid compositions are still desirable for applications such as laundry and household bleaching and cleaning.
BRIEF DESCRIPTION OF THE INVENTION
In one aspect of the present invention nitriles are provided in substantially solid form, having the structure of formula I.
FORMULA I
N '? 1- "CR2R3oC = N. Y ° .ZH O
where A is a saturated ring consisting of 5 atoms in addition to the NL atom the five saturated ring atoms being four carbon atoms and one heterogeneous atom, the Ri bond replaces the Ni atom of the structure of formula I including (a ) an alkyl or alkoxylated alkyl of C1-2 wherein the alkoxy is C2-4, (b) a cycloalkyl of C4-2, (c) an alkaryl of C7-24, (d) an alkoxy of • repeating or not- repeating or alkoxylated alcohol, wherein the alkoxy unit is C2-, or (e) -CR2R3C = N wherein R2 and R3 are each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or alkoxy or alkoxylated alcohol of repetition or non-repetition, where the alkoxy units are C2-4. The compounds of the formula I have a quaternary nitrogen atom (Ni), requiring the presence of at least one counterion (Y) to be associated therewith, which is illustrated in formula I "Y9", but as already understood , it can be monovalent or multivalent. And it includes counterions, or organic and inorganic anions such as chlorine, bromine, nitrate, alkylsulfate, disulfate, sulfate, tosylate, and mesylate. Especially preferred are methylisulfate, sulfate, bisulfate, tosylate and mixtures thereof. Z will be on a scale from 0 to 10. Said compounds or salts are particularly suitable for granular bleaching and cleaning compositions. Nitriles with the structure of formula I are particularly useful when formulated as compositions that include an active oxygen source, and said compositions provide excellent bleaches in alkaline solutions. Preferred embodiments include lower alkyl substituted in Ni, ie, N-methylmorpholinium acetonitrile, N-ethylmorpholinium acetonitrile, N-butylmorpholinium acetonitrile, which is also illustrated by formula II (with "n" preferably being 0 to 24, where "Y" is one of the counterions described above).
FORMULA II
A particularly preferred embodiment is an acetonitrile salt of N-methylmorpholinium wherein "n" of formula II is 0. Preferred embodiments are in granular form so that nitriles are stabilized and protected even when formulated or mixed with other components . Compositions including such nitriles are useful, for example, in laundry products such as bleaching additives, detergents, detergency builders, detergents with bleach, bleaches, bleaching aids, stain removers, and stain treatment products such as removers. of stain, auxiliary for laundry of prewash and preenjabonamiento. Among the advantages derived from said compositions are the improved cleaning, removal of stain, removal of dirt, whitening and polishing of treated articles.
DETAILED DESCRIPTION OF THE PREFERRED MODALITIES
The application with serial number 08 / 475,291, filed on June 7, 1995, entitled "N-Alkyl Ammonium Acetonitrile Bleach Activators," describes nitriles, typically quaternized, for which a preferred embodiment was acetonitrile methylisulfate of N- methylammonium, with which this request is related. There are several aspects of the present invention. One aspect is where quaternized novel nitriles are provided having certain counterions that result in substantially reduced hygroscopicity (with respect to acetonitrile methanesulfate of amorphous N-methylammonium, or MMAMS). Another aspect is where the novel nitriles are supplied as granules when transported, coated, or mixed with a suitable particular material. Said granules have improved the stability and / or reduced hygroscopic characteristics with respect to the amorphous MMAMS. Yet another aspect of the invention is for an improved method of manufacturing quaternized novel nitriles to have reduced amounts of the unwanted byproduct. Said inventive aspects have a common element of certain novel nitriles with the structure generally illustrated by the formula I The Ni atom of the compound of the formula I is part of a saturated ring, illustrated by "A" in the formula I.
FORMULA I
This saturated ring, of which N-i is a part that has a plurality of atoms. The saturated ring screened by the "A" ring in the formula I preferably has at least one heterogeneous atom in the saturated ring in the N al addition most preferably wherein the ring includes an oxygen atom, a sulfur atom, one or two additional nitrogen atoms. At least one nitrogen in the saturated ring (Ni) shown in formula I is N-acetonitrile substituted and also quaternized. Without being limited by theory, the attraction nature of the quaternary hydrogen electron can be increased by being part of a saturated, heterocyclic ring and can also function to improve the hydrophilic character of the oxidant.
A substituent RT will bind to the Ni atom of the structure of formula I and additionally a portion of nitrile (-CR2R3C = N) is linked to the Ni atom, wherein R2 and R3 are H, a C? -24 alkyl, cycloalkyl , or alkaryl, or a repeating or non-repeating alkoxy or alkoxy alcohol wherein the alkoxy unit is C2-4. The R 1 substituent may be a C 24 alkyl or alkoxylated alkyl wherein C 2 -4 alkoxy, C 4-24 cycloalkyl, C 7-24 alkaryl, a non-repeating or non-repeating alkoxy or alkoxylated alcohol, wherein the alkoxy unit is C2-, and illustrative of said groups are, for example,
OH)
where j = 1 to 24. It is substituent Ri can also be another and again R2 and R3 are H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or non-repeating alkoxy or alkoxylated alcohol wherein the alkoxy unit is C2-4, and illustrative of said groups are:
(C
where j = 1 to 24.
Particularly preferred are the saturated rings which form the cyclic configuration A of the formula I which contains 6 atoms including the Ni atom, but the number of atoms forming the cyclic configuration can vary from 3 to 9. When two heterogeneous atoms are present with the cyclic configuration A of formula I, then a ring of three members is unusual; but, for the cyclic configuration B of formula III shown below, where only Ni can be Ni as the only heterogeneous atom, then the rings of three members are very similar. As mentioned above, the particularly preferred saturated ring, of which Ni is a part, has 5 atoms in addition to Ni, with at least one heterogeneous atom being found in the saturated ring in addition to Ni, preferably wherein the heterogeneous atom of the ring is an oxygen atom or a sulfur atom, most preferably wherein the heterogeneous atom is oxygen. Particularly preferred activator modalities are illustrated by formula II (wherein "Y" and "Z" will be described later, "n" is from 0 to 24).
FORMULA
Y ° - ZH 2 O Derivatives of the nitriles of the formulas I and II include peroxymetric intermediates which are formed from the nitriles in the presence of an active oxygen source. Already formed, the peroxypic derivatives will typically be short-lived intermediates formed in situ when the nitriles of the invention interact with a source of hydrogen peroxide and wherein the reactive nitrile portion forms a peroxydic acid. However, said peroxydic derivatives can also be prepared in situ by analogy to the synthesis known in the art.
Counterions Although the new nitrile compounds are normally quaternized, they will include at least one counterion (called "Y"). Suitable counterions are monovalent or multivalent and include tosylates, lower alkyltosylate (i.e., methyltosylate and ethyltosylate) and mesylates. Further, in the copending application mentioned above with serial number 08 / 475,292, issued June 17, 1995, N-alkylammonium acetonitrile compounds are described as typically including a wide variety of counterions, such as chlorine, bromine, nitrate , alkyl sulfate and the like, and wherein a preferred embodiment was described therein as the acetonitrile methylisulfate of N-methylammonium. When the granule appearance is selected in the present invention then such a wide variety of counterions remains available by selecting which counterion can be desired, including the methylisulfate as a counter ion. The above is due to the fact that most granule modalities protect the stability of the nitrile (for example, against moisture during storage). However, the new nitrile compounds do not need to be in granulated form to be suitable for various applications and to provide stabilized compounds against moisture collection. A particularly preferred embodiment of the present is wherein the counterions are sulfate, bisulfate, or mixtures thereof. Said sulfate or bisulfate salt (or mixtures thereof) can be produced from a heated and acidified N-methylmorpholinium methylsulfate methylisulfate, or MMAMS (wherein the counterion before conversion to bisulfate or sulfate is methylisulfate). The two particularly preferred salts are illustrated by the formulas IIIA and IIIB. A third particularly preferred salt, N-methylmorpholinium acetonitrile tosylate ("MMATS"), is illustrated by the formula NIC.
FORMULA III
IIIA IIIB
SO '4 I MMAB MMATS The modalities of MMABS, MMAS and MMATS are particularly useful where a substantially solid composition is desired to have reduced hydroscopicity with respect to MMAMS. Although the modalities of
MMABS, MMAS; and MMATS can also be in granular form, they do not need to be in such form, and they are useful in crystalline or amorphous forms. The sulfate and disulfate counterions are in equilibrium with each other in solution, and the predominant species are independent of the pH solution. Above pH 2, the sulphate group predominates, while below the pH 2, the disulfate form predominates. In this way, the particular desired form can be obtained by controlling the pH solution, although a mixture is obtained at an intermediate pH. However, the particularly preferred embodiment is where the granules are provided when the nitrile salt is bisulfate, which has crystallized, the crystals have been redissolved and the solution is granulated (thus having impurities removed).
Water content of nitrile The novel nitriles can exist as anhydrous salts (essentially free of water) or as stable hydrates having discrete amounts of water of hydration. Thus, in formulas I and II, Z is on a scale from 0 to 10, preferably from 0 to 6, and most preferably from 0 to 1. Said "Z" can be seen as an average number of moles. of hydration. Because mixtures of the compounds of formulas I and II may be with integer mole numbers of hydration, the actual value for Z may be a non-integer value. The value for Z can be reduced when a novel crystalline or amorphous form of nitrile is converted to a granular form.
Physical form of the nitriles The amorphous forms of the nitriles of the formulas I and II can be obtained by rapid evaporation or precipitation of the solutions (such as spray drying, column drying and the like). Alternatively, the crystalline salts can be obtained by crystallization or careful evaporation, the crystalline forms of which tend to be less hygroscopic than the amorphous forms. It is believed that said reduced hygroscopicity of the crystalline salts, without being limited by theory, due to the tight packing of the molecules within the crystal, prevents the penetration of water volume and the reduced total surface area of a crystalline solid compared to a amorphous of the same solid. The granule modalities can also be prepared from the nitriles in the crystallized or amorphous forms.
Amazing Properties of Nitrile Granules Granulated forms have the advantage of being stable on the shelf (ie, they remain able to flow without clumping, forming cakes or otherwise agglomerating) and maintaining their bleaching effectiveness until they are use, even when the granules are formulated or mixed with other components, such as sources of alkalinity and active oxygen. In addition, the granule protection allows the use of a smaller amount of nitriles in granulated formulations used in bleaching and laundry preparations which reduces possible damage to the dye. Dye damage can be caused by dissolving the formulations when they are inadvertently placed in direct contact with textiles that have particularly sensitive pigments.
Bleaching and cleaning compositions The bleaching and cleaning compositions of the invention include the nitrile salts of the formula I as activator, together with an active oxygen source. The peroxide or active oxygen source for the compositions of the invention can be selected from the alkaline earth metal salts of percabonate, perborate, persilicate and adducts of hydrogen peroxide and hydrogen peroxide. Most preferred are sodium percarbonate, perborate, sodium mono- and tetrahydrate, and hydrogen peroxide. Other sources of peroxygen may also be possible, such as monopersulfates and monoperphosphates, or their equivalent aqueous forms, such as monopersulfuric acid, known in the market as Caro or Caroat acid, a product of BASF AG, Germany.
The activating peroxide scale is preferably determined as a molar ratio of peroxide to activator. In this way, the peroxide scale for each activator is a molar ratio of from about 0.1: 1 to 100: 1, most preferably from about 1: 1 to 10: 1 and most preferably from about 2: 1 to 8: 1. Said per activating peroxide / peroxide composition should provide approximately 0.5 to 100 ppm O.A .; most preferably about 1 to 50 ppm of O.A peracid (active oxygen), and most preferably about 1 to 20 ppm of O.A. of peracid in an aqueous medium for typical applications for laundry. The formulations intended for hard surface cleaning will typically have more peracid activator / peroxide, providing about 0.5 to 1,000 ppm O.A., most preferably about 1 to 500 ppm O.A. of peracid, and most preferably from about 1 to 200 ppm O.A. of peracid. It has been found that the compositions of the invention provide superior bleaching benefits (cleaning and removal of dirt) in common laundry soils.
Granulated modes and supply systems. The substantially solid salt activators can be used directly in a crystalline or amorphous form, for example by incorporation into a solid matrix in solid detergent bleaches. As will be described, more fully below, the preparation of the novel nitriles in the form of bisulfate or sulfate will typically be done by the conversion of another counter ion (eg, methylisulfate). The conversion can be complete or partial. In this way, a salt composition of the formula I or II can include about 1% by weight to about 99% by weight of another compound related to the compound of the formula I, but differing therefrom in counterion. The degree of conversion to bisulfate or sulfate will be directly related to the amount of hygroscopicity reduction of said salt composition. Depending on whether or not they are converted to bisulfate or sulfate, the incorporation of the novel nitrile salts into dry, or granulated, formulations can be achieved by several different embodiments. Granulated formulations have several advantages in liquid formations, such as, for example, reduced shipping costs. Other advantages are an increased stability of the nitrile activator against moisture, alkalinity (for example carbonate), against premature activation and reduction in possible damage to the dye. Typically, the precursor composition prior to granulation is of a spreadable consistency, i.e., in the form of a liquid, suspension or solution. A suitable process for the granulation can be carried out in a fluid bed or rotating cylinder agglomerator, such as described in the document US 08554,672, issued on November 8, 1995, entitled "Agglomerated Colorant Specke Exhibiting Reduced Colorant Spotting, "incorporated herein by reference.
In the granulated embodiments the nitrile salts can be coated, coated or mixed with a solid particulate, such as an inert, porous material. Said granules can also have a coating that is sufficient to retard dissolution in aqueous solution. For example, such suitable coatings include surfactants, waxes, polymers, or mixtures thereof, and powders or flow agents such as silicas and silicates. The coatings can encapsulate the nitrile-containing core. The granules preferably have an average particle size of about 3 nm to about 2 mm. For example, the activators of the invention can be dispersed in a solid or granular carrier such as silica gel, silicic acid, silicate, aluminum oxide, kaolin, aluminum silicate, mixtures or other vehicles such as clay, zeolite., organic polymers including starch and ion exchange material. Additional solids useful for vehicles include alkali metal and alkaline earth metal salts of carbonate, bicarbonate, sesquicarbonate, phosphate, chlorine, sulfate, bisulfate and borate. A high internal surface area of the vehicle materials for said granular mode is preferred. The total surface area of preference is in the range of 10 to 500 m2 / g or, especially 100 to 460 m2 / g or especially, 250 to 450 m2 / g. Although most conventional types of the chemically inert and porous materials can be used as carrier materials, silicas, silicates, precipitated silicas, aluminum oxides, various varieties of aluminum clays or silicates or mixtures thereof are preferred. Silica gels (silica gels, silicic acid gels, wax) are colloidal, formed or unformed silicic acids, of elastic to solid consistency, with a freedom to compact the pore structure and a high adsorption capacity. The silica gel surfaces usually show acidic properties. Silica gel is usually made of water-glass by reaction with mineral acids. The precipitated silicas are powders obtained by coagulation of silica particles of an aqueous medium under the influence of coagulants. Among the silicic acids, thermally generated silicic acids, ie highly dispersing Sio2 (pyrogenic) qualities (ie Aerosils® or Cab-oSils®) which are usually prepared by SiCI flame hydrolysis, can be used in particular advantageous in addition to the silicic acids which are obtained according to the wet process. In an especially preferred form of the embodiment of the present invention, use is made of silicic acid with an average particle size (agglomerate) of 100 nm or 30 mm or, especially 100 to 1.5 mm and a SiO2 content of 95 to 100. % by weight or, preferably, 98 to 100% by weight. In addition, the precipitated silicone, such as the SIPERNAT® silica material, can be used advantageously. Aluminum oxides occur in nature in, for example, the shape of clay or corundum. In this regard, aluminum oxide is present in the modification a. Industrially, a-AI O3 is obtained from bauxite, using the Bayer procedure. Suitable "active" aluminum oxides with a high specific surface area are prepared in the form of adsorbents, by precipitation processes of the aluminum salt solutions or by calcination of aluminum hydroxide. Clays are crystalline and hydrated amorphous aluminum, iron, magnesium, calcium, potassium and sodium silicates that occur naturally.
Said clays may also contain amounts of aluminum oxide and silica. Useful clays may include kaolins, serpentines, talcs, pyrophyllites, attapulgites, sepiolites, morinoiites and bauxitic clays. Said clays may undergo several procedures before use. For example, clays can be floated in air, washed with water, calcined, delaminated, activated by acid or treated with dispersants. A preferred process for providing an aluminum silicate vehicle particle is described by the document with serial No. 08 / 554,672, mentioned above, which method can also be used to provide a vehicle for a pigment or other colorant. Aluminum silicates are compounds with different proportions of AI2O3 and SiO2. The aluminum silicate minerals in which the Al occupies the lattice positions in the crystal lattice instead of Si are the aluminosilicates (ie the different varieties of aluminosilicates). ultramarine, zeolite and feldspar). The freshly precipitated aluminum silicates are finally dispersed and have a large surface area and a high adsorption capacity. Among the useful aluminosilicates are the synthetic zeolites commonly used as builders. The ratio of nitrile salt and carrier materials in a solid composition according to the invention may vary within certain limits, depending on the method of manufacturing the solid composition and the properties of the vehicle, and the end use. A preferred ratio is from 10 to 95 parts by weight of the nitrile at 5 to 90 parts by weight of the vehicle, especially 10 to 70 parts by weight of the nitrile at 10 to 70 parts by weight of the vehicle. The ratio of 50 to 90 parts by weight of formula I, to 10 to 50 parts by weight of the vehicle is especially preferred where it is desired to maximize the concentration of active formula I. A ratio of 50 to 10 parts by weight of formula I a
to 90 parts by weight of the vehicle is especially preferred where it is desired to disperse active formula I, for example to reduce localized bleaching. The parts indicated by weight are based on the anhydrous solid. For example, the granules of the invention may include a surfactant or a mixture of surfactants to constitute an amount of preferably from about 0.5 to about 50 parts by weight.
Supply System Surfactants As mentioned above, the compositions of the invention often desirably contain various amounts of surfactants, which can act as an active cleaning agent, as well as to help disperse sparingly soluble materials in liquid phase when the compositions are started to be used. The surfactants with which activators and active oxygen compositions can be combined or mixed include linear ethoxylated alcohols, such as those sold by Shell Chemical Company under the tradename Neodol. Other suitable nonionic surfactants may include other linear ethoxylated alcohols with an average length of 6 to 16 carbon atoms and averaging about 2 to 20 moles of ethylene oxide per mole of alcohol; ethoxylated, linear and branched, primary and secondary alcohols, propoxylated, with an average length of about 6 to 16 carbon atoms and averaging 0-10 moles of ethylene oxide of about 1 to 10 moles of propylene oxide per mole of alcohol; linear and branched alcohols of alkyphenoxy (polyethoxy), otherwise known as alkylphenols and ethoxylates, with an average chain length of 8 to 16 carbon atoms and averaging 1.5 to 30 moles of ethylene oxide per mole of alcohol; and mixtures thereof. Other suitable nonionic surfactants may include esters of polyoxyethylene carboxylic acid, esters of fatty acid glycerol, fatty acid and ethoxylated fatty acid alkalonamides, certain blocking copolymers of propylene oxide and ethylene oxide, and blocking polymers or propylene oxide and ethylene oxide with propoxylated ethylenediamine. Also included are said semi-polar nonionic surfactants such as amine oxides, phosphine oxides, sulfoxides and their ethoxylated derivatives. Anionic surfactants may also be suitable. Examples of such anionic surfactants may include ammonium, substituted ammonium (i.e., mono-di-, and triethanolammonium) alkali metal and alkaline earth metal salts of C6-C20 fatty acids and spray acids, linear and branched alkylbenzene sulphonates, ether sulphates, alkyl ethoxylates, ether sulfates, alkylethoxylated or propoxylated, alkylsulfates, alkyl ether sulphates, alkane sulphonates, a-colein sulphonates, hydroxyalkane sulphonates, fatty acid monoglyceride sulphates, alkyl glycerol, ether sulfates, acyl sarcosinates and acyl N-methyl taurides. Suitable cationic surfactants may include quaternary ammonium compounds in which typically one of the groups bonded to the nitrogen atom is a C12-C1S alkyl group and the other three groups are short chain alkyl groups which may bear substituents and inerts such as phenyl groups. Suitable amphoteric and zwitterionic surfactants contain an anionic water-solubilizing group, a cationic group or an hydrophobic organic group including aminocarboxylic acids and their salts, aminodicarboxylic acids and their salts, alkylbetaines, alkylaminopropylbetaines, sulphobetaines, alkylimidazolinium derivatives, certain compounds of quaternary ammonium, certain quaternary phosphonium compounds and certain tertiary sulfonium compounds.
Other common detergent adjuvants can be added if a bleaching or detergent bleach product is desired. Table 1 illustrates modalities of dry bleaching composition, incorporating the salts of formula I.
TABLE 1
COMPONENT COMPONENT SCALES (% BY WEIGHT) Surfactant: Linear alkyl benzene sulfonate (LAS) 0-15 Alkylsulfonate (AS) 0-15 Ethoxysulfate alcohol (AEOS) 0-15 Ethoxylate alcohol (AE) 0-15 Detergency detergent: Sodium carbonate 20-70 Zeolite 0-50 Polyacrylate Polymer 0-5 Sodium Silicate 0-8 Filler: Sodium Chloride 0-30 Sodium Sulfate 0-30 Water 0-5 TABLE 1 (CONTINUED)
Blanching system: Sodium perborate monohydrate 4-40 MMA1 1-10 activator Other: Enzyme (s) 2 0-3 Brightener 0-2 Coloring / pigment as necessary Perfume as necessary
1. - Nitrile, inventive, preferably MMAMS, MMAS, MMABS, or MMATS. 2. Examples that include but are not limited to protease, amylase, lipase, cellulase (alone or in combinations).
Acid / base sources The compositions of the invention, when combined with an active oxygen source, preferably function to better whiten at an alkaline pH, but become more shelf stable at an acidic pH, particularly a pH of 0- 5, most preferably 0-2, most preferably 0-1. In this way, the compositions of the invention preferably include a source of protons as an "acid rinse". The above can be achieved, for example, by adding acid, preferably at levels of about 0-50% by weight of the final solid weight to the liquid containing the nitriles before any other granulation process (mixing or drying). Preferred acids include citric acids, sulfuric acid, succinic acid, hydrochloric acid, sulfuric acid, arylsulfonic acids and alkylarylsulfonic acids, as well as polyalbrilic acid, maleic acid, nitric acid, and sulfamic acid. Most preferred are sulfuric acid and sulfurous acid. When the composition is ready for use, it is especially advantageous to have an amount of alkaline pH regulator sufficiently present to maintain a pH greater than about 8, most preferably in the range of about 8.5 to about 10.5 for the most effective bleaching, when the granules dissolve, they are dispersed in an aqueous washing system. If used as a hard surface cleaner, on the other hand it may be useful to distribute the alkaline pH regulator in a separate composition, preferably liquid. Such alkaline pH regulators include, but are not limited to, the hydroxides of alkali metal (sodium, lithium, potassium), ammonium hydroxide, alkali metal carbonate and ammonium, alkali metal and ammonium carbamates, alkali metal and ammonium polyacrylates, and alkali metal and ammonium succinates, alkali metal and ammonium alkali and additional conjugate bases of weak organic acids, such as those mentioned above. In addition, organic bases are included, such as, without limitation, ethanolamine, diethanolamine, triethanolamine, hydroxylamine, methylamine, dimethylamine and trimethylamine.
Additional functional / aesthetic adjuvants Other adjuvants (useful in cleaning and laundry applications) are optionally included in the inventive compositions. The dyes include anthraquinone and similar blue dyes. The pigments can also be used, and they can have a bluing effect by deposition on fabrics washed with a detergent bleach containing UMB.
Monoastral dyes are also possible for inclusion. Brighteners or bleaches may be included, such as stilbene, styrene and styrynaphthalene brighteners (fluorescent whitening agents), fragrances used for aesthetic purposes are commercially available from Norda, International Flavors and Fragrances, and Givaudon. The stabilizers include hydrated salts, such as magnesium sulfate and boric acid. In some of the compositions herein, the adjuvants include (and are especially preferred) a chelating or sequestering agent, and preferably a non-phosphate containing sequestrant, and most preferably, an aminopolyphosphonate. Such chelating agents help to maintain the stability of the solution of the salt activators and the active oxygen source to achieve optimum performance. In this way, the heavy metal ions act to chelate, which cause the catalyzed decomposition of the active oxygen source and (it is believed) of the peroxyidic acids formed in situ, although the above is a non-binding theory of its action and not limiting. The chelating agent is selected from a number of known agents that are effective in chelating heavy metal ions. The chelating agent must be resistant to hydrolysis and rapid oxidation by oxidants. Preferably, it must have a constant acid dissociation
(pka) of about 1-9 indicating that it dissociates at lower pHs to drive the bond to the metal cations. Acceptable amounts of the chelating agent (optional) vary from 0-1000, most preferably 5-500, most preferably 10-100 ppm chelating agent, in the wash liquor. The most preferred chelating agent is an aminopolyphosphonate, which is commercially available under the trade name Dequest of
Monsanto Company. Examples thereof are Dequest 2000, 2041, and 2060. (see also Bossu, U.S. Patent 4,473,507, column 12, line 63 to column 13, line 22 to column 13, line 22, incorporated herein by reference). A polyphosphonate, such as Dequest 2010, is also suitable for use. Other preferred chelating agents that do not contain phosphate, such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) may also be suitable for use even new ones, the preferred chelating agents being novel propylene diamine tetra acetates, such as Hampshire 1 , 3 PDTA, from WR Grace, and Chel DTPA 100 # F, from Ciba Geigy A.G. Mixtures of the above may be adequate. Additional desirable adjuvants are enzymes (augh it may also be preferred to include an enzyme stabilizer). Proteases are an especially preferred class of enzymes. Preferably they are selected from the alkaline proteases. The term "alkaline" is preferred for the pH at which the activity of the enzymes is optimal. Alkaline proteases are available from a wide variety of sources, and are typically produced from several microorganisms (ie, Bacillus subtilisis). Typical examples of alkaline proteases include Maxatasa and Maxacal from International BioSyntlhetics, Alcalasa, Savinasa, and Esperasa, all available from Novo Industri A / S. See also
Stanislowski and others; Patent of E.U.A. 4,511, 490, incorporated herein by reference. In addition, suitable enzymes are amylases, which are carbohydrate-hydrolyzing enzymes. It is also preferred to include mixtures of amylases and proteases. Suitable amylases include Rapidase, from Societe Rapidase, Milezima from Miles Laboratory, and Maxamil from International BioSynthetics. Still other suitable enzymes are cellulases, such as those described in Tai, U.S. Pat. 4,479,881, Murata et al., U.S. Patent. 4,443,355, Barbesgaard et al., U.S. Patent. 4,435,307, and Ohya et al., U.S. Patent. 3,983,082, incorporated herein by reference. Still other suitable enzymes are lipases, such as those described in Silver, U.S. Pat. 3,950,277, and Thom et al., U.S. Patent. 4,707,291, incorporated herein by reference. The hydrolytic enzyme should be present in an amount of about 0.1-5%, most preferably about 0.01-3%, and most preferably about 0.01-2% by weight of the composition. Mixtures of any of the above hydrolases are desirable, especially protease / amylase mixtures.
Antiredeposition agents, such as carboxymethylcellulose, are potentially desirable. Foam impellers, such as suitable anionic surfactants, may be suitable for inclusion herein. Similarly, in the case of excess foaming resulting from the use of certain surfactants, antifoaming agents, such as alkylated polysiloxanes, ie, dimethyl polysiloxane, would be desirable.
Size, density and shape of the preferred granule Granule particle sizes can vary from about 100 μm to about 1200 μm, most preferably 150-850 μm. The density of the granule will normally vary from about 0.5 g / c3 to about 1.0 g / c3, most preferably 0.75 g / c3 about 0.80 g / c3. A wide variety of granule shapes can be used, including spheres, hearts, moons, stars, shamrocks, cylindrical sections, and cubic sections.
Applications The compositions of the invention are useful as or in laundry products, such as bleach additives, detergents, detergency builders, bleach detergents, bleaches, bleach aids and soil removers. Among the advantages derived from the compositions of the invention is the improvement of cleaning, removal of dirt, removal of stain, whitening, and polishing of treated articles. Other product applications include household cleaning products, such as hard surface cleaners that moisten or dissolve in water before use. Exemplary surface cleaners are tile and cement cleaners, bathroom (floor, toilet and vanity) and kitchen cleaners (floor, sink and cupboard). Additionally, kitchen products such as dishwashing detergents with bleach or cleaning pads and whitening scrubbing are contemplated. Among the benefits derived from the use of the inventive compositions in such applications is the improved removal of dirt and stain and the general cleaning of the treated surfaces to remove food, rust, grime, mildew, mold and other typical soils found on said surfaces. Additionally, applications of the non-domestic product are contemplated where an effective level of general active oxygen in situ to treat water is useful. The pond and spring additives are illustrative of such applications, as well as cleaners to remove dirt on the surfaces of external concrete, stucco, lining, wood and plastic.
Preparation of Nitriles In general, N-quaternary acetonitrile compounds can be easily prepared from N-acetonitrile precursors by using selected alkyl halide and using well-known synthetic approaches, such as those described by Menschutkin, Z. Physik. Chem., 5, 589 (1890), and Z. Physik. Chem., 6, 41 (1890); Abraham, Progr. Phys. Org. Chem., 11, 1
(1974); Arnett, J. Am. Chem. Soc, 102, 5892 (1980); German Application of 05 44
312 212. All of the above are incorporated by reference. Compounds having the structure of formula I have a saturated ring formed by a plurality of atoms, which vary widely from 3 to 9, although preferably they contain six atoms including the N-i atom.
The preparation of said compounds will begin more conveniently with a compound that already have the ring formed. For example, a number of inventive nitrile preparations described below will begin with morpholine (see, for example, the structure of formula II). An example of rings with three members is aziridine, that is, N-methylacetonitrile aziridinium; as an example of four-membered rings is azetidine, ie, azetidinium of N-ethyl-acetonitrile; as an example of five-membered rings is pyrrolidine, ie N-butylacetonitrile pyrrolidinium; as an example of six-membered rings, in addition to the morpholine, piperidine is found, ie piperidinium of N-methylacetonitrile; as an example of seven-member rings is the homopiperidinium, as an example of eight-membered rings is the tropane, that is, N-methylacetonitrile-8-azabicyclo [3.2.1] octane; and, as an example of nine-membered rings is octahydroindole, that is, octahydrorindolinium of N-methylacetonitrile.
More particularly, in the preferred method of preparation, a suitable mine is reacted with a monoaldehyde or a dialdehyde and with HCN or an alkali metal cyanide in an aqueous medium (step A) followed by subsequent quatemization (step B) with an renting In step
A, the preferred reaction is on the pH scale of 8 to 14, and the pH value is maintained at not less than 2 in step B. In this way, an amine with the formula
it is reacted as in step A with a monoaldehyde or a dialdehyde R8 CHO or OHC R5 CHO, wherein R5 is a chemical bond or an alkylene bridge of Ci to C6 or an oxyethylene bridge, and R6 refers to H or C 1 to C 2 alkyl, and to hydrogen cyanide or an alkali metal cyanide in an aqueous medium. Step B is quaternization with an R 1 X alkylating agent in an aqueous medium without isolating the intermediate product from step A. Preferred alkylation agents are dimethyl sulfate, diethylsulfate, a methyl halide, an ethyl halide, dimethylcarbonate, diethylcarbonate , methyl methylate, ethyltosylate, methyl mesylate, methyl mesylate, or a benzyl halide. In step A, cyanohydrins, ie, formaldehyde cyanohydrin, can be formed as side products of the aldehyde, which is used, and a hydrogen cyanide. Said cyanohydrin does not further react with alkylating agent in step B, so that the renewed cleavage of the cyanohydrins of the aldehyde and the hydrogen cyanide in the final product is possible. Without the process according to the invention, step B usually proceeds in such a way that, as a result of the hydrolysis of the added alkylating agent, the pH value of the reaction mixture is separated from the alkaline or neutral region in the region strongly acidic with reaction time that increases. The protonation of the amine nitrogen atom of the glycinonitrile, which has not yet been quaternized, established in -, competing with alkylation - starting from a certain pH value so that, at the end of the addition of the alkylating agent, it is not carried out any other reaction of the glycinonitrile. The non-quaternized glycinonitrile in the final product may also represent an unwanted source of hydrogen cyanide. Step A generates especially good results if a pH scale of 9 to 13 or, especially, 10 to 12 is used. On that pH scale, the cyanohydrin that is formed is present in equilibrium with the aldehyde and the hydrogen cyanide for that the reformed adducts can react upon completion with the amine to give the glycinonitrile. If an excess of amine having from about 2 to 20% by mole or, especially, from about 3 to 10% by mole or, more particularly, from about 4 to 75 by mole is also used, based on the amount of cyanide of hydrogen or alkali metal cyanide that is used, then a more extensive suppression of hydrogen cyanide and auxiliary components is achieved, which releases the hydrogen cyanide in the final product. Step B generates especially good results if the pH values are not reduced below 2.5 and, especially, below 3. An optimal pH scale for the quaternization of step B is 2.5 to 5 or, especially, 3 to 4. An excess of alkylating agent containing from 10 to 40% by mole or, especially, from 15 to 25% by mole is also used based on the amount of amine that is used in step A, then a even more extensive suppression of hydrogen cyanide and secondary components, which release hydrogen cyanide, into the final product. Once the nitriles are prepared in quaternized form, the formation of the preferred bisulfate or sulfate form is preferably by heating an alkyl sulfate form in an aqueous acidic solution. For example, a suitable elevated temperature is from about 40 ° C to about 150 ° C, most preferably about 70 ° C to about 110 ° C. The aqueous acidic solution may have a pH in the range of about -1 to 6, most preferably about 0 to 3, with heating for a period of 1 to 50 hours. The aspects of the invention are now illustrated by the following examples. It will be understood that said examples are intended to illustrate, and not limit, the invention.
EXAMPLE 1
527. 2 g (6.05 moles) of morpholine were introduced into the reaction vessel and cooled to 10 ° C. In a period of one hour, 600 g (6.0 moles) of formaldehyde (30% by weight) were then measured. The addition of 161.6 g (5.94 moles) of hydrogen cyanide (99.25 wt.%) Was initiated half an hour after the addition of formaldehyde was initiated. The time of addition was one hour. During the addition, the temperature could be raised to 35 ° C and the stirring then took place for another hour at 35 ° C. Then cooling took place at 30 ° C and 927.8 g (7.35 moles) of dimethisulfate (DMS) were added for two hours at 30 ° C. During the addition of DMS, the pH value fell to the acidic region starting from 8. At pH 3.5, the regulated pH addition of the aqueous caustic soda (25% by weight) was controlled by counter so that the remaining constant pH 3.5 during the remaining addition time and the following post-reaction time of 3 hours at 30 ° C. The mixture was then heated to 50 ° C and the pH value was allowed to fall into said connection. After one hour at 50 ° C, the excess DMS was completely destroyed. The pH value was then l. Analytical results: HCN 0 ppm formaldehyde cyanohydrin 74 ppm Morpholinoacetonitrile 55 ppm (Molar ratio HCN: CH: morpholine = 1: 1.01: 1.02; morpholine molar ratio: dimethylsulphate = 1: 1.21) EXAMPLE 2
527. 2 g (6.05 moles) of morpholine were introduced into the reaction vessel and cooled to 10 ° C. 6.6 g aqueous caustic soda (20% by weight) were added to raise the pH value. In a period of one hour, 600 g (6.0 moles) of formaldehyde (30% by weight) were then measured. The adition of
161. 6 g (5.94 moles) of hydrogen cyanide (99.25% by weight) was started a half hour after initiating the addition of formaldehyde. The time of addition was one hour. During the addition, the temperature could be raised to 35 ° C and the stirring then took place for an additional hour at 35 ° C. The pH value was 11.4 at the end of said part of the synthesis. The pH was then adjusted to 8-8.2 with sulfuric acid. Then cooling took place at 30 ° C and 932.4 g (7.4 moles) of dimethisulfate (DMS) were added for two hours at 30 ° C. During the addition of DMS, the pH value fell in the acidic region starting from 8. In pH 3.5 the regulated addition of aqueous caustic soda pH (25% by weight) was controlled by counter so that the pH remained constant at 3.5 during the remaining addition time and the following post-reaction time of three hours at 30 ° C. The mixture was then heated to 50 ° C and the pH value was allowed to fall into said connection. After one hour at 50 ° C, the excess DMS was completely destroyed. The pH value was then 1. Analytical results: HCN 0 ppm formaldehyde cyanohydrin 10 ppm Morpholinoacetonitrile 20 ppm (molar ratio HCN: CH20: morpholine = 1: 1.01: 1.02, molar ratio morpholine: dimethisulfate = 1: 1.22)
EXAMPLE 3
537. 2 g (6.17 moles) of morpholine were introduced into the reaction vessel and cooled to 10 ° C. 6.6 g aqueous caustic soda (20% by weight) were added to raise the pH value. In a period of one hour, then 600 g (6.0 moles) of formadehyde (30% by weight) was measured. The addition of 161.6 g (5.94 moles) of hydrogen cyanide (99.25 wt.%) Was initiated half an hour after the addition of formaldehyde was initiated. The time of addition was one hour. During the addition, the temperature could be raised to 35 ° C and the stirring then took place for an additional hour at 35 ° C. The pH value was 11.8 at the end of said part of the synthesis. The pH was then adjusted to 8-8.2 with sulfuric acid. Then cooling took place at 30 ° C and 940 g (7.46 moles) of dimethisulfate (DMS) were added at 30 ° C. for two hours. During the addition of DMS, the pH value fell in the acidic region starting from 8. At pH 3.5, the regulated addition of aqueous caustic soda pH (25% by weight) was controlled by counter so that the pH remained constant at 3.5 during the remaining addition time and the following three-hour post-reaction time at 30 ° C. The addition of caustic soda took place with good mixing (stirring conditions of 800 revolutions / minute). The mixture was then heated to 50 ° C and the pH value could fall in said connection. After one hour at 50 ° C, the excess DMS was completely destroyed. The pH value was then 1. Analytical results: HCN 0 ppm formaldehyde cyanohydrin 0 ppm Morpholinoacetonitrile 20 ppm N-methylmorpholinium acetonitrile methylisulfate 58.0% by weight N-methylmorpholium acetamide methaulfate 3.0% by weight (Molar ratio of HCN: CH2O: morpholine = 1: 1.01: 1.04, molar ratio of morpholine: dimethisulfate = 1: 1.21) Example 4 illustrates another aspect of the invention, which is the preparation of substantially solid bisulfate salts, as prepared by MMABS .
EXAMPLE 4
The liquid metisulfate, as in any of Examples 1-3, was acidified to a pH of 0.1-1, followed by heating the resulting liquid under a slight vacuum (700-1000 mbar) in a ventilated container at temperatures of 90 -110 ° C for 3-5 hours. The resulting converted bisulfate liquid could then be crystallized and purified for the recovery of the crystalline nitrile salt, it can be dried directly on a carrier / vehicle to produce an amorphous salt, or it can be redissolved after crystallization and then prepared in granule form. A preferred approach to promote crystallization or precipitation may be by the addition of a "seed crystal", which serves as a growth site for crystal formation. Said seed crystal may be, but is not limited to, a precipitated or smoked silica, or a sample of bisulfate crystal salt. Another preferred approach is to allow the salt solution to precipitate by reducing the solubility of the crystal by cooling with time.
EXAMPLE 5
96 kg of liquid MMAMS (48.5% active) were acidified with 6.7 kg of sulfuric acid (50%) at 20 ° C and subsequently heated to 110 ° C for four and a half hours after which the solution was cooled to 30 ° C. C in a period of 18 hours. The resulting mixture was then washed with water and filtered to yield the resulting bisulfate crystal (61.7 kg). When it is desired to prepare the nitrile salts in granule form, one may make use of various methods known in the art, such as fluid bed, agglomeration, spray coating, or smelting mixing approaches, preferably at levels of about 5-40 by weight of the starting particulate weight. Said granules may have the nitrile salts carried in the solid particulate or may have the nitrile salt coated or mixed with solid particulate. Preferred coating conditions are those in which the temperature during coating is less than about 50 ° C, while the coating material is sprayed as a mixture or dispersion on the salt surface by coating or encapsulating the salt core. Example 6 illustrates different shapes of the salt core and a variety of preferred coating materials. Advance coating materials include film forming polymers, fatty acids, soaps, and other solid surfactants having a melting point above 40 ° C.
EXAMPLE 6
Nitrile salt core Preferred coating materials Purified glass salt PLURONIC 68001 Amorphous compacted salt PLURONIC 105001 Amorphous agglomerated salt PLURIOL E 60001 Amorphous acidified salt SOKALAN CP51 LUWAX V1 Polyvinyl alcohol Palmitic acid Paraffin Calcium alginate EXAMPLE 6 (CONTINUED)
POLIGEN WE31 DIOFAN 193D1
1 Commercially available from BASF AG, Germany.
Particularly preferred coating materials are PLURIOL E6000 and LUWAX V. (PLURONIC is a trademark for a series of poly (oxyethylene-co-oxypropylene) block copolymers.
EXAMPLE 7 Preparation of a MMAMS / solid acid / solid surfactant composition using a stirring method
3. 4 kg of a highly dispersed silicic acid with a total surface area of approximately 450 m2 / g and an average particle size of approximately 8 mm (SIPERNAT® 50 S from Degussa) and, additionally, 2.3 kg of a fatty alcohol with tallow base reacted with 25 moles of ethylene oxide (Lutensol® AT 25 from BASF) were stirred in 24.3 kg of a 70% by weight aqueous solution of N-methylmorpholinium acetonitrile methylisulfate (MMAMS). The liquid mixture was concentrated by evaporation in a paddle type vacuum dryer at about 10 mbar and at a ca.
80 ° C until a solid formed that was able to flow (residual water content <1% by weight). After cooling, 20 kg of the solid composition was removed. The powder was compacted by a conventional compactor to give flakes and the flakes were then broken in a conventional sieve granulator and sieved to give a usable fraction of average size of 400 to 1200 mm.
EXAMPLE 8 Manufacture of a MMAMS / silicic acid / solid surfactant composition by a spraying process
24. 3 kg of 70% by weight in MMAMS solution was sprayed on 31.6 kg of the highly dispersed silicic acid described in Example 7. The crumbly mixture was dried in a paddle type vacuum dryer at approximately 10 mbar and a wall temperature of approximately 80 ° C until a fine solid is formed which is capable of flowing (residual water content <1% by weight). The product was then agglomerated in a mixture with a 2.3 kg melt of the surfactant which was mentioned in Example 7. The final procedure to give a useful fraction of 400 to 1200 mm was carried out analogously to Example 7.
EXAMPLE 9 Effect of vehicle surfactant materials and agents on the hygroscopic characteristics or, if necessary, the flow characteristics of MMAMS
To achieve the effect of auxiliary substances on the hygroscopic characteristics or, if necessary, the flow characteristics of MMAMS, three different samples were prepared in the paddle type dryer and then stored in a dryer at room temperature and atmospheric humidity relative of 76%.
Sample 1: 2100 g MMAMS (solid) Sample 2: 3100 g MMAMS (solid) 400 g SIPERNAT 50 S Sample 3 3100 g MMAMS (solid) 400 g SIPERNAT 50 S 233 g Lutensol AT 25
All samples were prepared from a 70% by weight aqueous solution of MMAMS analogously to Example 7 and dried at 80 ° C and 10 mbar in a paddle type vacuum dryer with a volume of 5 liters until it was not generated more condensed.
In the case of examples 8 and 9, a solid of powder type obtained, which was able to flow after drying, with water contents of
0. 74% or 0.45% by weight, respectively; MMAMS without the auxiliary substances (sample 1) led to a crumbly, crumbly solid with a water content of 0.63% by weight. These solids were then ground to the same average particle size and stored in the dryer. The results are presented in the following table 2. It is clearly observed that the solid MMAMS is obtained in a high concentration and is stable in storage over a long period in a relatively atmospheric humidity of 76% only as a result of the addition of the substances designated assistants.
TABLE 2
EXAMPLE 10 Effect of vehicle materials on storage stability and dye damage characteristics
The MMAMS samples in various vehicles were prepared and placed in a bleaching composition to determine any benefit in storage stability or damage to the colorant.
Storage stability MMA methylisulfate has a higher storage stability in an inert support, such as zeolite or clay. The presence of an acid rinse, such as HLAS (alkylbenzenesulfonic acid), also boosts stability. The aqueous solution of MMA methylisulfate (3.6 of 45%) was added to 38.5 g of sodium carbonate containing 5.0 g of sodium perborate monohydrate and the dried solid. The above was compared by first adding the MMA metisulfate to 6 parts of zeolite 4A (Valfour 100 from PQ Corp.) and then adding to the sodium carbonate / perborate mixture. MMA metisulfate can also be mixed with 6 parts of clay (Attapulgite L96117 from Oil-Dry Corp.) and then added to the sodium carbonate / perborate mixture. The MMA metisulfate was also mixed with 2 parts of the same clay.
The following results in Table 3 show the surprisingly driven stability when the MMA metisulfate is incorporated into the inventive supports.
TABLE 3
Substrate of MMMA% active MMA after in carbonated / Perborate one week storage at 26.6 ° C / 80% HR MMAMS 0% MMAMS / Zeolite = 1/6 98% MMAMS / HLAS / Zeolite = 1/2/6 100% MMAMS / Clay = 1/6 100% MMAMS / Clay = 1/2 100%
Dye damage test The amount of MMAMS representing 5% of the base (sodium carbonate / perborate mixture) was placed on a diagnostic cloth (100% cotton coffee dried with Fast Orange RD, Direct Brown 5R and Rapideger Red LT ). The MMAMS was covered with the base and then 10 ml of deionized water was applied. After 10 minutes, the fabric was rinsed and dried. Dye damage was assessed visually on a scale of 0 to 10, where 0 represents non-visible damage. The same samples that were previously prepared for the stability test were used. The results again show the benefit of adding MMAMS to an inert support, with or without an acidic coagent.
Nitrile substrate Dye damage Aqueous MMA metisulfate 10 MMAMS / Zeolite = 1/6 3 MMAMS / HLAS / Zeolite = 1/2/6 1 Mmams / Clay = 1/6 1
It should be understood that while the invention has been described in conjunction with the preferred specific embodiments, the description and examples are intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims.
Claims (22)
1. - A process for the preparation of a compound having the structure of formula I
FORMULA 1 wherein A is a saturated ring formed by a plurality of atoms in addition to the Ni atom, the saturated ring atoms include at least one carbon atom and at least one of the O, S and N atoms, the substituent Ri bond at atom Ni of the structure of formula I includes any (a) an alkyl or alkoxylated of C? -24 wherein the alkoxy is C2-4, (b) a cycloalkyl of C4-24, (c) an alkaryl of C7- 24 (d) a repeating or non-repeating alkoxy or alkoxy alcohol, wherein the alkoxy unit is C2-4 or (e) -CR2R3C = N wherein R2 and R3 are H, a C-24 alkyl, cycloalkyl or alkaryl, or alkoxy or repeating or non-repeating alkoxylated alcohol wherein the alkoxy unit is C2-4, the substituents R2 and R3 are H, a d-4 alkyl, cycloalkyl or alkaryl, or repeating alkoxy or alkoxylated alcohol or non-repetition where the alkoxy unit is C2-4, Z is a value on the scale from 0 to 10, and where Y is a counter ion; a solid particulate material with which the salt is carried or with which the salt is coated or mixed. 2. The granules according to claim 1, further characterized in that A of the formula I is a saturated ring formed by four carbon atoms and an oxygen atom in addition to the Ni atom.
3. The granules according to claim 1, further characterized in that A of the formula I is a saturated ring formed by four carbon atoms and an N2 atom in addition to the Ni atom, N2 being a secondary amine, a tertiary amine which has the substituent -CR5R6CN or a quaternary amine having the substituents -R5 and CR5R6CN, and R5, further characterized in that R5 and Rβ can each be an H or C-? -6 alkyl.
4. Granules according to claim 1, further characterized in that the particulate material is in an amount of 2 to about 95 parts by weight of the granules and has a total surface area of 10 to 500 m2 / g.
5. The granules according to claim 1, further characterized in that the particulate material is silica gel, silicic acid, silicate, aluminum oxide, clay, aluminum silicate or mixtures thereof.
6. The granules according to claim 1, further characterized in that they comprise a coating sufficient to delay the dissolution in aqueous solution.
7. - The granules according to claim 1, further characterized in that they comprise an acidic agent.
8. The granules according to claim 1, having a water content, including the water of hydration, of less than about 20% by weight.
9. The granules according to claim 1, further characterized in that Ri is a lower alkyl.
10. The granules according to claim 1, further characterized in that Ri is methyl.
11. The granules according to claim 10, further characterized in that R2 and R3 are both hydrogen.
12. The granules according to claim 1, further characterized in that the counterion is sulfate, bisulfate, methylisulfate or tosylate.
13. The granules according to claim 1, further characterized in that Z of the salt is 0 to 6.
14. The granules according to claim 1, which have from 1 to 45% by weight of the salt of the Formula I within itself.
15. The granules according to claim 1, which have an average particle size of about 3 to nm 2 mm.
16. The granules according to claim 1, which include a surfactant or a mixture of surfactants in an amount of about 0.5 to about 50 parts by weight.
17. - A bleaching composition, comprising: the granules according to claim 1; and a source of active oxygen.
18. The bleaching composition according to claim 17, characterized in that it also includes an alkaline regulator.
19. The bleaching composition according to claim 17, further characterized in that it includes a chelating agent.
20. The bleaching composition according to claim 17, further characterized in that it includes one or more brightening agents and a bleaching agent.
21. The bleaching composition according to claim 17, further characterized in that it includes an enzyme.
22. The bleaching composition according to claim 17, further characterized in that from 1 to about 70% of peroxy active acid derivative is supplied based on the weight of the bleaching composition when dissolved in an alkaline solution.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/758,539 US5888419A (en) | 1995-06-07 | 1996-11-29 | Granular N-alkyl ammonium acetontrile compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
MX9905077A MX9905077A (en) | 2000-04-30 |
MXPA99005077A true MXPA99005077A (en) | 2000-05-01 |
MX208598B MX208598B (en) | 2002-06-25 |
Family
ID=25052099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MX9905077A MX208598B (en) | 1996-11-29 | 1999-05-31 | USEFUL GRANULES FOR OXIDATION APPLICATIONS WHEN DISSOLVED IN THE PRESENCE OF AN ACTIVE SOURCE OF OXYGEN, AND WHITENING COMPOSITION QUECOMPRENDE TO THESE GRANULES |
Country Status (14)
Country | Link |
---|---|
US (1) | US5888419A (en) |
EP (1) | EP0951438A4 (en) |
JP (1) | JP2001508820A (en) |
KR (1) | KR20000057298A (en) |
CN (1) | CN1126749C (en) |
AR (1) | AR010321A1 (en) |
AU (1) | AU5445898A (en) |
BR (1) | BR9713986A (en) |
CA (1) | CA2273093A1 (en) |
CO (1) | CO5040184A1 (en) |
MX (1) | MX208598B (en) |
PH (1) | PH11997058668B1 (en) |
WO (1) | WO1998023531A1 (en) |
ZA (1) | ZA9710688B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6764613B2 (en) * | 1995-06-07 | 2004-07-20 | Mid-America Commercialization Corporation | N-alkyl ammonium acetonitrile salts, methods therefor and compositions therewith |
US6010994A (en) * | 1995-06-07 | 2000-01-04 | The Clorox Company | Liquid compositions containing N-alkyl ammonium acetonitrile salts |
US6183665B1 (en) * | 1995-06-07 | 2001-02-06 | The Clorox Company | Granular N-alkyl ammonium acetonitrile compositions |
DE19649375A1 (en) * | 1996-11-29 | 1998-06-04 | Henkel Kgaa | Acetonitrile derivatives as bleach activators in detergents |
US6211130B1 (en) * | 1997-08-21 | 2001-04-03 | Henkel Kommanditgesellschaft Auf Aktien | Use of quaternary acetonitrile compounds as activators for detergents |
US20030021819A1 (en) * | 1998-02-19 | 2003-01-30 | Bio-Cide International, Inc. | Microbial and odor control using amorphous calcium silicate impregnated with sodium chlorite |
US6132748A (en) * | 1998-02-19 | 2000-10-17 | Bio-Cide International, Inc. | Method for producing chlorine dioxide using acidified expanded amorphous aluminum silicate impregnated with chlorite |
KR100630289B1 (en) * | 1998-12-15 | 2006-09-29 | 헨켈 코만디트게젤샤프트 아우프 악티엔 | Acetonitrile derivatives formulated in particulate form as bleach activators in solid detergents |
DE19908069A1 (en) * | 1999-02-25 | 2000-08-31 | Henkel Kgaa | Compounded acetonitrile derivatives as bleach activators in detergents |
DE19913995A1 (en) | 1999-03-29 | 2000-10-05 | Basf Ag | Process for the preparation of granular N-alkylamonium acetonitrile salts |
US6214782B1 (en) * | 2000-03-24 | 2001-04-10 | Unilever Home & Personal Care, Usa, Division Of Conopco, Inc. | Cationic nitriles for providing a silver tarnish benefit in machine dishwashing detergent applications |
US6277802B1 (en) * | 2000-03-24 | 2001-08-21 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Use of cationic nitriles in combination with enzymes in machine dishwashing detergent applications |
DE10038832A1 (en) * | 2000-08-04 | 2002-03-28 | Henkel Kgaa | Coated bleach activators |
DE10038845A1 (en) * | 2000-08-04 | 2002-02-21 | Henkel Kgaa | Particle-formulated acetonitrile derivatives as bleach activators in solid detergents |
DE10038180A1 (en) * | 2000-08-04 | 2002-02-14 | Reckitt Benckiser Nv | Use of a novel bleach activator compound in dishwashing detergent compositions |
DE10049237A1 (en) * | 2000-09-28 | 2002-04-11 | Basf Ag | Coated, granular N-alkylammonium acetonitrile salts and their use as a bleach activator |
DE10057045A1 (en) | 2000-11-17 | 2002-05-23 | Clariant Gmbh | Particulate bleach activators based on acetonitriles |
DE10121051A1 (en) | 2001-04-28 | 2002-10-31 | Clariant Gmbh | The builder composition |
DE10159386A1 (en) * | 2001-12-04 | 2003-06-12 | Henkel Kgaa | Process for the production of bleach activator granules |
DE10159388A1 (en) * | 2001-12-04 | 2003-06-12 | Henkel Kgaa | Process for the production of coated bleach activator granules |
US6773625B2 (en) * | 2002-08-26 | 2004-08-10 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Dry bleach compositions |
DE102004020015A1 (en) * | 2004-04-21 | 2005-11-10 | Henkel Kgaa | Textile Care |
DE102004028494A1 (en) * | 2004-06-11 | 2005-12-29 | Clariant Gmbh | Mixtures of ammonium nitrile bleach activators and amino acids |
JP2007172716A (en) * | 2005-12-20 | 2007-07-05 | Sony Corp | Apparatus, method and program for play-back, and recording medium and data structure, and apparatus, method and program for authoring |
GB0917951D0 (en) * | 2009-10-14 | 2009-11-25 | Chemlink Specialities Ltd | Composition including one or more hydrolytically unstable components |
JP5923109B2 (en) * | 2010-12-13 | 2016-05-24 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Bleaching catalyst |
WO2015164677A1 (en) | 2014-04-23 | 2015-10-29 | Gregory Van Buskirk | Cleaning formulations for chemically sensitive individuals: compositions and methods |
AU2016206650A1 (en) | 2015-01-14 | 2017-08-10 | Gregory Van Buskirk | Improved fabric treatment method for stain release |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2489950A (en) * | 1944-02-26 | 1949-11-29 | Univ Michigan | Basic-alkyl esters and their salts |
US2425693A (en) * | 1944-11-22 | 1947-08-12 | American Cyanamid Co | Preparation of aminopropionitriles |
US2625547A (en) * | 1950-01-13 | 1953-01-13 | Sterling Drug Inc | Process of preparing benzhydryl and 9-fluorenyl tertiary aminoalkanoates |
US2774758A (en) * | 1954-08-05 | 1956-12-18 | Monsanto Chemicals | Morpholine derivative |
US2868786A (en) * | 1954-12-27 | 1959-01-13 | Ravensberg G M B H | Esters of phenyl acetic acids and a process of making same |
US2851458A (en) * | 1955-06-08 | 1958-09-09 | Burroughs Wellcome Co | Diquaternary compounds and the manufacture thereof |
US2848450A (en) * | 1956-01-05 | 1958-08-19 | Grace W R & Co | Morpholinium chlorides |
US3532735A (en) * | 1968-10-07 | 1970-10-06 | Grace W R & Co | Preparation of methylenebisiminodiacetonitrile |
GB1262965A (en) * | 1969-03-21 | 1972-02-09 | Ferrosan As | Butyrophenones |
US3689470A (en) * | 1969-09-10 | 1972-09-05 | Rohm & Haas | Method of producing betaines,monomers and polymers containing betaine-type units and novel and useful copolymers thereby obtained |
US3780092A (en) * | 1969-10-20 | 1973-12-18 | Kendall & Co | Monomeric emulsion stabilizers |
DE2121013C3 (en) * | 1971-04-29 | 1981-07-30 | Bayer Ag, 5090 Leverkusen | Acyloxyalkylammonium salts, their production and use as dyeing auxiliaries |
US3882035A (en) * | 1973-03-21 | 1975-05-06 | American Cyanamid Co | Iminodiacetonitrile derivatives as peroxygen bleach activators |
DE2503582C3 (en) * | 1975-01-29 | 1979-10-04 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of N-alkylglycine nitriles |
DE2555769C3 (en) * | 1975-12-11 | 1980-01-03 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of glycine nitriles which are aliphatically substituted on the amino group |
US4086175A (en) * | 1976-02-09 | 1978-04-25 | Shell Oil Company | Activated bleaching process and compositions therefor |
US4134889A (en) * | 1976-05-08 | 1979-01-16 | Basf Aktiengesellschaft | Manufacture of glycinonitriles |
DE2620445C3 (en) * | 1976-05-08 | 1980-08-28 | Basf Ag, 6700 Ludwigshafen | Process for the production of glycine nitriles |
US4164511A (en) * | 1976-05-14 | 1979-08-14 | Basf Aktiengesellschaft | Manufacture of N-arylglycinonitriles |
PL110343B1 (en) * | 1977-11-16 | 1980-07-31 | Inst Przemyslu Organiczego | Parasite killing agent for detrimental microbes control |
US4199466A (en) * | 1978-08-21 | 1980-04-22 | Shell Oil Company | Activated bleaching process and compositions therefor |
US4215003A (en) * | 1978-11-20 | 1980-07-29 | Fmc Corporation | Peroxygen bleaching and compositions therefor |
US4342872A (en) * | 1979-02-05 | 1982-08-03 | Merck & Co., Inc. | 2-(Substitutedpiperidylmethyl) propene and propane nitriles |
US4397757A (en) * | 1979-11-16 | 1983-08-09 | Lever Brothers Company | Bleaching compositions having quarternary ammonium activators |
FI67092C (en) * | 1980-12-09 | 1985-01-10 | Unilever Nv | BLEKNINGSAKTIVATOR-KORN AVSEDDA FOER TVAETT- OCH / ELLER BLEKNINGSBLANDNINGAR |
GB8310698D0 (en) * | 1983-04-20 | 1983-05-25 | Procter & Gamble | Detergent compositions |
US4551526A (en) * | 1984-09-26 | 1985-11-05 | American Hospital Supply Corporation | Synthesis of alpha-aminonitriles |
DD263686B1 (en) * | 1985-07-05 | 1990-08-08 | Inst Pflanzenschutzforschung | FUNGICIDAL AGENTS |
JPS62225871A (en) * | 1986-03-28 | 1987-10-03 | 日立造船株式会社 | Absorber for absorption type heat pump or absorption type refrigerator |
JPS63167157A (en) * | 1986-12-27 | 1988-07-11 | Isuzu Motors Ltd | Control device for electronic control transmission |
US4751015A (en) * | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
GB8711153D0 (en) * | 1987-05-12 | 1987-06-17 | Warwick International Ltd | Bleach activator compositions |
US4915863A (en) * | 1987-08-14 | 1990-04-10 | Kao Corporation | Bleaching composition |
EP0331229B1 (en) * | 1988-03-01 | 1993-08-18 | Unilever N.V. | Quaternary ammonium compounds for use in bleaching systems |
JPH01230773A (en) * | 1988-03-11 | 1989-09-14 | Hitachi Maxell Ltd | Temperature controlling mechanism |
DE3835918A1 (en) * | 1988-10-21 | 1990-04-26 | Henkel Kgaa | METHOD FOR PRODUCING TENSIDE CONTAINING GRANULES |
JPH0696719B2 (en) * | 1988-11-30 | 1994-11-30 | 花王株式会社 | Bleaching agent and bleaching detergent composition |
GB8910725D0 (en) * | 1989-05-10 | 1989-06-28 | Unilever Plc | Bleach activation and bleaching compositions |
JPH0696720B2 (en) * | 1989-06-14 | 1994-11-30 | 花王株式会社 | Bleaching agent and bleaching detergent composition |
GB9011618D0 (en) * | 1990-05-24 | 1990-07-11 | Unilever Plc | Bleaching composition |
GB9012001D0 (en) * | 1990-05-30 | 1990-07-18 | Unilever Plc | Bleaching composition |
JP2978342B2 (en) * | 1992-10-26 | 1999-11-15 | 花王株式会社 | Bleach composition |
US5405412A (en) * | 1994-04-13 | 1995-04-11 | The Procter & Gamble Company | Bleaching compounds comprising N-acyl caprolactam and alkanoyloxybenzene sulfonate bleach activators |
US5399746A (en) * | 1994-02-07 | 1995-03-21 | Witco Corporation | Diquaternary bleach activators and compositions containing them |
US5591378A (en) * | 1994-07-06 | 1997-01-07 | The Clorox Company | Substituted benzonitriles and compositions useful for bleaching |
US5460747A (en) * | 1994-08-31 | 1995-10-24 | The Procter & Gamble Co. | Multiple-substituted bleach activators |
DE4431212A1 (en) * | 1994-09-02 | 1996-03-07 | Basf Ag | Process for the preparation of quaternized glycine nitriles |
US5534180A (en) * | 1995-02-03 | 1996-07-09 | Miracle; Gregory S. | Automatic dishwashing compositions comprising multiperacid-forming bleach activators |
US5739327A (en) * | 1995-06-07 | 1998-04-14 | The Clorox Company | N-alkyl ammonium acetonitrile bleach activators |
DE19605526A1 (en) * | 1996-02-15 | 1997-08-21 | Hoechst Ag | Ammonium nitriles and their use as bleach activators |
-
1996
- 1996-11-29 US US08/758,539 patent/US5888419A/en not_active Expired - Lifetime
-
1997
- 1997-11-18 KR KR1019990704724A patent/KR20000057298A/en not_active Application Discontinuation
- 1997-11-18 JP JP52472198A patent/JP2001508820A/en active Pending
- 1997-11-18 CN CN97181300A patent/CN1126749C/en not_active Expired - Fee Related
- 1997-11-18 CA CA002273093A patent/CA2273093A1/en not_active Abandoned
- 1997-11-18 WO PCT/US1997/021115 patent/WO1998023531A1/en not_active Application Discontinuation
- 1997-11-18 BR BR9713986-6A patent/BR9713986A/en not_active Application Discontinuation
- 1997-11-18 EP EP97948373A patent/EP0951438A4/en not_active Withdrawn
- 1997-11-18 AU AU54458/98A patent/AU5445898A/en not_active Abandoned
- 1997-11-27 ZA ZA9710688A patent/ZA9710688B/en unknown
- 1997-11-28 PH PH11997058668A patent/PH11997058668B1/en unknown
- 1997-11-28 CO CO97069844A patent/CO5040184A1/en unknown
- 1997-12-01 AR ARP970105645A patent/AR010321A1/en unknown
-
1999
- 1999-05-31 MX MX9905077A patent/MX208598B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MXPA99005077A (en) | ||
US5888419A (en) | Granular N-alkyl ammonium acetontrile compositions | |
AU746352B2 (en) | Mixed peroxygen activator compositions | |
US5739327A (en) | N-alkyl ammonium acetonitrile bleach activators | |
MXPA99005080A (en) | Mixed peroxygen activator compositions | |
EP1036070B1 (en) | N-alkyl ammonium acetonitrile salts, methods therefor and compositions therewith | |
MXPA99005078A (en) | N-alkyl ammonium acetonitrile salts, methods therefor and compositions therewith | |
US6183665B1 (en) | Granular N-alkyl ammonium acetonitrile compositions | |
US6235218B1 (en) | Process for preparing N-alkyl ammonium acetonitrile compounds | |
AU742769B2 (en) | Process for preparing N-alkyl ammonium acetonitrile compounds | |
MXPA99005076A (en) | Process for preparing n-alkyl ammonium acetonitrile compounds | |
US6764613B2 (en) | N-alkyl ammonium acetonitrile salts, methods therefor and compositions therewith | |
CA2302632A1 (en) | Granular n-alkyl ammonium acetonitrile compositions | |
AU1881402A (en) | Granular N-alkyl ammonium acetonitrile compositions | |
AU1020302A (en) | N-alkyl ammonium acetonitrile salts methods therefor and compositions therewith |