MXPA99004119A - Specie - Google Patents

Specie

Info

Publication number
MXPA99004119A
MXPA99004119A MXPA/A/1999/004119A MX9904119A MXPA99004119A MX PA99004119 A MXPA99004119 A MX PA99004119A MX 9904119 A MX9904119 A MX 9904119A MX PA99004119 A MXPA99004119 A MX PA99004119A
Authority
MX
Mexico
Prior art keywords
sequence
species
dna
primers
sec
Prior art date
Application number
MXPA/A/1999/004119A
Other languages
Spanish (es)
Inventor
G Bergeron Michel
J Picard Francois
Ouellette Marc
H Roy Paul
Original Assignee
Infectio Diagnostic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infectio Diagnostic Inc filed Critical Infectio Diagnostic Inc
Publication of MXPA99004119A publication Critical patent/MXPA99004119A/en

Links

Abstract

DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample DNA from (i) any bacterium, (ii) the species Streptococcus agalactiae, Staphylococcus saprophyticus, Enterococcus faecium, Neisseria meningitidis, Listeria monocytogenes and Candida albicans, and (iii) any species of the genera Streptococcus, Staphylococcus, Enterococcus, Neisseria and Candida are disclosed. DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample antibiotic resistance genes selected from the group consisting of blatem, blarob, blashv, blaoxa, blaZ, aadB, aacC1, aacC2, aacC3, aacA4, aac6'-IIa, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6'-aph(2''), aad(6'), vat, vga, msrA, sul and int are also disclosed. The above microbial species, genera and resistance genes are all clinically relevant and commonly encountered in a variety of clinical specimens. These DNA-based assays are rapid, accurate and can be used in clinical microbiology laboratories for routine diagnosis. These novel diagnostic tools should be useful to improve the speed and accuracy of diagnosis of microbial infections, thereby allowing more effective treatments. Diagnostic kits for (i) the universal detection and quantification of bacteria, and/or (ii) the detection, identification and quantification of the above-mentioned bacterial and fungal species and/or genera, and/or (iii) the detection, identification and quantification of the above-mentioned antibiotic resistance genes are also claimed.

Description

DNA PROBE OF SPECIFIC SPECIES, SPECIFIC GENDER AND UNIVERSAL AND AMPLIFICATION CEBATORS TO DETECT E IDENTIFY RAPIDLY BACTERIAL AND ANTIBIOTIC PATHOGENS COMMONS AND GENES OF ANTIBIOTIC RESISTANCE ASSOCIATED FROM CLINICAL SPECIMENS FOR LABORATORY DIAGNOSIS OF MICROBIOLOGY BACKGROUND OF THE INVENTION Classical methods for the identification and test of susceptibility of bacteria. Bacteria are classically identified by their ability to use different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E ™ system (bioMérieux). For the susceptibility test, clinical microbiology laboratories use methods that include disc diffusion, agar dilution and broth microdilution. Although the identifications are based on biochemical tests and bacterial susceptibility tests are cost-effective, at least two days are required to obtain preliminary results due to the need for two successive nocturnal incubations to identify the bacteria of the clinical specimens, as well as for determine susceptibility to microbial agents. There are some commercially available automatic systems (ie, the MicroScan systems from Dade Diagnostics Corp. and the Vite system from bioMepeux) which use sophisticated and expensive devices for faster microbial identification and susceptibility testing Stager and Davis, 1992, Clin. Microbiol. Rev. 5: -302-327). These systems require shorter incubation periods, thus allowing bacterial identifications and susceptibility tests to be carried out in less than 6 hours. However, these faster systems always require primary isolation of the bacteria as a pure culture, as a process that takes at least 18 hours for a pure culture or 2 days for a mixed culture. The fastest identification system, the autoSCAN-Walk-Away ™ system (Dade Diagnostic Corp.) identifies gram negative and gram-positive bacterial species from the standardized inoculum in as little as two hours and gives susceptibility patterns to most of the antibiotics in 5.5. However, this system has a particularly high percentage (ie, 3.3 to 40-5) of non-conclusive identifications with species of bacteria other than ---- ntero-bactepaceae (Croize-J., 1995, Lett. Infectiol. 10.109-113; York et al., 1992, J. Clin. Microbiol 30.2903-2910). For Enterobacteziaceae, the percentage of non-conclusive identifications was 2.7 to 11.4".
A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiological laboratories. Tables 1 and 2 give the incidence for the bacterial and fungal pathogens most commonly isolated from various types of clinical specimens. These pathogens are most frequently associated with nosocomic human infections and acquired by community and, therefore, are considered clinically very important.
Clinical specimens tested in clinical microbiology laboratories The majority of clinical specimens received in the clinical microbiology laboratory are blood and urine samples. In the microbiology laboratory of Center Hospitalier de l'Université Laval CCH-UL), the amount of urine and blood for approximately 55 and 30'-, of the specimens received, respectively, (Table 3). The remaining 1-5% of clinical specimens comprises several biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Urinary tract infections, respiratory tract and the usual bloodstream are of bacterial etiology and require antimicrobial therapy. In fact, all the clinical samples received in the clinical microbiology laboratory are routinely tested for bacterial identification and susceptibility testing.
Identification of conventional pathogens from clinical specimens Urine specimens The search for pathogens in urine specimens is so prevalent in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains in the classical semi-quantitative silver culture method wherein 1 μl of urine is marked with stripes on the plates and incubated for 18-24 hours. Then, the colonies were counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is usually associated with a bacterial count of 10"CFU / L or more in urine, however infections with less than 10 CFU / L in the urine are possible, particularly in patients with a high urine output. incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311: 560-564) Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative ( that is, bacterial count less than 10 CFU / L; Table 3). Urine specimens found positive to Through the culture they will also be characterized using standard biochemical tests to identify the bacterial pathogen and they are also tested for antibiotic susceptibility. The biochemical and susceptibility test normally requires 18-24 hours of incubation. Accurate and rapid urine screening methods for bacterial pathogens could allow faster identification of negative specimens and more efficient treatment and patient care management. Several rapid identification methods (üriscreen ™, UTIscreen ™, Flash Track ™, DNA probes and others) have been compared with slower standard biochemical methods, which are based on the cultivation of bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and deficient specific characters as well as a high number of false-positive and false-positive results (Koening et al., 1992, J: Clin Microbiol 30: 342-345; Pezzlo et al. 1992, J. Clin Microbiol 30: 640-684).
Blood specimens The blood specimens received in the microbiology laboratory are always subjected to culture. Blood culture systems can be manual, semi-automatic or fully automatic. The BACTEC systems (by Becton Dickinson) and the BacTAlert system by Qrganon Teknika Corporation) are the two most widely used automatic blood culture systems. These systems incubate blood culture bottles under optimal conditions for bacterial growth. Bacterial growth is continuously verified to detect early positives using highly sensitive bacterial growth detectors. Once growth is detected, a gram strain is formed directly after the blood culture and then used to inoculate nutrient agar plates. Subsequently, the bacterial identification and susceptibility test is performed from bacterial colonies isolated with automatic systems, as previously described. The bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, most blood cultures are reported as negative. For example, the percentage of negative blood cultures in the CHUL microbiology laboratory for the period February 1994-January 1995 was 93.1% (Table 3) Other clinical samples After receiving by the clinical microbiology laboratory, all the different body fluids Blood and urine from normally sterile sites (ie cerebrospinal, synovial, pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture. (Table 3). Regarding clinical specimens that are not sterile such as sputum or deposition specimens, the diagnosis of laboratory through the crop is more problematic due to the contamination by the normal flora. The bacterial pathogens potentially associated with the infection are purified from the contaminants and then identified as previously described. Of course, the universal detection of bacteria could not be useful for the diagnosis of "bacterial infections in these non-sterile sites." On the other hand, the tests based on DNA, for species or for detection and identification of species or genus as well as for the detection of antibiotic resistance genes from these specimens could be very useful and could offer several advantages over classical identification and susceptibility testing methods.
DNA-based assays with any clinical specimen There is an obvious need for rapid and accurate diagnostic tests for rapid detection and bacterial identification directly from clinical specimens DNA-based technologies are fast and accurate and offer great potential for improving the diagnosis of infectious diseases (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, Ameritan Society for Microbiology, Washington, D.C.). The DNA probes and the amplification primers, which are objects of the present invention, are applicable for the detection of bacterial or fungal identification directly from any clinical specimen such as cultures of blood, blood, urine, sputum, cerebrospinal fluid. , pus and other types of specimens (Table 3). The DNA-based tests proposed in this invention are superior in terms of both speed and accuracy for the standard biochemical methods currently used for routine diagnosis from any clinical specimen in microbiology laboratories. Since these tests are performed in approximately one hour, they provide physicians with new diagnostic tools that should contribute to increasing the efficiency of anti-microbial therapies. Clinical specimens from organisms other than humans (for example, other primates, birds, plants, mammals, farm animals, livestock and others) can also be tested with these assays.
A high percentage of negative specimens in culture Among all clinical specimens received for routine diagnosis, approximately 801 of urine specimens ^ and even more (about 95%) of other types of clinical specimens are negative for the presence of bacterial pathogens (Table 3). It may also be desirable, in addition to identifying bacteria at the level of species or genus in a given specimen, to classify the high proportion of negative clinical specimens with the test by detecting the presence of any bacteria (ie, universal bacterial detection). Such a classification test can be based on the amplification of DNA by PCR of a highly conserved genetic target found in all bacteria. Negative specimens for bacteria could not be amplified through this assay. On the other hand, those that are positive for bacteria could give a positive amplification signal with this assay.
Towards the development of rapid DNA-based diagnostic tests A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for identifying pathogens and resistant genes antibiotics- from clinical samples Persing et al. , 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C .; Ehrlich and Greenbert, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston. MA) _. There is no need for culture of bacterial pathogens, since organisms can be detected directly from clinical samples, thus reducing the time associated with the isolation and identification of pathogens. In addition, DNA-based assays are more accurate for bacterial identification than currently used phenotypic identification systems, which are based on biochemical tests. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of nuisance bacterial pathogens such as Myco-ac epi-m tuberculosis, Chlamydia trachoma tis, Neisseria gonorrhoeae as well as for detection of a variety of viruses (Pdodzaorske and Persing, Molecular detection and identification of microorganisms, Jn: P. Murray et al., 1995, Manual of Clinical Microbiology, ASM press, Waschington DC). There are also other possible commercially available DNA-based assays that are used for culture confirmation assays.
Others have developed DNA-based tests for the detection and identification of bacterial pathogens, which are the subjects of the present invention: Stapnylococcus spp. (patent application of U.S.A. series No. US 5 437 978), Nei ssepa spp. (U.S. Patent Application Serial No. US 5,162,199 and European Patent Application Serial No. EP 0 337 896 131) and istezia moncytogenes (U.S. Patent Application Serial Nos. US 5 389 513 and US 5 089 386). However, the diagnostic tests described in these patents are based either on rRNA genes or on genetic targets different from those described in the present invention. Although equipment or diagnostic methods already used in clinical microbiology laboratories exist, there remains a need for an advantageous alternative to conventional culture identification methods in order to improve the accuracy and speed of diagnosis of bacterial infections commonly encountered. In addition to being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests currently used for diagnosis, since the bacterial genotype (eg, DNA level) is more stable than the bacterial phenotype. (for example, metabolic level). Knowledge of the genomic-s sequences of bacterial and fungal species continuously increases as witnessed by the number of sequences available in the databases. From the readily available sequences of the databases, there is no indication from these of their potential for diagnostic purposes. To determine good candidates for diagnostic purposes, sequences can be selected for DNA-based assays for ( i) detection and identification specifies in the species of commonly detected bacterial or fungal pathogens, (ii) detection and identification specific to the genus of commonly found bacterial or fungal pathogens, (iii) universal detection of bacterial or fungal pathogens and / or (iv) the detection and specific identification of antibiotic resistance genes. All previous types of DNA-based assays can be performed directly from any type of clinical specimen or from a microbial culture. In the patent application of E.U.A. co-pending (NS 08 / 526,840) and PCT (PCT / CA / 95/00528) have been described DNA sequences suitable for (i) the detection and specific identification in the species of 12 clinically important bacterial pathogens, (ii) the universal detection of bacteria,. { iii) detection of 17 antibiotic resistance genes. This co-pending application described proprietary DNA sequences and DNA sequences selected from databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers from these sequences. All the nucleic acid sequences described in this patent application fall within the composition of diagnostic equipment and methods capable of a) detecting the presence of bacteria, b) specifically detecting the presence of 12 bacterial species and 17 genes of antibiotic resistance. However, these methods and equipment need to be improved, since the ideal equipment and method should be able to diagnose about 1001 of the microbial pathogens and antibiotic resistance genes. For example, infections caused by Entezococcus faecium have become a clinical problem due to their resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their resistance profiles are desirable. In addition, novel DNA sequences (probes and primers) capable of recognizing the same pathogens and other microbial pathogens or the same antibiotic resistance genes or other additional genes are also desirable to be able to detect more target genes and supplement the above patent application.
DECLARATION OF THE INVENTION It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and / or amplification primers for determining the presence and / or quantity of nucleic acids: from specific species or microbial genera selected from the group consisting of Streptococcus species, Stzeptococcus agalactiae, species Staphylococcas, Staphylococcus saprophyticus, species Entezococcus, Entezococcus faecium, "Neisseria species, Neisseria meningi tidis, Lis teria monocytogenes, Candida species and Candida albicans, - from an antibiotic resistance gene selected from the group consisting of --alf" -la-.0--, bla , "V, blaaxa, blaZ, aadB, aacCl, aacCZ, aacC3, aacA4, aacS '-lia, ermñ, ezmB, ezmC, mecA, vanA, vanB, vanC, sa tA, aac (6' ') -aph (2"), aad (6 '), va t, vga, mszA, sul and int, and optionally, - of any bacterial species in any sample suspected of having said nucleic acids, wherein each of the nucleic acids or a variant or part thereof, comprises a selected target region hybridizable with said probe or primers; said method comprises the steps of contacting the sample with the probes or primers and detecting the presence and / or quantity of hybridized probes or amplified products as an indication of the presence and / or the quantity of any bacterial species, specific microbial species or genus and antibiotic resistance gene. In a specific embodiment, a similar method directed to each specific microbial species or detection and identification of genus, detection of antibiotic resistance genes, and universal bacterial detection, separately, is provided. In a more specific embodiment, the method makes use of DNA fragments (owner fragments and fragments obtained from databases), selected for their ability to detect sensitive, specific and ubiquitously the bacterial or fungal target nucleic acids. In a particularly preferred embodiment, oligonucleotides of at least 12 nucleotides in length of the longest DNA fragments have been derived, and are used in the method herein as probes or amplification primers. Proprietary oligonucleotides (probes and primers) are also another object of the invention. 'Diagnostic equipment comprising probes or amplification primers for the detection of a microbial species or genus selected from the group consisting of Stzeptococcus species, Streptococcus agalactiae, species Staphylococcus, Staphyl ococcus sapzophyticus, Entezococcus species, Enterococcus faecium, Nei ssezia species, Neisseria meningi tidís, Listeria monocytogenes, Candida species and Candida albicans and other objects of the present invention. Diagnostic kits further comprising probes or amplification primers for the identification of an antibiotic resistance gene selected from the group consisting of bla.ea, blar0o, bla ,,,. ,, blama, blaZ, aadB, aacCl, aacC2, aacC3, aacA4, aacß '-lia, eriaA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac (6') -aph (2"), aad (6 '), va t, vga, msrA, sul and int, are also the subject of this invention The diagnostic equipment further comprises probes or primers for the detection of any bacterial or fungal species, comprising or not comprising those for the detection of the specific microbial species or genera listed above, and in addition comprising or not comprising probes or primers for "the antibiotic resistance genes listed above, which are also the subject of this invention. In a preferred embodiment, said equipment allows the separate and simultaneous detection and identification of the previously listed microbial species or genera, antibiotic resistance genes and for the detection of any bacteria. In the above methods and equipment, the amplification reactions may include, a > chain reaction polymerase (PCR), b) ligase chain reaction, c) amplification based on nucleic acid sequence, d) self-sustained sequence replication, e) chain structure displacement amplification, f) branched DNA signal amplification, g) transcription-mediated amplification, h) cyclization probe technology (CPTJ, i) nested PCR or) multiple PCR In a preferred embodiment, a PCR protocol is used as an amplification reaction In a particularly preferred embodiment, a protocol is provided of PCR, comprising, for each amplification cycle, an annealing step of 30 seconds at 45-55 ° C and a denaturing step of only one second at 95 ° C, without allowing any time specifically for the enlongation step. This PCR protocol has been adapted to be standardized with the DCR reactions with all selected primer pairs, which greatly facilitates the test since each clinical master can be tested with universal PCR primers, specific in kind, specific in genus and of antibiotic resistance under conditions of uniform cyclization In addition, several combinations of primer pairs can be used in multiple PCR assays. It is desired to develop a rapid test or equipment to rapidly discard all samples that are negative for bacterial cells and for subsequently detecting and identifying bacterial and / or fungal species and genus, and for rapidly determining bacterial resistance to antibiotics. Although the sequences of selected antibiotic resistance genes are available from the databases and have been used to develop DNA-based tests for detection, the appearance is unique in that it represents a major improvement over standard diagnostic methods. of current gold based on bacterial cultures. Using an amplification method for simultaneous bacterial detection and identification and detection of antibiotic resistance genes, there is no need to culture the clm-ca sample before testing. In addition, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one ba ba or uniform amplification conditions. This procedure will save lives by optimizing treatment, decrease antibiotic resistance since fewer antibiotics will be prescribed, reduce the use of broad spectrum antibiotics which are expensive, reduce the total cost of health care by avoiding or reducing hospitalizations, and reduce the time and costs associated with the clinical laboratory test.
In the methods and equipment described below, the oligonucleotide probes and the amplification primers have been derived from larger sequences (i.e., DNA fragments of at least 100 base pairs). All DNA fragments have been obtained from proprietary fragments or databases of data-s. The selected database -DNA fragments have recently been used in a method for detecting in accordance with the present invention, since they have been selected for their diagnostic potential. It is evident to those skilled in the art that other oligonucleotide sequences appropriate for (i) universal bacterial detection, (n) the detection and identification of the foregoing microbial species or genera and (m) the detection of distinct antibiotic resistance genes. those listed in Annex VI can also be derived from proprietary fragments or selected database sequences. For example, oligonucleotide primers or probes may be shorter or longer than those that have been chosen; they can also be selected from anywhere in the proprietary DNA fragments or in the selected sequences of the data bases; they can also be variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified from a given oligonucleotide PCR primer pair, the inverse form is also true; a given target DNA can also hybridize to a variant oligonucleotide probe or be amplified via a variant oligonucleotide PCR amplifier. Alternatively, the oligonucleotides can be designed from any of the DNA fragment sequences for use in amplification methods other than PCR. Consequently, the nucleus of this invention is the identification of universal DNA fragments, specific in kind, specific in genus and specific genomic or non-genic in resistance gene, which are used as a source of amplification probes and / or primers. specific or oblique oligonucleotides. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires a lot of effort, it is quite possible that anyone skilled in the art derives, from the selected DNA fragments, oligonucleotides other than those listed in Annex VI, which are suitable for diagnostic purposes. When a proprietary fragment or database sequence is selected for this specific character and ubiquitous aspect, and it increases the likelihood that subgroups of them will also be specific and ubiquitous.
Since a high percentage of clinical specimens are negative for bacteria (Table 3), the DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and database sequences. The amplification primers were selected from a gene highly conserved in bacteria and fungi, and used to detect the presence of any bacterial pathogen in clinical specimens in order to quickly determine (about one hour) whether it is positive or negative. , for bacteria. The selected gene designated tuf encodes a protein (EF-Tu) involved in the translational process during protein synthesis. The frequency alignments of the tu-f gene used to derive the universal primers include both proprietary and database sequences (Example 1 and Annex I) This strategy allows the rapid classification of the numerous negative clinical specimens (about 80% of ios received specimens, see Table 3) subjected to the bacteriological test. Tables 4, 5 and 6 provide a list of the bacterial or fungal species used to test the specific character of PCR primers and DNA probes. Table 7 gives a brief description of each amplification test, specific in gender and universal, which are objects of the present invention. Tables 8, 9 and 10 provide certain Relevant information regarding proprietary and database sequences selected for diagnostic purposes.
DETAILED DESCRIPTION OF THE INVENTION Development of DNA probes specific in kind, specific in gender, universal and specific in antibiotic resistance gene, and amplification primers for microorganisms.
Selection from databases of suitable frequencies for diagnostic purposes. In order to select sequences that are suitable for the detection and amplification of bacteria or fungi of specific species or specific genus or, alternatively for the universal detection of bacteria, the database sequences (GenBank, EMBL and SwissProt) were selected with based on its potential for diagnostic purposes according to its sequence information and the computerized analysis performed with this sequence. Initially, all sequence data available for the target microbial species or genus were carefully analyzed. The gene sequences that seemed most promising for diagnostic purposes based on sequence information and sequence comparisons with the corresponding gene in other species or microbial genera made with the Genetic Computer Group (GCG, Winscónsm) were selected for PCR testing. Optimal PCR amplification primers were selected from the selected database sequences with the aid of Ol? Go ™ 4.0 primer analysis software (National Biosciences Inc., Plymouth, Minn.). The selection primers were tested in PCR assays for their specific character and ubiquitous appearance for the target microbial species or genera. In general, the identification of database sequences from which the amplification primers suitable for detection and identification of specific species or specific genus were selected involving computer analysis and the PCR test of several sequences of candidate gene before obtaining a primer pair that is specific to the target microbial species or genus. Annex VI provides a list of specific and ubiquitous PCR primer pairs. Annexes I to V and Examples 1 to 4 illustrate the strategy used to select specific genotype, species-specific and universal PCR primers from tuf or recA gene sequences.
Design and synthesis of primers and oligonucleotide probes DNA fragments sequenced by us or selected from databases (GenBank and EMBL) were used as sources of oligonuclesides for diagnostic purposes. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of DNA fragments (size greater than 100 bp) selected from databases were tested for their specific character and ubiquitous appearance in PCR and hybridization assays as describe later. It is important to note that the database sequences were selected based on their potential to be specific, genus-specific or universal for the detection of bacteria or fungi according to the sequence information available and the extensive analysis and that, In general, several candidate database sequences had to be tested in order to obtain the specific character, the ubiquitous appearance and the desired sensitivity. Oligonucleotide probes and amplification primers derived from specific species fragments selected from database sequences were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division). Prior to synthesis, all oligonucleotides (probes for hybridization / primers for DNA amplification) were evaluated for their convenience for hybridization or amplification of DNA through poly erasa (PCR) through a computer analysis using standard programs (ie the Cenetics Computer Group (GCG) and the Oligo ™ 4.0 primer analysis software). The potential convenience of the PCR primer pairs was also evaluated before synthesis by verifying the absence of undesired aspects such as long stretches of a nucleotide and a high proportion of G or C residues at the 3 'end. { Persing et al. , 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The primers or oligonucleotide probes can be derived from either the DNA structure of the auplex chain. The probes or primers may consist of bases A, G, C or T or analogs and may be degenerate in one or more selected positions or nucleotide positions. The primers or probes can be of any suitable length and can be selected from anywhere within the DNA sequences within the proprietary fragments or sequences of selected data oases that are suitable for (i) universal bacterial detection, (n) the detection and specific identification of Enterococcus faecium, Listeria no ocytogenes, Nei ssepa memngi tidis, Staphyl ococcus sapzophyti cus, Stzeptococcus agalac tiae and Candida albicans (m) the detection of species-specific genus Stzeptococcus, Entezococcus species, Staphyl ococcus species and Neisseria species or (iv) detection of the 26 clinically important antibiotic resistance genes mentioned above. 5 Variants for a given target bacterial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Wason et al., 1987, Molecular Biology of the Gene, 4"p., The Benjamin / Cummings Publishing Company, Menlo ParkT CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same bacterial species may have one or more individual nucleotide variations or greater at the site of oligonucleotide hybridization. Those skilled in the art are aware of the existence of bacterial or fungal variant DNA sequences for a specific gene and that the frequency of the frequency variations depends on the selective pressure during the evolution of a given gene product. The detection of a variant sequence for a region between two primers of PCT can be demonstrated = ecuendc the product of amplification. In order to show the presence of sequence variants at the primer hybridization site, the larger DNA object has to be amplified with PCR primers outside of that hybridization site. The sequencing of this larger fragment will allow the detection of frequency variation on this site. A similar strategy can be applied to show variants from the hybridization site of a probe. As for the divergence of target sequences or a part thereof, the specific character and the obicy aspect of the amplification probes or probes is not affected. Variant bacterial DNA is within the scope of this invention. Variants of the selected probe primers can also be used to amplify or hybridize to a variant DNA.
Sequencing of tuf sequences from a variety of bacterial and unique species. The nucleotide sequence of a portion of tuf genes was determined for a variety of bacterial and fungal species. The amplification primers SEC DE IDENT NOS .: 107 and 108, which amplify a portion of the tuf gene of approximately 890 bp. They were used for the sequencing of bacterial tu-f sequences. The SEQ ID NO: 109 and 172 amplification primers, which amplify a tuf gene portion of approximately 830 bp, were used for the sequencing of fungal tuf sequences.
- Both primer pairs can amplify the f-ufA and t ufB genes. It's not surprising since these two genes are absolutely identical. For example, complete genes tufA and tufB coll E. differ only 13 nucleotide positions (Neidhardt et al, 1996, Esche chia coll and Salmonella. Cellular and Molecular Biology, 2 ~ '~ ed, American Society for Microbiology Press, Washington, DC.) . These amplification primers are degenerate in several nucleotide positions and contain mosses in order to allow the amplification of a wide variety of tuf sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The amplification primers SEQ ID NO: 107 and 108 can be used to amplify the tu-f genes from any bacterial species. The amplification primers SEQ ID NO: 109 and 172 can be used to amplify the tuf genes from any fungal species. The tuf genes were directly ammolified from bacterial or yeast cultures using the following amplification protocol: One μL of cell suspension was transferred directly to 19 μL of a PCR reaction mixture containing 50 mM KCl, 10 mM T is-HCl (pH 9.0 ) ,. 0.1 Triton X-100, 2.5 mM MgCl¿, IμM of each of the two primers, 200μM of each of the four dNTPs, 0.5 units Taq DNA polymerase (Promega Corp., Madison, Wl). The PCR reactions were subjected to cyclization using a MJ Research PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 minutes at 96 ° C followed by 30-35 cycles of 1 minute at 95 ° C for the denaturation step, 1 minute at 30 -50 ° C for the annealing step and 1 minute at 72 ° C for the extension stage. Subsequently, twenty microliters of the amplified sample was resolved by PCR through electroporesis on a 1.5% agarose gel. The gel was then visualized by staining with methylene blue (Flores efc al., 1992, Biotechniques, 13: 203-205). The size of the amplification products was estimated through the comparison with a 100 bp molecular weight ladder. The band corresponding to the specific amplification product (ie approximately 890 or 830 bp for bacterial or fungal tuf sequences, respectively) was cut from the agarose gel and purified using the QIAquick ™ gel extraction kit (QIAGEN Inc., Chatsworth, CA). The DNA fragment purified with gel was then used directly in the sequencing protocol. Both structures of the amplification product of the tu-f genes were sequenced through the dideoxynucleotide chain termination sequencing method using an automated DNA sequencer Applied Biosystems (model 373A) with its sequencing kit PRI? M ™ seQUENASE.- Terminator Double-stranded DNA Sequencing Kit Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA). Sequencing reactions were performed using the amplification primers SEQ ID NO: 107 to 109 and 172) and 100 ng by reaction of the gel purified amplifier. In order to ensure that the determined sequence did not contain errors attributable to the frequency of PCR artifacts, two preparations of the tff amplified product were sequenced with gel originating from two independent PCR amplifications. For all target microbial species, the sequences determined for both amplicon preparations were identical. In addition, the sequences of both structures were 100% complementary, thus confirming the high accuracy of the determined frequency. The determined tuf sequences that use the above strategy are all in the Sequence List (ie SEC DE IDENT NOS .: 118 to 146). Table 13 provides the microbial species of origin and source for each tuf sequence in the Sequence List. The alignment of the tuf sequences determined by us or selected from databases clearly reveals that the portion of the sequential length of the t-J-f genes is variable. There may be insertions or deletions of several amino acids. This explains why the size of the sequenced tu-f amplification product was variable for both bacterial and fungal species. Between the tuf sequences determined by our group, inserts and deletions were found added to 5 amino acids or 15 nucleotides. Consequently, the nucleotide positions indicated on the top of each of Annexes I to V do not correspond to the tuf sequences having "insertions" or deletions.It should be noted that the various tu-f sequences determined by us occasionally contain degenerescences. Degenerate nucleotides correspond to sequence variations between the tufA and tufB genes since the amplification primers amplify both tuf genes.These nucleotide variations were not attributable to poor nucleotide incorporations through taq DNA polymerase since the sequence in both structures were identical and also the sequences determined with both preparations of the amplified tu-f amplified with gel, were identical.
Selection of amplification primers from tuf sequences "The tuf sequences determined by us or selected from the databases were used to select PCR primers for (i) universal detection of bacteria, (ii) detection and identification of Enterococcus spp. and Staphylococcus spp. of specific genus and (ni) the arrest and amplification of Candida albicans of species specific. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of several tuf sequences. For more details regarding the selection of PCR primers from the tuf sequences, please refer to Examples 1 to 3 and Annexes I to IV.
Selection of amplification primers from reeA The comparison of the nucleotide sequence for the recA gene of several bacterial species including 5 streptococcal species allowed the selection of specific PCR primers in Streptococcus. For more details regarding the selection of PCR primers from de-ecA, refer to Example 4 and Annex V.
Isolation of the DNA fragment from Staphylococcus saprophyt cus by arbitrarily primed PCR The DNA sequences of unknown coding potential for the detection and identification of Staphylococcus saprophyticus of specific species were obtained through "arbitrarily primed PCR method" (AP-PCR). AP-PCR is a method that can be used to generate DNA probes specific for microorganisms (Fani et al., 1993, Mol.Ecol.2: 243-250). Next, presents a description of an AP-PCR protocol used to isolate a gene-specific DNA fragment from Staphylococcus saprophyticus. Twenty different oligonucleotide primers of 10 nucleotides in length (all included in the IPAD AP-PCR equipment (Operon Technologies, Inc., Alameda, CA)) were synthetically tested with DNAs from 3 bacterial strains of Staphylococcus saprophyti cus (all obtained from American Type Culture Collection (ATCC): numbers 15305, 35552 and 43867) as well as DNA from four different staphylococcal species. { Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Staphyl ococcus haemolyticus ATCC 29970 and Staphylococcus ho ims ATCC 35982). For all bacterial species, amplification was initiated from a bacterial suspension adjusted to a standard of 0.5 McFarland, which corresponds to approximately 1.5xlOβ bacteria / mL. One μL of the standardized bacterial suspension was transferred directly to 19 μL of a PCR reaction mixture containing 50 M KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl-, 1.2 μM only from one of 20 different primers AP-PCR, OPAD, 200 μM of each of the four dNTPs and 0.5 units of Taq DNA polymerase (Promega Corp., Madison, Wl). The PCR reactions were subjected to cyclization using a MJ Research PTC-200 thermal cycler (MJ Reseacrch Inc.) as follows: 2 minutes at 96 ° C followed by 35 cycles of 1 minute at 95 ° C for the denaturation step, one minute at 32 ° C for the annealing step and 1 minute at 72 ° C for the extension stage. A final extension step of 7 minutes at 72 ° C was performed after the 35 cycles to ensure full extension of the PCR products. Subsequently, twenty microliters of the mixture amplified by PCR was resolved by electroporesis on a 2% agarose gel containing 0.25 μg / mL ethidium bromide. The size of the amplification products was estimated through comparison with a 50 bp molecular weight ladder. Specific amplification patterns for Staphylococcus Sapzophyticus were observed with the APA-PCR OPD-9 primer. { SEC DE IDENT NO: 25). Amplification with this primer consistently showed a band corresponding to a DNA fragment of approximately 450 bp for all strains of Staphylococcus saprophyticus tested but without any of the four different species of staphylococci tested. The specific pattern of species was confirmed by testing 10 more clinical isolates of S. saprophyti cus selected from CHUL's microbiology laboratory culture collection - as well as strains selected from the gram positive bacterial species listed in Table 5. The band corresponding to the approximately 450 bp amplicon, which was specific and ubiquitous for S. saprophyti cus based on AP-PCR, was excised from the agarose gel and purified using a QIAquick ™ gel extraction kit (QIAGEN Inc.). The gel-purified DNA fragment was cloned into the T / A cloning site of the plasmid vector pCR 2.1 ™ (Invirtogen Ine). using T4 DNA ligases (New England BiaLabsj.) The recombinant plasmids were transformed into competent E. coli DH5a cells using standard procedures.The plasmid DNA release was performed through the method of Birnboim and "Doly." Nucleic Acids Res. 7: 1513-1523) for small scale preparations All plasmid DNA preparations were digested with the EcoRI restriction endonucleases to ensure the presence of approximately 450 bp of the AP-PCR insert in the recombinant plasmids. Subsequently, a large-scale and highly purified plasmid DNA preparation was made from two selected clones that were shown to carry the AP-PCR insert using the plasmid purification kit. These plasmid preparations were used for the automatic DNA sequencing.
Both strains of the AP-PCR insert of the two selected clones were sequenced through the dideoxucleotide chain termination sequencing method with SP6 and T7 sequencing primers. Using an Applied Biosystems automatic DNA sequencer as previously described. The analysis of the obtained sequences revealed that the DNA sequences for both strains of each clone were 100% complementary. It was also shown that the total sequence determined for each clone, both were identical. These sequencing data confirm 100% attitudes for the determined 438 bp sequence (SEC DE IDENT NO: 29). Optimal amplification primers were selected from the sequenced DNA fragment Staphylococcus saprophyticus AP-PCR with the aid of the Ol? Go ™!! 0 primer analysis software. The selected primer sequences were tested in PCR assays to verify their specific character and ubiquitous appearance (Table 7). These PCR primers were specific since there was no amplification with DNA from the bacterial species other than S saprophyticus selected from Tables 4 and 5. In addition, this assay was ubiquitous since 245 of the 260 strains of S. saprophyticus were efficiently amplified with the PCR. When used in combination with another specific 3CR assay in S. sapropnyticus, which is an object of the application ie E.U.A co-pending (N.S. 08 / 526,840) and PCT (PCT / CA / 95/00528), the ubiquitous aspect reached 100 for these 260 strains.
DNA amplification For the amplification of DNA through the PCR method (by polymerase chain reaction), widely used, primer pairs were derived from the DNA fragments or from the database sequences. Before the synthesis, the potential primer pairs were analyzed using the Oligo ™ 4.0 software to verify that they are good candidates for PCR amplification. "During DNA amplification by PCR, two oligonucleotide primers bind respectively to each target DNA strain Denatured with heat from the bacterial genome were used to exponentially amplify the DNA in vi troa through successive thermal cycles allowing DNA denaturation, annealing the primers and synthesizing new targets in each cycle (Persing et al, 1993, Diagnostic Molecular Mi cr obio logy: Principies and Applications, American Society for Microbiology, Washington, DC).
In summary, the PCR protocols were as follows: Clinical standardized bacterial or fungal specimens or suspensions treated (see below) were amplified in directly in 20 μL of a PCR reaction mixture containing 50 M KCl, 10 mM Tps-HCl ( pH 9.0), 2.5 mM MgCl-, 0.4 μM of each primer, 200 μM of each of the four dNTPs and 0.5 units of Taq DNA poly erase (Promega) combined with the TaqStart ™ antibody (Clontech Laboratories Inc. Palo Alto, CA). The TaqStart ™ antibody, which is a monoclonal antibody to Tag DNA polymerase neutralization, was added to all PCR reactions to improve the specificity and sensitivity of the amplifications (Kellogg et al., 1994, Bio t echniques 16: 1134-1137). The treatment of clinical specimens varies with the type of specimen tested, since the composition and level of sensitivity required are different for each type of specimen. It consists of a rapid protocol to list the bacterial cells and eliminate the inhibitory effects of PCR (see Example 11 for preparation and urine specimen). For amplification from bacterial or fungal cultures, the Samples were added directly to the PCR amplification mixture without any pretreatment step (see example 10). The non-derived start sequences from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide internal control for all PCR reactions. Alternatively, internal control was derived from sequences not found in microorganisms or in the human genome. The internal control was integrated into all the amplification reactions to verify the efficiency of the PCR assays and to ensure that the inhibition of significant PCR was absent. The internal control derived from rRNA was also useful to verify the efficiency of bacterial lysis protocols. The PCR reactions were then subjected to thermal cyclization (3 minutes at 95 ° C followed by 30 cycles of one second at 95 ° C for the denaturation stage and 30 seconds at 55 ° C for the pre-cooked extension stage) using a PTC-200 thermal cycler (MJ Research Inc.) and subsequently analyzed through electrophoresis in agarose gel obtained with standard ethidium bromide. The number of cycles performed for PCR assays varies according to the level of sensitivity required. For example, the level of sensitivity required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens, since the concentration of microorganisms associated with sepsis can be much lower than that associated with an infection of the specimen. Urinary tract. Consequently, more sensitive PCR assays that have more thermal cycles are required for the direct detection of specimens in the blood. In essence, PCR assays performed directly from bacterial or fungal cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is usually much lower in clinical specimens than in microbial cultures. It is evident that other methods for the detection of specific amplification products, which can be quicker and more practical for routine diagnosis, can be used. These methods may be based on the detection of fluorescence after the amplification (eg, TaqMan ™ system from Perkin Elmer or A pl i sensor ™ from Biotronics). The methods based on fluorescence detection are particularly promising for use in routine diagnosis since they are very fast, quantitative and can be automatic (Example 14). The detection and identification of microbial pathogens can also be performed through solid support or liquid hybridization using internal species-specific DNAs that hybridize to an amplification product. Said probes can be generated from any of the DNA amplification products of specific species or specific genus which are objects of the present invention. Alternatively, internal waves for the detection and identification of species or genus can be derived from the amplicons produced by the universal amplification assay. The oligonucleotide probes can be labeled with biotin or digoxigemna or with any other reporter molecule. To ensure PCR efficiency, glycerol, dimethyl sulfoxide can be used (DMSO) or others - related solvents - to increase the sensitivity of PCR and to overcome the problems associated with the amplification of a target DNA having a high GC gel content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer : A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The glycerol and DMSO concentration scales are 5-15% (v / v) and 3-10% (v / v) respectively. For the PCR reaction mixture, the concentration scales for the amplification and MgCl primers are 0.1-1.5 μM and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol can also be used using external and nested primers (ie, nested PCR) or using more than one pair of primers d or r (ie multiple PCR) (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for My cr oblo log, Washington, D.C.). For more details regarding PCR protocols and amplicon detection methods, see Examples 9 to 14. Those skilled in the art of master 11 f i cac i - > n of DNA know the existence of others Rapid amplification procedures such as ligase chain reaction (LCR), transcription mediated amplification (TMA), self-contained sequence replication (3SR), amplification based on nucleic acid sequence (NASBA), amplification displacement structure chain (SDA), branched DNA (bAND) and cyclization probe technology (CPT) (Lee et al, 1997, Nucleic Acid Amplification Technologies: Application to Disease -Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993 , Diagnostic Molecular Microbioígy: Principies and Ap lications, American Socíety for Microbi or logy, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other method that can be used to increase the speed and sensitivity of the tests. Any or 11 gonucl was suitable for nucleic acid amplification through aspects other than PCR and derivatives of specific species, genus-specific and "universal" DNA fragments as well as resistance gene sequences Selected anti-bodies included in this document are also under the scope of this invention. Hybridization assays with oligonucleotide probes Er hybridization experiments, or 11 gonuclides of individual chain structure (size less than 100 nuclei t-two) have some advantages over probes of DNA fragments for the detection of bacteria, such as the ease of synthesis in large quantities, consisting of results from batch to batch and chemical stability In summary, for the hybridizations, the 1 or igonucleotides were marked at the 5 'end with the tiodide and - P (dATP) using 1-nucleotide PoSamsa (Pharmacia) (Sambrook et al., 1989, Molecular Clonmg A Laboratory Manual, 2 ed, Cold Spring Harbor Labor at ory press, Cold Spring Harbor, i). The incorporated adducts were removed by passing through the labeled gonuc 1 labeled via a Sephadex G-50 ™ column.Alternatively, the gonuc 1 eo tides were labeled with biotma, either enzyme or ti cament e at its ends 3 ' or .corporated directly during the synthesis in your 'ends or with digoxigemna. It will be appreciated by those skilled in the art that different marking means than the above three marks may be used. Each gonuclide probe was then tested for its specific character by hybridization to DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6. All bacterial or fungal species are were pathogens associated with common infections or potential contaminants, which can be isolated from clinical specimens. Each target DNA was released from the bacterial cells using standard chemical treatments to lyse the cells (Sambrook et al., 1989, Molecular Cloning A Laboratory Manual, 2 rd ed., Cold Sprmg Harbor Laboratory Press, Cold Spmg Harbor, NY) Subsequently, the DNA was denatured by conventional methods and then irreversibly fixed on a solid support (eg, nylon or nitrocellulose membranes) or "liars." The target DNAs of fixed individual chain structure were then hybridized to the probe or the gonorrhoeoid (Sambrook et al., 1989, Moleculai-Cloning A Laboratory Manual, 2d ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) The conditions of pr-hibrination were in 1M NaCl T 10 dextran sulfate + 1-, SDS + 100 μg / mL sperm and salmon at 65 ° C for 15 minutes Hybridization was performed in a fresh pre-hybridization solution containing the probe labeled at 85 ° C overnight. Was the post t-hibr wash followed as follows in 3X SSC containing 1% SDS, two-fold in 2X SSC containing 1% SD? and twice in IX SSC containing 1 SDS (all these washes were at 65 ° C for 15 minutes), and a final wash in 0 IX SSC containing 1% SDS at 25 ° C for? 5 minutes The author adiogr af la of the washed filters allowed the detection of probes selectively h - bridged s Hybridization of the probe to a specific target DNA indicated a very degree of similarity between the nucleotide sequence of these two DNAs due to the high severity of the washings An oligo probe was considered specific only when h-bp d-i zo only the DNA of the species or genera from the only ones the probes of o 1 igonuc le tido that were found to be specific, were subsequently tested for their ubiquitous appearance, ubiquitous probes recognized most or all products isolated from target species or genera) through hybridization to microbial DNAs from clinical isolates of the species or genera of interest including ATCC strains. The DNAs of strains of the target species or genera were denatu alized, fixed on nylon membranes and hybridized as before. The probes were considered oblique when they hybridized specifically with the DNA from at least 80% of the isolates of the target species or genera.
Specific and ubiquitous-looking tests for primers and gonucleotide probes. The specific character of primers and oligonucleotide probes, derived either from the DNA fragments either sequenced by nosotr-s or selected from the databases, was tested through DNA amplification or through hybridization with bacterial or fungal species selected from those listed in Tables 4, 3, and 6, as described in the two sections previous The or ligonucleo t t that were found specific were subsequently tested for their ubiquitous appearance through amplification (for primers) or through hybridization (for probes) with bacterial DNAs isolated from the target species or genera. The results for the tests of specific character and ubiquitous appearance with the oligonucleotide primers are summarized in Table 7. The specific character and ubiquitous appearance of the PCR assays using the selected amplification primer pairs were directly tested from the cultures ( see Examples 9 and 10) of bacterial or fungal species. The various PCR assays of specific species and specific genus, which are objects of the present invention are all specific. For PCR assays specific to bacterial species or genera, these means that DNA isolated from a wide variety of bacterial species, other than that of the target species and genus and selected from Tables 4 and 5, can not be amplified. For the PCR assay specific to Ca ndi da a l b c an s, it means that there was no amalgamation with genomic DNA from the fungal species listed in Table 6 as well as with a wide variety of bacterial species selected from Tables 4 and 5. The various PCR assays of specific species and specific genus, which are objects of the present invention, were also all ubiquitous (Table 7). (i) Species-specific PCR assays for E. faecium, L. monocytogenes, S. sapzophyti cus, S agalactiae, and C albicans amplified genomic DNA from all or almost all strains of target species listed, which were obtained from various sources and which were representative of the diversity within each target species (Table 7). The identification of species of all these strains is based on classical biochemical methods that are routinely used in clinical microbiology laboratories. (ii) PCR tests of specific genus, specific for Entezococcus spp., S taphylococcus spp., S treptococcus spp. and Neisseria spp. They amplified the genomic DNA from all or almost all the strains of the tested target genus, which represent all the clinically important bacterial species for each target genus. These strains were obtained from several sources and are representative of diversity within each objective gender. Again, the identification of species of all these strains was based on biochemical methods that are routinely used in clinical microbiology laboratories. More specifically, the four specific genomic PCR assays amplified the following species: (1) The specific assay in Enterococcus efficiently amplified DNA from all 11 tested coccal species, including E. avium, E. cas seliflavus , E. dispar, E. dur ns, E. faecalis, E. faecium, E.-fla vescens, E. gallinarum, E, hizae, E.-r-ur-dtii and E. zaffinosus. (2) The specific assay in Neisseri efficiently amplified the DNA of all 12 proven neiseral species including N. canis, N ciné ea, N. elogata, N. flavescens, N. gonorrhoeae, N. lactamica, N. eni ngi 11 di s, N. mucosa, N. poluysaccharea, N. sicca, N. subflava and N. weaveri. (3) The specific assay in S taphyl ococcus efficiently amplified DNA from 13 of the 14 staphylococcal species tested, including S. aureus, S. aur iculari s, S. api ti s, S. cohni i, S. epidezmidis, S. haemolcyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. schleiferi, S. simulans, S. warnep and? xylosus. The species of est phylococci, which could not be amplified, is S. sciup. (4) Finally, the specific assay in Streptococcus efficiently amplified the DNA of all 22 streptococcal species tested including S. agalactiae, S. angmosus,?. bovis, S. cons tellatus, S. crista, S. dysgalactiae, S. egu, S. gordonn, S. interntnis, S. i-itis,?. u-itans, S. oralis, S. parasanguis. S. pneumoniae, S. pyogenes, S. salivapus, S. sanguis, S. sabrinus, S. su s, S. uberis, S. vestibulazis and S. viridans. On the other hand, the specific assay in S treptococcus did not amplify three of the 9 strains of S. nt ans and 1 of the 23 strains of S salt ivarius, thus showing a slight lack of uoicuous appearance for these two streptococcal species. All specific and ubiquitous amplification primers for each target species or microbial genus or antibiotic resistance gene investigated are listed in Annex VI. Divergence in sequenced DNA fragments can occur, provided that the divergence of these sequences or a part thereof does not affect the specific character of the amplification probes or primers. The DNA Variable bacterial is within the scope of this invention. The PCR amplification primers listed in Annex VI were all tested for their specific character and ubiquitous appearance using reference strains as well as clinical isolates from various geographic locations. The "351 reference strains used to test the amplification and hybridization assays (Tables 4, 5 and 6) were obtained from (i) the American Type Culture Collection (ATCC): 85%, (ii) the Laboratoire de santé publique du Québec (L3PQI: 10-., (Ii -U the Centers for Disease Control and Prevention (CDC): 3, (iv) the National Culture Type Collecction (NCTC): 1 .. and (v) several other reference laboratories in Worldwide: 1% These reference strains are representative of (i) 90 gram negative bacterial species (169 strains; Table 4), (ii) 97 gram positive bacterial species (154 strains, Table 5) and (iii) ) 12 fungal species (28 strains, Table 6).
Antibiotic resistance genes Antimicrobial resistance complicates treatment and usually leads to failures In addition, overuse of antibiotics inequitably leads to the emergence of bacterial resistance. The aim is to provide clinicians, in about an hour, with the information necessary to prescribe optimal treatments. In addition to the rapid identification of negative clinical specimens with DNA-based tests for the detection and universal bacterial identification of the presence of a pathogen. specific in positive specimens with DNA-based tests of species and / or specific genus, physicians also need current information regarding the ability of the bacterial pathogen to receive antibiotic treatment. This is the most efficient strategy to quickly assess the resistance Bacterial to antimicrobial resistance is to detect directly from clinical specimens the most common and clinically important antibiotic resistance genes (ie, DNA-based tests for the detection of antibiotic resistance genes). of bacterial antibiotic resistance genes ma s important and common databases are available, the strategy was to use sequential part-r of a portion or Starting from -all the resistance gene to design primers or specific oligonucleotide probes, which will be used as a basis for the development of rapid b-to-se DNA tests. The sequence of each of the bacterial antibiotic existence genes selected based on their clinical significance (ie, high incidence and importance) is given in the Sequence List. Tables 9 and 10 summarize some characteristics of the selected antibiotic resistance genes. The appearance is unique, since the detection of antibiotic resistance genes and bacterial detection and identification is carried out simultaneously in multiple assays under uniform PCR amplification conditions (Example 13). Annex VI provides a list of all amplification primers in 1 of 26 clinically important antibiotic resistance genes, which were tested in PCR assays. The various PCR assays for the detection and identification of resistance genes ar. Tibiotics were validated by testing several resistant isolates known to carry the target gene and obtained several countries The testing of a large number of strains that do not carry the target resistance gene was also performed to ensure that all trials were specific. Better yet, all PCR assays for antibiotic resistance genes are highly specific and have detected all control resistant bacterial strains known to carry the target gene. The results of some clinical studies to validate the PCR assay arrangement for the detection and identification of antibiotic resistance genes and to correlate these DNA-based assays with the susceptibility test method at imicrobi-ana standards are presented in Tables 11 and 12 Uni ersal bacterial detection In the routine microbiology laboratory, a high percentage of clinical specimens in bacterial identification are negative by culture ~ (Table 4). Clinical test samples with universal amplification primers or universal probes to detect the presence of bacteria before specific identification and classify the numerous negative specimens in this way are useful because costs and can quickly guide the clinical management of patients. Several primers and amplification probes were, therefore, synthesized from highly conserved portions of bacterial sequences from the t u f genes (Table 8). The selection of the universal primer was based on a multiple sequence alignment constructed with sequences determined by us or selected from available database sequences as described in Example 1 and Annex 1. For the identification of the base sequences of adequate data for the universal detection of bacteria, advantage is taken of the fact that the complete genome sequences for two distinct microorganisms (ie, Mycoplasma genitalium and Haemophilus mfluenzae) are available. A comparison of the amino acid sequence for all the proteins encoded by the genome of these two different microorganisms led to the identification of highly homologous proteins. U analysis of these homologous proteins allowed to select some promising candidates for the development of universal DNA based assays for the detection of bacteria.
Since the complete nucleotide sequence of several other microbial genomes is currently available in databases, one skilled in the art can reach the same conclusions by comparing sequences of genomes other than those of Mycoplasma genitalium and Haemophilus mfluenzae. The selected gene encodes a protein (EF-Tu) involved in the translation process during protein synthesis. Subsequently, an extensive nucleotide sequence analysis was performed with the sequences of the t u f gene available in the databases, as well as with novel sequences of -tu-f, which were determined as previously described. All computer analysis of the amino acid and nucleotide sequences was performed using the GCG programs. Subsequently, the optimal PCR primers for the universal amplification of bacteria were selected with the help of the Oligo ™ program. The selected primers were degenerated in vain nucleotide positions and contained vains in order to allow the amplification of all clinically important bacterial species (Annex I). The mosine is a nucleotide analog capable of specifically bind to any of the four nucleotides A, C, G or T. The degenarot oligonucleotides consist of a mixture of oligonucleotide having two or more of the four nucleotides A, C, G or T at the non-pairing site. The inclusion of inosine and / or degeneration in the amplification primers allows the non-pairing tolerance thus allowing the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY). The amplification conditions with the universal primers were identical to those used for the amplification tests of species and specific genus, except that the collection temperature was 50 ° C instead of 55 ° C. This universal PCR assay was specific and absolutely ubiquitous for bacterial aefection. The specific character for the bacteria was verified by amplification of the genomic DNA isolated from the twelve fungal species listed in Table 6, as well as the genomic DNA of L ei sn ma nia do no va m, Sa c ch a romyc es ce vi yes a and lymphocytes humans. None of the previous eukaryotic DNA preparations could be amplified through the universal assay, suggesting that this test is specific for bacteria. The ubiquitous aspect of universal eneayo was verified by the amplification of genomic DNAs from 116 reference samples, which represent the 95 most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Tables 4 and 5. It has been found that 104 of these 116 samples can be purified. Bacterial species that can not be amplified belong to the following genera: Coryn eba c t ep um (11 species) and S t en o t roph om ona s (1 species). The sequencing of the t uf genes from these bacterial species has recently been carried out. These sequencing data have been used to select new universal primers, which may be more ubiquitous. These primers are in the process of being tested. It has also been observed that for several species, the annealing temperature has to be reduced to 4S ° C in order to obtain an efficient amplification. These bacterial species include Gem on 1 to 1-? Orb? Bru? -? Listeria spp. 3 species) and Cardnerella vagmalis. It is important to note that the 95 bacterial species selected from Tables 4 and 5 to test the ubiquitous aspect of the universal trial include all the most clinically relevant bacterial species associated with a variety of human infections acquired in the hospital or in hospitals (nosocomial infections). . The most important bacterial and fungal pathogens are listed in Tables 1 and 2.
EXAMPLES AND ANNEXES The following examples and appendices are intended to be illustrative of the various methods and compounds of the invention, rather than limiting the scope thereof. The various annexes show the strategies used for the selection of amplification primers from tuf sequences or from the recA gene: (i) Annex I illustrates the strategy used for the selection of the universal amplification primers from sequences You f. (11) Annex II shows the strategy used for the selection of the specific amplification primers for the genus Enterococcus from the tuf sequences. (iii) Annex III illustrates the strategy used for the selection of the specific amplification primers _ for the genus S taphylococcus from sequences -tu-f. (iv) Annex IV shows the strategy used for the selection of the specific amplification primers for the Candida lbicans species from tur sequences, (v) Annex v illustrates the strategy used for the selection of the amplification primers For the genus Szreptococcus from the sequences -recA .-- (vi) Annex VI presents a list of all the selected primer pairs.As shown in these annexes, the selected amplification primers may contain moss and / or degenerate Inosine is a nucleotide analog capable of specifically binding to any of the four nucleotides A, C, G or T. Alternatively, the degenerate oligonucleotides consisting of a mixture of oligonucleotide having two or More than the four o.lj. gonuc 1 eó ti dos A, C, G or T at the non-mating site were used.Inclusion of inosine and / or degeneracy in the amplification primers allows a t erapia of tolerance of non-pairing allowing the amplification of a broader disposition of target nucleotide sequences Dief fenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).
EXAMPLES EXAMPLE 1: Selection of universal PCR primers from tu-f sequences. As shown in Annex I, comparison of tu-f sequences from a variety of bacterial and eukaryotic species allowed the selection of PCR primers, which are universal for the detection of bacteria. The strategy used to design the PCR primers was based on the analysis of sequence alignment "multiple of several tu-f sequences. This sequence alignment includes sequences of 38 bacterial species and 3 eukaryotic species either determined by us or selected from databases (Table 13) A careful analysis of this multiple sequence alignment allowed the selection of primer sequences, which are conserved within eubactepas, but which they discriminate eukaryote sequences, thus allowing the universal detection of bacteria. As shown in Annex 1, the selected primers contain several inosines and degenerations. This was necessary since there is a relatively high rate between the bacterial tu-f sequences despite the fact that this gene is highly conserved. In fact, among the tuf sequences that have been determined, many nucleotide variations have been found, as well as some deletions and / or amino acid insertions. The universal primers selected were specific and ubiquitous for bacteria (Table 7). Of the 95 most clinically important bacterial species tested, 12 were not amplified. These species belong to the genus Co ryn eba c t eri um (11 species) and S t en o troph om o n a s. { 1 species). The universal primers did not amplify DNA of non-bacterial origin, including human and other types of eukaryotic DNA. EXAMPLE 2: Selection of PCR primers of specific genus from t uf sequences. As shown in Annexes 2 and 3, the comparison of the tuf sequences from a variety of species Bacteria _ allowed the selection of "PCR primers specific for Enterococcus spp. or for Staphylococcus spp. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of several tu-f sequences. These multiple sequence alignments include the tu-f sequences of four representative bacterial species, selected from each target genus, as well as tu-f sequences from closely related bacterial genera. A careful analysis of these alignments showed the selection of oligonucleotide sequences, which are conserved within the target genus, but which discriminate sequences of other closely related genera, thus allowing the detection of specific identification- in the genus and ubiquitous of the bacterial genus. objective. For the selection of specific primers for Ente ococcus spp. (Annex II) a portion of approximately 890 bp of the tu-f genes En ter ococcus avium, E. faecalis, E. aecium and E. gallmazum has been sequenced. All the other tuf sequences used in the alignment were either sequenced by us or selected from databases. The analysis of this sequence almeation led to the selection of a specific and ubiquitous primer pair for Entezococcus spp.
. { Table 7). All 11 species in coca tea tested were efficiently amplified and there was no amplification with genomic DNA from bacterial species of the other genera. For the selection of specific primers for S taphylococcus spp. . { Annex III), a portion of approximately 89-0 bp of the tuf genera has also been sequenced for Staphyl ococcus auzeus, S. epidezmidi s, S. sapzophyticu s and S. simulans. All the other tuf sequences used in the alignment were either sequenced by us or selected from data bases. The analysis of this sequence alignment led to the selection of two specific and ubiquitous primer pairs for Staphylococcus spp. . { Table 7). Annex III shows the strategy used to "select one of these two PCR primers, the same strategy was used to select the other primer pair." Of the 14 species of S taphi lococcus tested, one (S. sciuzi) could not be amplified through specific PCR assays in Staphyl ococcus using either of these two primer pairs For PCR assays using either one of these two pairs of primer, there was no amplification with DNA from the species of the other bacterial genera.
EXAMPLE 3: Selection of tu-f sequences of PCR primers specific for Candida albicans. As shown in Annex IV, the comparison of tuf sequences from a variety of species; bacterial and eukaryotic allowed the selection of PCR primers specific for Candida albicans. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of several tuf sequences. The multiple sequence alignment includes tuf sequences from five representative fungal species selected from the Candida genus, which were determined by the group (ie C. k parapsilosis and C. tropicalis), as well as tuf sequences from other closely related fungal species. The tuf sequences of several bacterial species were also included. A careful analysis of this sequence alignment allowed the selection of primers from the euf sequence of C. albicans; these primers discriminate the sequences of another closely related Candida species and other fungal species, thus allowing the detection and specific identification in the ubiquitous species of C-albicans (Table 7). All 88 strains of Candida albicans tested were efficiently amplified and there was no amplification with the genomic DNA of other fungal or bacterial species.
EXAMPLE 4: Selection of specific PCR primers for Streptococcus from recA. As shown in Annex V, the comparison of available bacterial recA gene sequences from databases (GenBank and EMBL) was used as a basis for the selection of primers from. PCR, which are specific and ubiquitous for the bacterial genus Stzeptococcus. Since recA gene sequences are available for many bacterial species including five species of Stzeptococcus, it was possible to select well-conserved sequences within the genus Streptococcus but distinct from the recA sequences for other bacterial genera. When there were no matings between the recA gene sequences of the five Streptococcus species, an inosm residue was incorporated into the primer (Annex V). The selected primers, each containing an ínosma and no degeneracy, were specific and ubiquitous for the Stzeptococcus species (Table 7). This PCR assay amplified the 22 streptococcal species tested. However, the specific assay in Stzeptococcus did not amplify the DNA of 3 of the 9 strains of S. mutans and 1 of the 3 strains of S. salivazius. Do not there was no amplification with genomic DNA from the other bacterial genera. { Table 7).
EXAMPLE 5: 5 Nucleotide sequencing of DNA fragments.
The nucleotide sequence of a portion of the tuf genes from a variety of bacterial or fungal species was determined using the dideoxyinuclease termination sequence sequencing method. { Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74: 5463-5457-- Sequencing was performed using an Applied Biosystems automatic DNA sequencer (model 373A), with its PRISM ™ Sequenase® Terminator sequencing DNA double chain structure (Perkin-Elmer Corp. , Applied Biosystems Division, Foster City, CA). The sequence strategy did not discriminate the tufA and tufB genes since the sequencing primers hybridize efficiently to both bacterial tuf genes. These DNA sequences are shown in the sequence listing (SEQ ID Nos: 118 to 146). The presence of several degenerate nucleotides in the various tuf sequences determined by the group (Table 13) correspond to the sequence variations between tufA and tufB. Olisonucleotide primers and selection of probes. The oligonucleotide probes and the primers of amplification were selected from the fragments of proprietary DNA or database sequences using the Oligo ™ program and were synthesized with an automotive ABI DNA synthesizer (model 391, Perkin-Elmer Corp., Applied Biosystems Division) using phosphoramidite chemistry.
EXAMPLE 6: Labeling of oliaonucleotides for hybridization assays. Each or 1 ligand was labeled at the 5 'end with and "? 2P (dATP) through the T4 polynucleotide kinase {.Pharmacia) as described above.The mark may also be non-radioactive.Specific character test for oligonucleotide probes All labeled oligonucleotide probes were tested for their specific character through hybridization to DNAs from a variety of bacterial and fungal species selected from Table 4, 5 and 6 as described above. specific species or specific genus were those that hybridized only to the DNA from the microbial species or genera from which it was isolated.The probes of o 1 igonuc 1 eidoid that were found to be specific were subjected to ubiquitous appearance tests as follows .
Ubiquitous appearance test for oliaonucleotide probes. The specific oligonucleotide probes were then used in ubiquitous-looking tests with strains of the target species or genus including -reference strains and other strains obtained from various countries and which are representative of the diversity within each target species or genus. The chromosomal DNAs of the isolates were transferred onto nylon membranes and hybridized with the labeled oligonucleotide probes as described for the specific character tests. The batteries of the isolates built for each target species or genus contain reference ATCC strains, as well as a variety of clinical isolates obtained from various sources. The ubiquitous probes were those that hybridized at least 80% of the DNAs from the battery of clinical isolates of the target species or genera.
EXAMPLE 7: Same as Example 6 except that a combination of specific oligonucleotide probes was used for microbial identification, (i) to increase -the sensitivity and ensure a 1001 ubiquitous appearance or dU to simultaneously identify more than one species and / or microbial genus. Microbial identification can be performed from microbial cultures or directly from any clinical specimen.
EXAMPLE 8: Same as Example 6, except that the bacteria or fungi were detected directly from the clinical samples. Any biological slide was loaded directly onto a spot puncture device and the cells were in situ for bacterial or fungal detection and identification. The blood samples should be heparinized in order to prevent coagulation from interfering with the convenient loading in the puncture device.
EXAMPLE 9: PCR amplification. The PCR technique was used to increase the sensitivity and rapidity of the assays.
The groups of primers were tested in PCR assays performed directly from bacterial colonies or from a standardized bacterial suspension. { see example 10) to determine its specific character and ubiquitous aspect (Table 7).
Examples of specific and ubiquitous PCR primer pairs are listed in Annex VI. Specific and ubiquitous aspect tests for amplification primers. The specific nature of all selected PCR primer pairs were tested against DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6 as described above. The primer pairs found 5 specific for each species or genus were then tested for their ubiquitous appearance to ensure that each set of primers can amplify at least 90"of DNA from a battery of isolates of the target species or genus. isolated bacteria built for each species contain ATCC strains of reference and several clinical isolates from around the world, which are representative of the diversity within each species or genus. Standard precautions to avoid false PCR states should be taken. (K ok and Higuchi, 1989, Nature, 239: 237-238). Methods for inactivating PCR amplification products such as inactivation through uracil-N-glycosylase can be used to control PCR production.
EXAMPLE 10: Direct amplification from bacterial or yeast cultures. PCR assays were performed either directly from a bacterial colony or from an anaerobic bacterial suspension, the latter being adjusted to a Standard McFarland Standard 0.5 (corresponding to approximately 1.5 x 10ß bactepas / mL). In the case of direct amplification from a colony, a portion of a colony was transferred using a plastic bar directly into 20 μL of the PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (PH 9.0 ), 0.1- Triton X-100, 2.5 mM MgCl, 0.4 μM of each primer, 200 μM of each of the four dNTPs and 0.5 units of Taq DNA polymerase (Promega) combined with the TaqStart "" antibody (Clontech Laboratories Inc.) For the bacterial suspension, 1 μL of the cell suspension was added to 19 μL of the same PCR reaction mixture For identification from yeast cultures, 1 μL of a McFarland standard (corresponds to approximately 3.0 x 10ß bacteria / mL) concentrated 100-fold through centrifugation was added directly to the PCR reaction.This stage of concentration for yeast cells was performed since McFarland 0.5 for yeast cells has approximately 200 times fewer cells than a McFarland 0.5 for bacterial cells. The PCR reactions were then subjected to thermal cyclization (3 minutes at 95 ° C followed by 30-cycles with a second at 95 ° C for the denaturation stage and 30 seconds at 55 ° C for the co-collected extension stage) using a PTC-200 thermal cycler. The PCR amplification products were then analyzed through standard agaroea gel electrophoresis (2! of amplification were visualized in agarose gels containing 0.25 μg / mL of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in about an hour. 5 Primer sequences derived from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide internal control for all PCR reactions. Alternatively, internal control was derived from sequences not found in microorganism or in the human genome. Internal control was integrated into all amplification reactions to verify the efficiency of PCR assays and to ensure that significant inhibition of PCR was absent. The internal control derived from rRNA was also useful to verify the efficiency of bacterial lysis protocol. Internal control and amplifications of specific species or specific genus were performed simultaneously in multiple PCR assays.
EXAMPLE 11: Directly amplification of the urine specimens. For PCR amplifications performed directly from urine specimens, sS "m" e --- claron 1 μL of urine with 4 uL of lysis solution containing 500 mM KCl, 100 mM Tris HCl (pH 9.0), i: Triton X-100. After the incubation for at least 15 minutes at room temperature 1 μL of the treated urine specimen was directly added directly to 19 μL of the PCR reaction mixture. The final concentration of the PCR residues was 50 mM KCl, 5 100 mM Tris HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl-, 0.4 μM of each primer, 200 μM of each of the four dNTPs. In addition, each 20 μL of the reaction contained 0.5 units of Taq DNA polymerase (Promega) combined with the TaqStart antibody "(Clontech Laboratories Inc.) 0 Strategies for internal control, PCR amplification and" gel "detection of the amplicons are as previously described in example 10.
EXAMPLE 12 Detection of antibiotic resistance genes. The presence of antibiotic resistance genes, which are frequently found and clinically relevant, was identified using PCR amplification or hybridization protocols previously described.The specific oligonucleotides used as a basis for "DNA-based tests were selected" of the antibiotic resistance gene sequences These tests, which allow a rapid evaluation of the bacterial resistance to 5 antimicrobial agents can be performed either directly of clinical specimens, a standardized bacterial suspension or a colony of bacteria and must complement diagnostic tests for the universal detection of bacteria, as well as the detection and microbial identification of specific species and specific genus.
EXAMPLE 13: Same as Examples 10 and 11, except that the assays were performed through multiple PCR- (ie, using several pairs of primers in a single PCR reaction) to arrive at a ubiquitous aspect of 1001 for the target specific pathogens. For more heterogeneous species or microbial genera, a combination of primer-PCR pairs may be required to detect and identify all representatives of the target species or genus. Multiple PCR assays can also be used to (i) simultaneously detect several species and / or microbial genera or, alternatively, (n) to simultaneously detect and identify bacterial and / or fungal pathogens and to detect specific antibiotic resistance genes. either directly from a clinical specimen or from bacterial cultures. From these applications, the amplicon detection methods must be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis can be used, since it discriminates amplicons based on their sizes. Another useful strategy for this purpose could be the detection using a variety of fluorescent equipment that is emitted at different wavelengths. The fluorescent dyes can each be coupled with a specific oligonucleotide linked to a fluorescence excimer, which is degraded during amplification to release the fluorescent dyes (for example TaqMan ™, Perkin Elmer).
EXAMPLE 14: Detection of amplification products. Those skilled in the art will appreciate that alternatives to standard agarose gel electrophoresis can be used. { example 10) for the disclosure of amplification products. Such methods can be based on fluorescence polarization or fluorescence detection after amplification (eg, "Ampliseneor", Biotronics, TaqMan, Perkin Elmer Corp.) or other brands such as biotins (SHARP Signal "'system , Digene Diagnostics). These methods are quantitative and can be automatic. One of the amplification primers or an internal oligonucleotide probe specific to the aepvadae amplicons of the DNA fragments of specific species of specific or universal genre is coupled with fluorescent dyes or with any other brand. The methods used in fluorescence detection are particularly suitable for diagnostic tests, since they are fast and flexible like fluorescent dyes that emit at different wavelengths, and are available.
EXAMPLE 15: -. Amplification primers of specific genus specific species, universal and antibiotic resistance gene can be used in other rapid amplification procedures such as ligase chain reaction (LCR), transcription mediated amplification (TMA), replication of OSR self-sustaining sequence), amplification based on nucleic acid sequence (NASBA), structure displacement amplification (SDA), cyclization probe technology (CPT) and branched DNA (bDNA), or any other method to increase the sensitivity of the proof. Amplifications can be performed from bacterial cultures isolated or directly from any clinical specimen. The scope of this invention is therefore not limited to the use of the DNA sequences from the list of annexed sequences for PCR but rather includes the use of any method to specifically detect bacterial DNA and which can be used to increase the speed and sensitivity of the tests.
EXAMPLE 16. A test kit could contain groups of specific probes for each microbial species or genus as well as a group of universal eondas. The equipment is provided in the form of test components, consisting of the group of universal probes marked with non-radioactive markings, as well as probes marked of specific species or genus for the detection of each pathogen of interest in the specific types of clinical samples. The equipment will also include test reagents necessary for prehybridization, hybridization, washing steps and hybrid detection. Finally, the test components for the detection of known antibiotic resistance genes (or derivatives thereof) were included. Of course, the model will include standard samples that will be used as negative and positive controls for each nibbling test. The components that will be included in the equipment will be adapted to each type of specimen and to detect pathogens commonly found in this type of specimen. Reagents for universal bacteria detection will also be included. Based on the sites of infection, The following equipment can be developed for the specific detection of pathogens: A device for the universal detection of bacterial or fungal pathogens from all clinical specimens containing groups of specific probes for highly conserved regions - of microbial genomes. A device for the universal detection of bacterial pathogens recovered from urine samples, containing 5 specific test components (groups of probes for the detection of Entezococcus faecium, Enterococcus species, Staphylococcus sapzophi ticus, Staphílococcus species and Candida, albicans). A team for the detection of respiratory pathogens, which contains 3 specific test components (groups of probes for the detection of Staphilococcus species, Enterococcus species and Candida albi cans). Equipment for the detection of pathogens recovered from blood samples, containing 10 specific test components (groups of probes for the detection of Stzeptococcus species, Stzeptococcus agalactiae, Staphylococcus species, Staphylococcus sapzophyticus, Enterococcus species, Enterococcus f & ecium, Neisseria species, Neisseria meningi tidis, Lis tezia monocytogenes and Candida albicans). This equipment can also be applied for the detection and direct identification from blood cultures. An eguipo for the detection of pathogens that cause miningitis, which contains 5 specific test components (groups of probes for the detection of Streptococcus species, Listezia monocytogenes, Neisseria meningi tidis, Neisseria species and Staphylococcus species). A team for the detection of clinically important antibiotic resistance genes, which contains groups of probes for the specific detection of at least one of the following 26 genes associated with antibiotic resistance: blatßm, bla,; -..- ,, bla , -lV, blao? -, blaZ, aadB, aacCl, aacC2, aacC3, aacA4, aac61-lla, ermAm ermB, ermC, mecA, vanA, vanB, vanC, satA, aac (6) -aph. { 2"), aad {6), vat, vga, msrA, eul and int Other equipment adapted for the detection of pathogens from the skin, abdominal wound or any other clinically relevant infection, can also be -developed.
EXAMPLE 17: Same as Example 16 except that the test equipment contains all the reagents and controls for performing DNA amplification assays. The teams of The equipment will be adapted to be used with each type of specimen as described in example 16 for diagnostic equipment based on hybridization.
EXAMPLE 18: It is understood that the use of the amplification probes and primers described in this invention for bacterial and / or fungal detection and identification is not limited to clinical micribiology applications. In fact, it is perceived that other sectors can also benefit from these new technologies. For example, these tests can be used with industries for the quality control of food, water, air, pharmaceutical products, or other products that require microbiological control. These tests can also be applied to detect and identify bacteria or fungi in biological samples from organisms other than humans (for example, other primates, birds, plants, mammals, farm animals, livestock and others). These diagnostic tools can also be very useful for research purposes including clinical analyzes and epidemiological studies. This invention has been described above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These Modifications are within the scope of this invention, as defined in the appended claims.
Table 1. Distribution (%) of nosocomial pathogens for several human infections in the United States (1990-1992) 1. Pathogen ÜTp SSI "BSI" Pneumonia CSFJ Eschezichia coli .7 9 5 4 2 Staphylococcus aureus 2 21 17 21 2 Staphyl ococcus epidezmídis2 6 20 O 1 Enterococcus faecalis 16 12 9 2 0 Enterococcus faecium 1 1 0"0 0 Pseudomonas aeruginosa 12 9 3 18 0 Klebsiella pneumoniae 7 3 4 9 0 Proteus mirabílis 5 3 1 2 0 Streptococcus pneumoniae 0 0 3 1 18 Group B Streptococci 1 1 2 1 6 Other Streptococci 3 5 2 1 3 Haemophilus infl uenzae 0 0 0 6 45 Neisseria meníngítidis 0 0 0 0 14 Listeria monocytogenes 0 0 0 0 3 Other Enterococci 1 1 0 0 0 Other Staphylococci 2 8 13 20 Candidaalbi cans 9 3 5 5 0 Other Candida 2 1 3 10 Pathogen UTI-SSI3 BSI "Pneumonia CSF5 Enterobactez spp. 5 7 4 12 2 ? cmeto-bacter spp. 1 1 2 4 2 Citzobactez spp. 2 1 1 1 0 Sezzatia mazcescens 1 1 1 3 1 Other Klebsiella 1 1 1 2 1 Other 0 6 4 5 0Data registered by National Nosocomial Infections Surveillance (NNIS) for 80 hospitals (Emori and Gaynes, 1993, Clin Microbiol Rev., 6: 428-442). "Urinary tract infection Surgical site infection" Bloodstream infection Cerebrospinal fluid Table 2. Distribution (%) of infection pathogens in the blood stream in Quebec (1995), Canada (1992), United Kingdom (1969-1988) and the United States (1990-1992).
Organization Quebec1 Canada2 UK1 USA '' Community Hospital Hospital acquired acquired acquired E. coli 15.6 53.8 24.8 20.3 5.0 S. epi derml di s 25.8 NI "0.5 7.2 31.0 and another CoNS S. a ureus 9.6 NI 9.7 19.4 16.0 S. pneumoni se 6.3 NI 22.5 2.2 R " E. Faecal i s 3.0 NI 1-0 4.2 NR E. fa eci um 2.6 NI 0.2 0.5- NR In tezococcus NR NI NR NR 9.0 spp. H. i nf 1 uenza e 1.5 NR 3.4 0.4 NR P. a erogi no sa i.5 8.2 1.0 8.2 3.0 K. pueumoni a e 3.0 11.2 3.0 9.2 4.0 P. mízabi lis NR 3.9 2.8 5.3 1.0 s. pyogenes NR NI 1.9 0.9 NR Entezobac tez spp. 4.1 5.5 0.5 2.3 4.0 Ca ndi da spp. 8.5 NI NR 1.0 8.0 Other 18.5 17.45 28.7 18.9 13.0 Data obtained for 270 isolates collected in Center Hospitalier de I'Université Laval (CHUL) for a period of 5 months. { May to October 1995). "Data from 10 hospitals in Canada representing 941 gram-negative bacterial isolates (Chamberland et al., 1992, Clin. Infect. Dis., 15: 615-628). Data from a 20-year study (1969-1988) for almost 4000 isolates (Eykyn et al., 1990, J. Antimicrob. Chemother., Suppl. C, 25: 41-58). 'Data recorded by National Nosocomial Infections Surveillance (NNIS) of 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6: 428-442). Staphylococcus negative to coagulase. NI, not included. This investigation included only gram negative species. NR, incidence not reported for these species or genera. In this case, 17.4 permanent for other gram negative bacterial species.
Table 3. Distribution of positive and negative clinical specimens tested in the CHUL microbiology laboratory (February 1994 - January 1995).
Clinical specimens No. of samples specimen specimen specimen and / or sites tested (-) positive negative Urine 17, 981 (54.5) "" 19.4 80.6 Blood Culture / bone marrow, 010 (30.4) 6.993.1 Sputum 1, 266 (3.8) 68.4 31.6 Surface Pus 1, 136 (3.5) 72 .3 27. .7 Cerebroespinal Fluid 553 (1.7) 1. 0 99. .0 Synovial fluid 523 (1 6) 2. 7 97. .3 Respiratory tract 502 (1.5) 56 - 6 43. .4 Deep Pus 473 (1.4) 56 .8 43. .2 Orej to 289. { 0.9) 47 .1 52. .9 Pleural Fluid and 132 (0.4) 1. 0 99 .0 circumcardial Perloneal Fluid 101 (0.3) 28.6 71.4 Total: 32, 966 (1 Q 0.0"T 20.0 80.0 Table . Gram negative bacterial species (90) used to test the specific character of PCR primers and DNA probes (continue on the next page).
E-spec-f.es Bacterial Humerus - Bacterial species Reference number of strains tested proven strains Acinetobacter baumannii 1 Moraxella phenylpyruvica Acinetobacter Iwoffii 3 Morganella morganií Actinobasillus I gnieresii 1 Neisseria animalis Alcaligenes faecalis 1 Neissepa canis Alcaligenes odorans 1 Neisseria caviae Alcaligenes xyloso? ydans Neisseria cinérea subsp. deni trificans 1 Neisseria cunlculi Bacteroides distasonis 1 Neisser a elongata subsp. the on ga ta Bacteroides fragilis Neisseria elongata su-bsp. glycoytica Bacteroides ovatus Neisseria flavescens Bacteroides Neisseria flavescens th e tai or taomi cron Branham Bacteroides vulgatus Neisseria gonorrhoeae Bordetella bronchi s ptica Neisseria lactamica Bordetella parapertussis Neisseria meningi t dis Bordetella pertussis Neisseria mucosa Bacterial Species Number of Bacterial Species Reference number strains strains p obadas * tested 'Burkholderia cepacia 1 Neisseria polysaccharea 1 Ci trobacter amalonatic s 1 Neisseria sicca 3 Ci trobacter dzversus 2 Neisseria subflava 3 subsp, koseri Ci trobacter freundii 1 Neisseria weaveri 1 Comamonasacidovorans 1 Ochrobactru anthropí 1In terobacter aerogenes 1 Pasteurella aerogenes 1 Enterobacter 1 Pasteurella mul tocida 1 agglomerans Enterobacter cloacae 1 Prevotella melaninogenica 1 Escherichia coli 9 Proteus mirabilis 3 Escherichia fergusomi 1 Proteus vulgaris 1 Escherichza hermannii 1 Providencia alkali faciens 1 Escherichia vulneris 1 Providencia rettgeri 1 Flavobacterium 1 Providencia rustigianii 1 meningosepticum Fl a voba c t en um 1 Providence stuartir 1 indologenes Flavobacteumum odoratum 1 Pseudomana aeruginosa 14 Fusobacterium 2 Pseudomonas florescens 2 necrophorum Bacterial Species Number or Bacterial Species Reference number reference strains strains tested8 tested * Gardnerella vaginalis 1 Pseudomonas stutzeri 1 Haemophilus 1 Salmonella arizonae 1 haemolyticus Haemophilus mfluenzae 12 Salmonella choleraesuis_ 1 Haemophilus 1 Salmonella gallinarum 1 pareaemolyticus Haemophilus Salmonella typhimurium paramfluenzae Ha f a alvei 1 Serratia ligtiefanciens 1 Kingella indologenes 1 Serratia marces.cens 1 _ subsp. s ffonella Kingella kingae 1 Shewanella putida 1 Klebsiella orni thinolyti ca 1 Shigella boydii 1 Klebsiella oxytoca 1 Shigella dysentenae 1 Klebsiella pneumoniae 8 Shigella flexneri 1 Moraxella atlantae 1 Shigeli sonnei 1 Moraxella catarrhalis 5 Stenotrophomonas 1 bad tophilia Moraxella lacunata 1 Yersinia enterocoli tica l ------ Moraxella osloensis 1 The reference strains were obtained from the American Type Culture Collection (ATCC). The other reference strains were obtained from (i) the Laboratoire of Sante Publique du Quebec (LSPQ), (11) the Center for Disease Control and Prevention (CDC) and (m) the National Culture Type Collection (NCTC).
Table 5. Gram-positive bacterial species (97) used to test the specific character of PCR primers and DNA probes (continued on next page). Bacterial Species Number of Bacterial Species Reference number strains strains tested * proven * Abiotrophia adiacens 1 My crococcus kristinae 1 Abiotrophia defective 1 Micrococcus lu teus 1 Actinomyces israelii 1 Micrococcus Iylae 1 Clostridium perfringens 1 Micrococcus roseus 1 Corynebacter J-u accolens 1 Micrococcus varians 1 Corynebacterium 1 Peptococcus niger 1 aquatum Corynebacterium um bovis 1 Peptostreptococcus 1 anaerobius Corynebacteri um cervicis 1 Peptostreptococcus 1 asaccharolyticus Corynebacterium 6 Staphylococcus aureus 10 diphtheria Corynebacterium 1 Staphylococcus auricularis 1 flavescens Corynebacterium um 6 Staphylococcus capi tis 1 geni tallum subsp. urealyticus Corynebacterium elkeium 1 Staphylococcus cohnii 1 E bacterial species Number of E specie s Bac terials Reference number reference strains strains tested * tested * geni Tallum subsp urealyticus Corynebacterium jelkemm 1 Staphylococcus cohnn 1 Corynebacterium kutchep 1 Staphyl or coccus epidermidis 2 Corynebacterium 1 Staphylococcus 2 matruchotn haemolyti cus Corynebacterium 1 Staphylococcus hominis 2 m nutiss um Corynebacteri CU 1 Staphylococcus 1 lugdunensis mycetoides Corynebacterium 1 Staphylococcus 3 pseudodiphthep t cum saprophyticus Corynebacterium 6 Staphyl ococcus schleifep 1 pseudoge i talium Corynebacterium renale 1 Staphylococcus sciuri 1 Corynebacterium str atum 1 Staphylococcus si ulans 1 Corynebacterium ulcerans 1 Staphylococcus warnep 1 Corynenactepum 1 Staphyl ococcus xylosus 1 urealyt cum 2species - materials Number of - Bacterial species Reference number reference strains proven strains * tested * Corynebacterium xerosis 1 Streptococcus agalactiae 6 Enterococcus avium 1 Streptococcus anginosus 2 Enterococcus 1 Streptococcus bovis 2 Casseli flavus Enterococcus cecorum 1 Streptococcus Constella your 1 dispar Enterococcus 1 crista Streptococcus 1 Enterococzcus durans 1 Streptococcus dysgalactiae 1 Enterococcus faecalis 6 Streptococcus equi 1 Enterococcus faecium 3 Streptococcus gordonii 1 Enterococcus flavescens 1 Group C Streptococci 1 Enterococcus gallinarum 3 Group D Streptococci 1 Enzer ococcus hirae 1 Group E Streptococci - 1 In terococcus mundtii _ 1 Group F Streptococci 1 In terococcus 1 Group G Streptococci 1 pseudoavium Enterococcus raffinosus 1 Streptococcus intermedius 1 Enterococcus 1 Streptococcus my tis 2 saccharolyti cus In terococcus soli tarius 1 Streptococcus mutans 1 Eubacteri um ientum 1 Streptococcus oralis 1 E species iacteriales Number of Bacterial Species Reference number eference strains strains p obadas * proven Gemella haemolysans 1 Streptococcus parasanguis 1 Gemella morbillorum 1 Streptococcus pneumoniae 6 Lactobacillus acidophilus 1 Streptococcus pyogenes 3 L steria innocua 1 Streptococcus salivarius 2 Listeria ivanovii 1 Streptococcus sanguis 2 Listeria grayi 1 Streptococcus nieces 1 Listeria monocytogenes 3 Streptococcus suis 1 Listeria murrayí 1 Streptococcus uberis 1 Listeria seeligeri 1 Vestibular Streptococcus i 1 Listeria welshimeri 1 The reference strains were obtained from the American Type Culture Collection (ATCC). The other reference strains were obtained from (i) the Laboratoire de Santé Publique du Québec (LSPQ), (il) the Center for Disease Control and Prevention (CDC) and (iií) the National Culture Type Collection (NCTC).
Table 6. Fungal species (12) used to test the specific character of PCR primers and probes -ADN Fungal species Reference number of the strains tested Candida albicans 12 Candida glabrata 1 Candida kefyr gul iliezmondii 1 Candida krusei 2 Candida 3 lusitaniae Candida parapsilosis 1 Candida tropicalis 3 2 1 Rh glutinis Rhodotorala odo toral to 1 minute Saccharomyces cerevisiae rubra Rhodotorala 1 1 a The most referenced strains were obtained from (i) the American Type Culture Collection (ATCC) and (n) the Laboratoire de Santé Publique du Québec (LSPQ).
Table 7. PCR assays developed for several bacterial pathogens and clinically important FUNG cos (continues on next page) Organism Primer pair "size Ubicuo1" -NR- AEN plification of SEQ ID NO fr-pl? With (bp) culture "specin-enes1" Enterococcus faecium 1-2 216 79/80 + i = ter-ia -7-o? -ocyt -gene--. 34 130 164 / 168e + + Neisseria memngltldis 5-6 177 258/258 + + S crazy taphy ccu s 7-8 143 245/261 saprophyti cus? Treptococcus 154 29/29 10/09 12/11 agalactiae Candida albicans NT 149 88/88 112 87/87 13-14 In zerococcus NT spp. (11 species) 'See-serza spp. 15-16 103 321/32: (12 species) Staphylococcus spp. 17-18 192 13/14 (14 species) 19-20 221 13/14 Streptococcus spp. 21-22 153 210 / 214g (22 species) Universal aetection 23-24 309 104/116? (95 species) All primer pairs are specific in PCR assays since no DNA amplification was observed from bacterial and fungal species other than the species listed in Tables 4, 5 and 6. The ubiquitous appearance was tested using Strains of reference as well as strains from all over the world, which are representative of the diversity within each species or target genus. For all primer pairs, PCR amplifications were performed directly from a standardized microbial suspension (MacFarland) or from a colony that were specific and ubiquitous elbows. PCR assays performed directly from blood cultures, urine specimens or cerebrospinal fluid. NT, not tested. The four strains of L. monocytogenes not detected are non-clinical isolates. These strains were isolated from food and are not associated with a human infection. The bacterial species tested include all clinically relevant species for each genus (Tables 4 and 5). All these species were efficiently amplified by their respective specific genome PCR assay, except for the specific assay in Staphyl ococcus, which did not amplify S. sci uri.
The specific PCR assay in Streptococcus did not amplify 3 of the 9 strains of S. mutans and 1 of the 3 strains of S. sali vari us. The primers selected for universal bacterial detection did not amplify -ADN of non-bacterial origin, including human and other types of eukaryotic genomic DNA. For universal amplification, the 95 bacterial species tested represent the most clinically important bacterial species listed in Tables 4 and 5. The 12 unamplified strains are representative of the genera Corynebacterium (11-species) and Stenotzophomonas (1 species).
Table 8. Target genes for the various specific genotype amplification assays, of specific and universal species Microorganisms Gene Protein encoded Candida albicans tuf translational elongation factor EF-Tu Enterococcus faecium ddl? a-L-m-ra: - alanine ligase Listeriamonocytogenes actA protein that induces the ensarcfole actin Neisseina meningitidis arp protein of m-ar-torana exterior Scrt = ptocOccus agalactiae c Pfc factor Staphylococcus unknown unknown saprcphyticus Enterococcus spp. tuf factor translational elongation EF-Tu Neisseria Sfp. asd ñSA- ^ teshidrogenase Staphylococcus spp. tuf elongation factor translation E_F-Tu Strepüococcus spp. recA protein Rec. Universal stop tuf EF-Tu translation elongation factor Table 9. Ant biotic resistance genes selected for diagnostic purposes.
Genes SB-- ID Nos --- nt-Uoioticos - Bacteria * Caae-ores --í-selective agrrentos originated la ^ a ß-lactams Enterobacteriaceae, Pseudomonada ceae blaZ 51-52 111. β-lactams Enterococcus spp. aac € '-lia 61-64 112 Aminoglycosides Pseudomonada ceae e-rmA 91 -92 113 Macróli as Staphylococcus spp. erm-3 93-94 114 Macrolides _ taphylococcus spp. ermC 95-96 115 --- Acrophilic Staphylococcus spp. vahB 71-74 116 Vancomycin Enterococcus spp. vanC 75-76 117 Vancomycín Enterococcus spp. aad < 6 ') 173-174 - Etreptomycin Enterococcus spp.
Bacteria that have high incidence for the specified antibiotic resistance genes. The presence of these anti-biotic resistance genes. in other bacteria it is not excluded.
Table 10 Antibiotic resistance genes of the co-pending application from the United States (No. 08/5268 0) and (PCT / CA / 95/00528) for which PCR primer pairs were selected Genes SE ID Nos -P-ntibi-oticos Bacteria3 o Selected primers bla .. -? - lactar-ias Enterobacteriaceae, Pseudomonadaceae Haemophilus s? sp. , Neisseria spp. blam 45-48 ß-lactams Hae ophilus spp. f Pasteurella spp. bla-. , 41-44 ß-lactama fCZehsiell-a. spp. and others aadB 53-54 ñminoglicosi Enterobacteriaceae, aacCl 55-56 Pse? damonadaceae aacCZ2 57-58 aacC3 59-60 Pseudcmonadaceae aacA4 65-66 mecA 97-98 B-lactams Staphylococcus $ e. vanA 67-70 Vanco-nycm Enterococcus spp. satA 81-82 Macrolides Enterococcus spp. aac (6 ') -aph (2") 83-86 -tainoglycosides Enterococa-s spp. Staphylococcus spp 87-88 spp- ^ - -s Staphylococcus spp 89-90 Macrolides Staphylococcus spp msrA 77-80 Eritrctnicin Staphylococcus spp int 99-102 --.- lact-e-pas E-hterobacteriaceae trirr-? toprim, sul 103-106 - aminoglycosides Pseudoonadaceae antiseptic dorar-K-phericol Bacteria that have a high incidence for specific antibiotic resistance genes. The presence of these genes of a tibiotic resistance in other bacteria is not excluded.
Table 11. Correlation between disc diffusion and PCR amplification of antibiotic resistance genes in the Stap ylocoscus * species. Disc Dissemination (Kirby-Bauer) "Antibiotic Phenotype PCR Resistant Intermediate Sensitive Penicillin blaZ + 165 0 0 0 0 31 Oxacillin mecA + 51 11 4 2 0 128 Genta icine aac (6 ') aph (2") 24 18 6 0 0 148 Erythromycin ermA 15 0 0 ermB 0 0 0 ermC 43 0 0 msrA 4 0 0 0 1 136 Strains of Staphylococci studied included S. aureus (82 strains), S. epidermidis (83 strains), S. hominis (.2 strains), S. capi tis (3 strains), S. íiaemolyticus (9 strains), S. simulans ( 12 strains) and S. warneri (5 strains), for a total of 196 strains.The susceptibility test was performed through the Kirby-Bauer method according to the protocol recommended by the National Committee of Clinical .- Laboratory ICCCC Standards).
Table 12 Correlation between disc diffusion profiles and PCR amplification of antibiotic resistance genes in the species En terococcus *.
Disk diffusion Íirby-Bauer) h Antibiotic Phenotype PCR Resistant Sensitive blaZ + 0 0 Ampicillin 1 30 Gentamicin aac (6 ') aph (2") + 51 1 3 38 Stepto icina aad (6 ') + 26 15 - 6 27 Vancomycin "vanA + 36 0 vanB + 26 0 0 40 The strains of -Enterococcus- studied included E. faecalis (33 strains) and E. faecium (69 strains), for a total of 102 strains. The susceptibility test was carried out using the Kirby-Bauer method in accordance with the protocol recommended by the National Committee of Clinical Laboratory Standards (NCCLS).
Table 13. Origin of the tuf sequences in the Sequence List (continued on next page) SEQ ID NO Bacterial or Fungal Species Source 118 Abiotzophia adiacens This patent 119 Abiotzophia defective This patent 120 Candida albicans This patent 121 Candida glabza ta This patent 122 Candida kzusei This patent 123 Candida pazapsilosis This patent 124 Candida tropicalis This patent 125 Corynebacteri um accolens This patent 126 Corynebacteriam diph tepse This patent 127 Corynebacteri um geni zailum This patent 128 Corynebacteri um jelkei um This patent 129 Corynebacteri um This patent pseudo tuberculosis 130 Corynebacteriam s tria tum This patent 131 Enterococcus avium This patent 132 Enterococcus faecalis This patent 133 -Interococcus --- "aecit-p- This patent 134 Enterococcus gallinarum This patent 135 Gardnerella vaginalis This patent 136 Zincoia ionocua This patent 137 Listepa ivanovii This patent 138 Listezia monocytogenes This patent SEC. ID. NO Bacterial or fungal species Source 139 Listeria seeligeri ~ This patent 140 Staphylococcus aureus This patent 141 Staphyl ococcus epidermidis - This patent 142 Staphylococcus saprophyticus This patent 143 Staphylococcus simulans This patent 144 Streptococcus agalactiae Est ----- patent 145 Streptococcus pneumoniae This patent 146 Stzeptococcus sali vaz as This patent 147 Agzobacteriam tumelaciens Database 148 Bac ll us eubtilis Database 149 Bacteroides fragilis Data base 150 Borrelia bargdoffep - Database 151 Bzevibactezium linens Basis of "Data 152 Buzkholdezia cepacia Database 153 Chlamydia tzachoma tis Database 154 Escherichia coli Database 155 Fíbrobacter succinogenes Database 156 Flavobacteriam ferrogi neum _Databases 157 -íaemophil us mfl uenzae Database 158 Helicobacterpylori Database 159 Micrococcus luteus Database - 160 Mycobacteri um tuberculosis Database 161 Mycoplasma geni tali um Database SEC. ID. NO Bacterial or fungal species Source 162 Neisseria gonorrboeae Database 163 Rickeffsia prowazekxi Database 164 Salmonella typhimari um Database 165 Shewanella putida Database 166 Stig atella aurantiaca - Database 167 Streptococcus pyogenes Database 168 Thiobacill us cuprínus Database 169 -. 169 -Trepone-ma pallidum Database 170 Ureaplasma urealyticum Database 171 Wolínella succínogenes Database Annex I: Strategy for the selection of the tuf sequences of the universal amplification primers (continued on pages 111 to 113) SEQ ID 491 517 ... 776 802 NO Abiotrophia CA ---- TRTAAC TSCT < -Tp- < - ?? I-B3X --- CC ... t? T__ ?? T9CCTSSI S? IMS-SXAA 118 adiacena Abiotrophia rt? --- c-? t? (- CCCTOTTfl ---- USECCC. -AAAisg-Z t? t - cp ---- »! ------ &A - SIAC 119 Defective Agrobacterium - GACTGTTAC t- "¡CSITO--? IS - ICC ... .AA?? Aj2-- TATGCCTGGC GACAACOTCA 147 tumefacíena Bacillua CAfia-SÜAC AOCTOTTO ---- 4ISIICC ... AAMß-p T? ISCCT« -A SAIAiC & CTG 14β su-bc -. ---- .-? BRC teroidea CAGTX-iX? A-- - \ gqTgTTg -U- -MSp-CC. -AJJ-X-Ü-I MTWCCSST SATA? CgT? A 49 Fra-rilís Borr --------- - TACTGTTAC TggtaT-rc - l-? ------------ XCC. .AAAKjgx Tft? OCCKX-T -? I ------ T-150 burgdorferí Brevibacterlum rf-ActotCAC ssc? -vz? G &3 AX2IXCC .AGilg-p.CATOCCCOGC Q &S &CC &CCG 151 lipßns SurJ-o-Ideria CG? £ - ! -I ---- I-C SOOCOTTOAA? L-ü? CC ... AAAI --- YES CATgCCSOOC S & C ---? - 3--3T 152 cepacia CM-u-iydia CG? TUZEac TGaqqTTQAA ÜSHCA. .AGMggi CATOCt-raGc GATAACOTT? 153 Crac omaCis Co-yi-ebaccerlu-T. c-CACCOTTAC CSgxAXCflA-- &X-Q - 1-CC. . .AOAxggx avraCCTWC - & --- M ----- JZCG 126 diphteriae Mycoplas to CAOTISZZ & C I ----- .-------- --- lariCA. . .sAAn-si xciucsigai -aiAA - sctt genl tallum Nelßaerla -VACCTOTAC CWCgp-M-A K_n.CC-. . AA &igg? l-ATOCCOOOT QAQAAC-OTAA gonorrhoeae Rickettsia CGACTTOTAC AGOTQTAOAA ÍI3HCA. . . AGAIS-j-EC TATGCCTGQA QATAATGCTA prowazekii Salmonella CT? ------- 1 ----- 1 -----: i-KK-s-p --------- Ais-pcc. . .kaisaa AAToet-goae S ---------------------- CA typhimuríum Shewanella CAA ---- 3 ------ TGGTOTAG-AA 2 --- --- ZXCC ... AG? ISSZr AATGCCAGGC qATA? CATCA putlda Stigmatella CGGTfiAICAC C igJCTggAq A? SIXCC. . .AGAXS2X gATSCCggSA SAfiAASAXCG 166 aurantlaca Staphylococcus CAACTOTTAC AOOTOTTOAA MSUCC ... AA? IS.3X H-H ----- T GATAACGTTG aureus Staphylococqua cA - cxa ------. ic-crraTAa -A ------ sncc. . .AA? I ---------- t > t ---- f-t < -af- aAC-sAcarro epidermis Streptococ uB cAGtt ---- iA-: iggrcmraAA -u-ancc. . .-utAzg-a i? Tgccwgt fl T S -? rA agalactiae StreptococcuB CAOTE-HAS- TGOTQTTGAA AISTXCC-. .AAAEJSX AATgCCTOCT - &IAAC-0-3A pneumopiae Streptococcus CTOTISHAC • tSmotVH? t__ c. • Ai__ TATOCCTCGG SATAACSTGA pyogenes ThiobacilluB -T ct-TGCAc cqqcgrgaA ASSXICA. . . ? AIXES: < -ATQCCCGOC S? T? ATSTGA cuprlnus Treponema CAGTS --- I1A-- I - 2CA - I --- A--! - (------ H-XTA ... ACAE ------ QAAOCCGGGQ OATAACACCA pallidum Corynebacterium CC? CCGTTAC CTCSAIía ------ ---------- TICA ... AGAia-a TATGCCGGGC QACAACOTTY-genitmllum Corynebacterium CCACCGTTAC -TCG --- ECS ------ --- Z -3 ----- CA ... AG &? Gg? TATQCCaOCC GACAACGTTf-jeikei? Stt Entarococcuß CAAC-TQTTAC AQQTQTTQ ---, AIS-HCC. . .AAA - 5-? 1 AATOCCTOOT OATAAf-f-T p faecalia Enterococcuß CAACAS-ETA --- VS V3TIW? ? XS ----- XCC. . . AAAISSX CATOCCCOOT OACAArar. faecium Escherichia CTACCTCTAC TSqCgTTOA AXSHCC ... AGA3-9SX AATOCCGGOC GACAACATCA coli Fibrobacter ACOTCAI? -------- CQOTOrraAA AB-HCC. . -AAAI ----- XACT-2 - B ------------------.Casic ßuccinogenea Flavobacterl? RTAra-OTTAC ACK-T < -? fl? g ---- JHCC. . .AAAS --- SX TATOCCTOOT SA-1 ------------- CCA ferrugineu Gardnerella rr \ ccatc. \ C CTCIAIfi-B-J ACCUCC. . -AAA ------- TCAOCCAfoc QAXCAS-8CAA Hamophilua CTACT8TAAC «-K-rrai OAA &---- CCCC. . .AAA ----------- AATßccAgae QAIAA ----- XC? lnfluenzae Helicobacter CGAO -------- A-- OT-TgT? O ?? A - 3D-TA. . .AAA-Bja-r TATSCCT8C SAZAAXSK-A pylon ißteria TAGTASXAAC Igg --- «? A--? AXSUCC. . .AA? XS2S3X AA? -KS-E-SI OATAAGATTO monocytogenea Hlcrococcua CCACTOTCAC CS ------? - G-JA-- ------ anee. . .AGAISSI CATQCCCOQg 8ACAA-a, CCG lu-eus Mycobacterium CCACCQTCAC CgqtqtMA9 A-BEE-CC. . .AGAISÜE- QATOCCCQ --- T SACAACACCA tuberculoaÍB Annex II: Strategy for the selection of the tuf sequences of the amplification primers specific for the Enterococcus gene (continued on pages 115 to 116). 314 348 401 435 SEC ID MO Bacillus CGCGAQA - B- -tMAA --------- ----- SAZSCCA GTTGA ... CGCGG AC-AS ------ J-A? GTCGOTBUg-l A ------- 5AAAT 148 aubtíllg Bacteroldea CC3CGAIGT_-a ATA &? CS - T-I ---- -T-T ------- I-SCCG GTAGA. . .ACTGG TGTTA? C? AT SIASSISAT-3 AAA --- CGAAAT 149 fragilis Burkholderia CGTGCAGTia AS-GGCG - GII CCM-U-SCCG GTGGA. . .COCGG CATCSBJ ---- S ¡ZEC - SCSAA-. AAAICGA - AT 152 cepacía Ollamydia AGAGAAATI --- -------- AGC --- TCI - TX - A? - CCT ATTGA. . . CGTBG AATT-3-X-I-AAA SUTCCS-ATA AA ---- ECAGTT 153 -rac-iomat: ---- 'Co-.ynebac-te --.- uJi. CGTGAOAfiCa A-aAOfifiAU CCICAI --- CCT ATCGA. . . CGT-SG CTCCCK-g-Aa aiCAACS & g AC-UW-AGAT 126 diphteriae Enterococcus CGTGAZACXS AC-AACCATT -------- SA-ajCCA GTCGA. . .CGTGG ACAAgUES--; GTrGGTGA --- to AA - 3 ---- GA - AT 131 - ------- U-- Ent-Jr-n-CJCC-.H CGTGAXA -----? C? AACCATT -----------? ------ CCA GTCG ?. . . CGTGG TCAA-B-tC-K-. STTGQTG-Hn A --------- IGAAAT 132? ßficp ll? Enterococcus CGTGACAAC-- ACAAACCAIT ----------- AiaCCA GTTGA- ..CGTGG ACAAa -------- S --C GTTGaTaAcg AAS --- GA - GT 133 aturucc-cc-ll .. CGTGAXA ------ S A -? AACC ?? T -------------- I3C - A GTCGA. . . CGTGG ACAAQ --------------. --p ----- t ----- AT - i AASIAGAAAT 134 Eac erlchia CGTGCOATig ACAAO ----- P ---- I (M3-CXSCCG ATCGA ... CGCGG TATCA? CAAA GTTGGTOAAH AA -------- 3AAAT 154 coll Oardnerella CACGAICTM A --- AAO ------? II dlOÍ-B-CCA ATCGA ... CGTGG TAAGCICCCA AJCAACACCC CAfiHGAGAT 135 Vagínalia Haemophilua CGTQCOAT ---- A - CAA ---- 3 - I - CITCTTCCA ATCGA. . . CGAGs TATTAJCS-aT ACASJH-gATS AASXAGAAAT 157 ínfluenzae Helicobacter AGAGACA -------- AAAAA? - TXX --T ----- IAX --- CCQ GTTGA. . . AGAGG CGTG - EGAAA OXAgSCSAT-ü AA - ECQGAAAT 15-pylorí -Ísceria CGTGAZJ --- SS ACAAACCATT O ------------ 3CCA GTTGA. . . CGTGO ACAASHAAA GTTGGTGACO AAG? AGAAGT 138 monocytogenes Mlcrococcus CGCGACAAGS ACAAG ---- 3XX --- C - SAZSCCG ATCGA ... CGCGG CACCCISAAG AJCAACTC £ _- AG-D-CGAGAT 159 luteua Mycobacterlum CGCGAGACCg A ------- ---- 3I-- C 5-SAISCCG GTCGA. . .CGCGG CGTGAJ-C - AC G-J-GAACSAGS? --- C-H-GAGAT 150 tuberculoaiB MycoplaSm? CGTGAAGTAfl ATAAA ------ TH S-TIATIAGCA ATTGA. .AGAGG TGAACICAAA S-IASSICAA-- AASI --- GAAAT 161 genl taliwn Neißsena CGTGCCGTag ACAAAt-CATT £ C-_gC --- £ -CCT ATCGA. . . CGAGG TATCAJCCCAfi OTTQGT-I? CO AGAH-GAAAT 162 gonorrhoeae Salmonella CGTGCGATig A --- A-V - 3--0-C-- C-C-ESC-E-CCO ATCGA. . .CGCOG TATCAICA * A -HGa? C ------ »- AA ------ 3AAAT 1S4 typhimurlum Shewanella CGTGACATCa ATAAG ---- OH £ CIAC? GCCA ATCGA. . , CGTGG TATTG-CAfiSS a-CASaC-J Cg AASHGAAAT 165 putida StaphylOCOCCUB CGTGAXT £ -I-_ ACAAACCATT CATOATGCCA GTTGA ... CGTGG TCAAA1CAAA GTTGGTQAAG A --- SE --- GAAAT 140 aureua Staphylococcus CGTGA - T - ra ACAAACCATT C ------ gAI --- CCA GTTßA ... CGTGß TCAAAICAAA -3XW - 8-ISAA --- AA --------- GAAAT 141 epídermídla StaphylococcuB CGTGAIT - I-- ACAAACCATT CATaATgcA GTTGA ... CGTGG TCAAAICAAA SXSS? SAAQ AAAXCGARAT 142 ßaprophy ticua Streptococcus CGTGAXA? -r-3 ACAAACCTTT AC-TCITCCA GTTGA. . .CGTGG TACT-SUCST GTCAACGACG ASUGAAAT 144 agralactiae Streptococcus CGTGACAS ----- Ara-lAf-t-ATT ac-tTCITCCA GTCGA. . .CGTGG TATCSO-EAAA -ÜCAACSACa AAA-ECGAAAT 145 pneumonlae Streptococcus CGCOACACXfl Ap ^ "tT * tt OCTTCirCCA GTCGA .. CGTGG TACT-ÜXCaT -ÜCAACGAS-fl A & AXCGAAAT 167 pyogenea Ureaplaa a CGTAG? AS - 9 A AAACCATT fii? AT ? »GCA ATTGA .CGTGG TGTATIAAA * SH ASS S AGGUOAAAT 170 urealyticum Sequences TtSXS -canr-CATT CAISAIfl orrc-f- OTTGGTOACO AA - H selected Sequences SEQ ID NO: 13 SEQ ID NO: 14" TACTG specific genotype primers ACAAACCATT CATGATG AACTTC GTCACCAACG CGAAC selected: The numbered sequence refers to the gene fragment -E faecalis tuf. The underlined nucleotides are identical to the sequence selected or equivalent to that sequence. This sequence is the complete inverse of the previous tuf sequence. NOTE- The primers also amplify the tuf sequences of the Abiotrophia species; this genus recently has to be related to the genus Entezococcus by 16S rRNA analysis.
Annex III: Strategy for the selection of the tuf sequences of the amplification primers specific for the Staphy-lococcus gene (continued on pages 118 to 119). 385 420. ... 579 611 SEQ ID KO Bacillus TGGCC-J - 3 - A SAA-S-C ------ * ---. AASZTA? AGT CGG. ... TTG CTAAA £ CAS2 TACAATCACT CCACACAGCA 148 su-t2lis Bacteroidea AGGTCSIAIC 0AAAC-_gg-- < - TTAICCATGT AGG. ... TTT GTAACcaaa iCAGA-mAk CSTGCACTCTA 149 fragilis Burkl8lderia GQGTS-XS - C SJAOgSCS-gCA TCOIGAAGGT CGG TGG CG * AQ - C¡ßSK- ----- J3A ------? --- G S-CGCACACGC 152 Chlamydia strain TGGACSXA ---- - 1A-X ------ H -----? A TTOITAAAGT TTC TTT GCTTOCCAAA CAG - OXU-AA CCTGAXACAC 153 trac-iamatis Cory-.abacte- ._- un- aGSC-XS ------ aAß ------------ 2CT CCC - OAAOGT CAA TTG TTAAOCCASS C0C - TACA - C CCTCACACCG 126 di -iteriae --- l-erococ-c-is AGGAC - EH -------------- --- --- - A A? GITCaCGT TGG. ... TAG CTAAASSAQC IA ---------------- A --- T CCACACACAA 132 faecalía ------ terococcua AGGT-_S -__- p_ SA ----- --- 1X ------? ---. AAßlTCaCGT TGG TAG CT-LAAÍSAfiS TACAATCACA C-CTCRJACAA 133 faecíu Escherlchla CGGTC - E-IA aA? --- aC-J --- IA TCAX ------ AAGT TGG TGG CTAAG £ CaG-a SA --- CAÜ ----- AO SS-OCACACCA 154 coll Gardnerella CGGTßJI-aI aAGCS-Cip-AGCi CC AT CAA TGG CTS - XCCAS-2 HCIG --- G ------- T CCACACACCA 135 va? Rinali- .TOG Haemophilus AGGT ---- rS - A ------------ SAS-ZEA TTAE-COTAC AGG TAG CGAAA ££ Afi-S TTCAATCACA CCACACACTQ 157 influenzae Helicobacter AGGTASOAIX S ---? S * S --CO QAAAGT AGG TAT GC - AAC --- AS-3 TTCTATCACT CSGCACAAGA 158 pylorx iateria TGGAGS --- S - X GAACOTGQAC A? OI-TAAAGT TGG TAG CTAAACCAß-- pS-ÍTITICI CCACACACTA 138 monocynes B MycococcuB CGGTS -aC - CC G GCaCQSC CCCJOAAGAT CAA TGG GS aCCaQ --- --TCCAICACC ££ GCAÍ-ACCA 159 luteua Mycobacterium CGGA-_S__S - a SAG - SCSS-CO TGA3-C & &CGT GAA TCA CCAAG? £ CgS CAS-CACCAS-O CCGCACACCG 160 tuberculosis Mycoplasma -M-GAAgASH -AAA - ASSK- AACZCAA-f-GT AGG TAG CAAAACSASS CTCTATTAAA £ QG £ A £ AAGA 161 = ren talii-p- Neisseria CGGCCaiSI -! AG ££ -AS2IA TCAICCACGT TGG TGG CCAAACßßSfi TACTATCACT CCT-a-CACCA 162 gonorr oeae Salmonella cGGtca? --- -Acacaaia TC I --- A AGT GGG TGG cTAAoccoaa CACCAICAAG CCOCACACCA 164 typ imurlum Shewanella AGGTC - 1 - I-- ---. Oa-taalA TTOIACGCGT AGG TAG CGAAOCCASfl CCACACACTA 165 putida scaohylococc \? aureuß f¡t.anh? locncm? a enidermidia StaphylQCOccus ßanroph? ticuß Staoh? lococcua ßimlßna Streptococcus AGGAC2-MC flACCa-3-SE-? CTOrTCOTGT CAA TTG CT? AASCAfflJ TTCAATCAAg CCACACACTA 144 agalactiae Streptococcus AGGA £ S? --- XC -aCCSISal TCOXTAA ---- GT CAA TCG CT ----? CCA --- g TTCAATCAAC CCAC CACTA 145 pneu oniae Ureaplasma TGGACEEH- I-. --- A ----------? SZ --- TATIAAAAGT TAA TTG TAAAA - CAS2 ATCAATTAAA C? TCAS-CGTA 170 urealyticum Sequences C ----------- H-- - flAACOTOOTC AAATCAAA Gstcctq, CCAGAXA selected Sequences SEQ ID NO: 17 SEQ ID NO: 186 specific gender primers CCGTGTT GAACGTGGTC AAATCAAA TRTGTGGT GTRATWGWRC CAGGAGC 5 selected3: The numbered sequence refers to the fragment of gene S. aureus tu-f. The underlined nucleotides are identical to the sequence selected or equivalent to that sequence.
'"R", "W" and "Y" designate the nucleotide positions which are degenerate. The "R" supports for A or G; "", for A or T; "Y" pair aC or T. This sequence is the inverse complement of the previous tu-f sequence. 12Q Annex IV: Strategy for the selection of the tuf sequences of the amplification primers specific for the Candida alicans species (continued on pages 121 to 122). 58 90 181 213 SEC ID NO Candida CGTCAAS? -i OTTACA »CCCAAAQAC TGT. . CAA AICCqgTAA? AS? £ --Xre? T 120 Candida cATCAa a a-ccaa? IA --- A Acc-a-AA-a-c TGT. .CAA? ACTS-3-tßTC SXCAAG¡_S - A --- ¡A? £ -rtGTT 121 glabr to Candida CATCAASAA9 OR TOOTTACA ACCCAAACAC TGT. . CAA GOfiAS-ZCOTT SHAAOSSIA A ------ 2TTATT 122 -crusei Candida CGTC ------ SA ----- (-TTGK-TT? CA A &C - TAAAOC TGT. AOS-ras-CAAG --------- A - C- -------- A AgACCXTGTT 123 parapßiloaíß Candida CGTCA ----- A ----- 1 -------------- ASA A ------- ST --- ASOC TGT .. CAA OGCTSSIAAG SUACCS-SSA A - &CTITGTT 124 tropicalis Schízo- CATCAASAAS --- XC2 ---- ST --- A A ------ C --- A-3AC CGT CAA (-GCTí-aißTC SICA GaS-IA ASACTCTT- aaccharoniyceß pctpbe Human GGAOATCCOg SAOCTOCTCA CCOAOTTTßG CTA .GTT AGOCCTOAAO TCjaTOCAGA AS-CTACTGGA Chla-pydia QGAOCÍSJCOC flAOCTOCT-a. 0 - AAOTACOQ CTT. . CAA AM lATtCTGG AaCTOATGAA 153 trac o tis Cory-iehacteriu --- GGAOATCC - T gAOCTGCTCa CTßAOCAÜOA TTA. .GAA OCCCAG TCCATCATCG ACCTCATGCA 126 diphtheriae Epterococcus GGAAGGGCOT SACTT? XTAT CAGAATACOA TTT. .T-JAAGAA AAAATCTTAß AATTAATGGC faecalíß EBCherichla GGA ßTTCßT 3 -? CT-XCTGT CTfiAGTACOA CTT. . GOSAAGCO A? - ATCCTGG AACTGG coli «Avabßctßriu-p. CQAOGTTCOC FLAACAACTOA CTA ?? C-tCOQ TTT GOgTIAAA --M &TZSAAA &CCTOATGGA 156 FrisrrusTinßi Cardnerella AGAQGTCCßT ÜACCTCCTCß Í ßAAAACGG CTT ... CAA ßlGGOTAGAG ACCGTCAAGG AACTfiATGAA 135 vaginalis J-faemop-iilus GGA - TTTCGT SAACTICTAT CTE-kATATOA CTT GGfl? AGAA A? AATCCTXG A --- TTAGCAAA i ---- M? -in-ae -Ciater? A GGAAATTCGT aAICTATAA CTOAATATGA ATT GGO- -GCT AU-AT-E-ACO? STT ?? TGGA - onczycogenes UICrococcuB GGAAGTCCGT SAßTTGCTGß CTß £ CCA - GA ATT ... CAÁ G - GG - TCGAG TC1GTCACAC ASTTßATGGA luteus Nei aseria GGAAATCCGC SACC-TOC-PaT CfiAOCTACOA CTT? £ SAAGAA AAJ-ATCTTCG AACTßGCTAC gonorrhoeae Salmonella GGAAOTTCOC SAACTGCTGT CTCAGTACGA CTT --- GSAAGCG AAAATCATCG AACTGGCTGG typhim ríu Staphylococcua GGA - GTTCGT QACTTA - TAA ßCa? & TOA CTT C - AA - AA AAAATCTTAG AATTAATGGA aureus Streptococcus GGAAATCCGT aACCTA? TC-T CAGAATACOA CTT CS GC AICGTIATGG AATTOATGAA 145 pneumoniae rrepon < -m «AGAGOTS-CßT GISCACT CTCMATATßG GTT ... GGA OGATSCAGCT TGI TTSGG AACTGC-TGC pallidu-n Sequence CAAGAAG GTTGGTTACA ACCCAAAGA ATCCGGTAAA GTTACTGGTA AGACCT selected Sequences SEQ ID NO 11 SEQ ID NO 12 -. primers of the specific species CAAGAAG GTTGGTTACA ACCCAAAGA AGGTCTTACC AGTAACTTAC CGGAT selected3 • The numbered sequence refers to the gene fragment Candida albicans tuf Los underlined nucleotides are identical to the sequence selected or equivalent to that sequence. This sequence is the inverse complement of the previous tuf sequence.
Annex V: Strategy for the selection of the recA gene of the specific amplification primers for the genus Streptococcus (continued on pages 12 to 125). 415 449 ... 540 574 SEC ID NO Bordetella CTCÜAGAICA CCflASOCOCr aOIOCaCTCG GGCTC ... GGCCC GCCTGATGAG CCA ---------- SCIS S-SCAAGCTGA pertuaaiß Burkholdería CTCgAAAtCA CCgIOCOei SOJ-aCOCTCG GGCTC ... GGCCC GCC-ESA-BÜTC GS ------ S -CGC - S C-JCAAGCTGA layered Ca-npylabacter TTAgAAA ----- TAOAAACTAI AOCAAOAAGT GGCGC ... AGCAA GACXTAXSTC -CCAASCTCZA ASAAAACTTA je juni Chlamydia TTGAGTAp-3 --- AS-AS-CTCH -U-CGCGTTCT QGAOC .. .AGCTC QCATGATGTC OSA £ -S-rc? A £ -SCAAATTAA trac-onis Clostridium TTASAAA --- AA CASP- OCH AOHAOATCA GGAGC ... AGCTA GAT-I-AAT-gTC Aa --- SC --- TXA AOAAAGTTAA perfri? --jßpß Corynebacterium CTGgA < -A-l ---- £ - fiAfi »XAWCX TOUCGCTCT GGAGC. . .AGCGC jCASgCOCIS CS --- AACATGA pseudotuberculoßla Enterobacter CTGS-AAAICT OTgAlGCOC-- BACCCOTTCA QGCGC. .AGCTC C2A ----- Ü - OAI --- --Q1AAGCTTG agglo? WereB EnterocoCCUB TTAflAGA ----- CCaAtßCCH AOHTCAAGT GGTGC. . .AGCTC GAt-IAA-CSTC XCAASS-ACTA? GtAAATTAT -Taecium Escericia CTGSAAAICT GTgACOCCCX --GKK-CQTTCT GGCGC ... GGCAC GTATOATGAg CCAaS-S-OAIS ----- ¡-? AGCTGG coli GCGAAC? OAA ßAATAß- XX TTAATOCATT ACCGC. .QACCT GTOJ - 3T - TAC gc-uu-a? -trg A! JACATTAAA TTAflA ------ I --- T TAOAAACQAI CACCAQÁAGC GG-U30. .AGCAA OGC-TTAISAS CSA --------- GTXA A2AA - AATCA CTTCA? A --------- CT --- AAAAA --- 1 -3AZ -? CTTCT GGAGC. .AGCAC GTATGTGTC ACAAOCCATO CSXAAACTTG CTG-3A? A ------ A CTS-AIATßCt SOJOCOTTCT GCAGC. .GGCAA GAT-CSAISTC ßSaASfiCCJS S-ÜIA - ATTGA TT --- CTCXZA TCSAATCAII AAZXAAflACA AACAA. .TGCAA aAA? -------? C -UAASGTT --- S CSAAGAATAC p --- SA ?? lct acsA-a-cacr coicoßTTCG GGCGG. .GGCGC GCCTGATGAG ICASSCTTIS SSCAAACTGA CTG2AAAIIT OTflAtacA? X? TCICOCTCT GGTGC. .CGCAC aT O aAn CCAAS-S-AIS CB? AAACTAG CTGOA? AICA C < -flA_a-TOCI -G - OCGCTCC AACGC. .GGCAC GCC - SA-_STC CCAggCGCI-- Í3 - CAAGATCA ctGgAAA-? T ßTSAiococí SJACCCOCTCC GGCGC. .GGCGC GCATGATGAa CS ------------ Q? I2 CÜXAAGCTGG .GGCAC GTATQATGAO CCA-_3 £ GA_-a -3ZCAAGCTGG CTTgAAAICa --CflAAßCAH TaHAOAAGT GGTGC ... AGCTC GTTXAAISTC A £ AA - S- GT - A CSXA --- ACTTT TTAGAAATTB eApOJ- TT OAH-iACTCT GGGGC. anrdnnH g? rcpcocpgcua CTTGAAATTG CAOOGA-AATT OAI --- 1ATTCT GGCGC ... AGCAC GCATG-ATOAg I --- Ü --- C - K C-2 - A --- ATTAT 33 mutang - tfaptgcoccufl TTflí-aApa ¡-0--9UAA - I flA-asacTCA GGTQC .. .GCTC GTATQATaA --- cc OoccATa cotAAAt-ttp 34 pneu-i-onJae - treptocgccua CTTflAAA-l ------ -: CAC-BT ------ ATT SA-EB-IATTCT GGTGC AGCAC GTATSATaAO TCAGGCCATG? GjAAATTAT 35 p / ogei-eg - • trepr-ococcua CTCflA? AIIfl ---- 39XAAGCX -1A ---- 3ACTCT GGTGC .AGCGC GTATaATa g TCAAOCCATO CQIAAACTTT 36 ßalivapuß Vibrio CTGfiAAAUT GTB ».-_ GCACI aOCXCGCTCT GGTGC. .AGCGC GTAEJTISTC GCAA ---- »? ---- -33 --- AACTGA cholerae Yersinla CTGSA? ------- P. GTSAIGCGC1 SACICßCTCT GGTGC. . . CGCGC GTATGATGAG C2AS ------- TA --- S CSIAAGCTGG pes i s Sequences g AAHa CA2 - I? AA - I 9AIZSA ATGATGAG TCAIGCCATO CGTAA selected9 Sequences SEQ ID NO: 21 SEQ ID NO: 22 primers of the specific genus GAATTG CAGGIAAATT GATTGA TTACGCAT GGCITGACTC ATCAT 5 selected "1: The numbered sequence refers to the sequence S pneumomae recA The underlined nucleotides are identical to the selected sequence or equivalent to that sequence The "I" supports for mosine which is an analogous nucleotide that can bind to any of the four nucleotides A, C, G or T. This sequence is the inverse complement of the previous recñ sequence.
Annex VI: ubiquitous and specific primers for DNA amplification. SEC. ID. NO Nucleotide sequence DNA fragment originated SEC. ID Position of the Nucleoid NO Bacterial species: Enterococcus fasciui-i 1 5'-TGC-TTT AGC AAC AGC CTA TCA G - "-25 * 273-294 2- 5 '-TAA ACT TCT TCC GGC ACT TCG - 26s .468-488 Bacterial species: Listeria monocytogenes 3 5 '-TGC GGC TAT AAA TGA AGA GGC 2 339-3-59 4 4b 5 '-ATC CGA TGA TGC TAT GGC TTT 27' 448-468 Bacterial species: Neisseria meningitidis 5 5 '-CCA GCG GTA TTG TTT GGT GGT 28 56-7 6 5 '-CAG GCG GCC TTT AAT AAT TTC 28' 212-232 Bacterial species: Staphylococcus saprophyticus 7 5 '-AGA TCG AAT TCC ACA TGA AGG TTA TTA TGA 29' 290-319 8 5 '-TCG CTT CTC CCT CAA CAA TCA AAC TAT CCT 29 409-438 Bacterial species: Streptococcus agalactias 9 5 '-TTT CAC CAG CTG TAT-TAG AAG TA 30 59-81 5 '-GTT CCC TGA ACA TTA TCT TTG AT 30' 190-212 SEC. ID. NO Nucleotide sequence Fragment DNA originated SEC. ID Position of NO Nucleotide Fungal species: Candida albicans 11 5 '-CAA GAA GGT TGG TTA CAA CCC AAA GA 120' 61-86 12"5 '-AGG TCT TAC CAG TAA CTT TAC CGG AT 120 184-209 'Database Sequences. - These sequences are from the opposite -ADN E chain of the sequence of the originating fragment given in the sequence list. Sequences determined by our group.
Annex VI: ubiquitous and specific primers for DNA amplification. (Continued on the next page) SEC. ID. NO Nucleotide sequence DNA fragment originated SEC. ID Position of 5 NO Nucleotide Bacterial genus: Enterococcus 13 5 '-TAC TGA CAA ACC ATT CAT GAT G 131-134"' '319-340c 14' 5 '-AAC TTC GTC ACC AAC GCG AAC 131-134'" '' '410-430 ° Bacterial genus: Neisseria 15 5'-CTG GCG CGG TAT GGT CGG TT, - 31"21-40; 16 'S'-GCC GAC GTT GGA AGT GGT AAA G 31' 102-123 Bacterial genus: Stap-iylococcu-- '15 17 5'-CCG TGT TGA ACG TGG TCA AAT CAA A_ 140-143 =' "39I-415'5 18 '5' -TRT GTG GTG TRA TWG WRC CAG GAG C 140-14-3 '' '584-608 ° 19 5 '-ACA ACG TGG WCA AGT WTT AGC WGC T 140-143, "~ 562-583'7 5'-ACC ATT TCW GTA CCT TCT GGT AAG T -140-143, 't' 729-753q Bacterial genus: Streptococcus 21 5 '-GAA ATT GCA GGI AAA TTG ATT GA 32-36 413-440"' 22 '5' -TTA CGC ATG GCI TGA CTC ATC AT 32-36" 547-569" Universal primers 25 23 5'-ACI KKI ACI GGI GTI GAR ARG TT 118-146"'' 493-515 SEC. ID. NO Nucleotide sequence DNA fragment originated SEC. TD Position of NO Nucleotide 147-171"'° 24' 5'-AYR TTI TCI CCI GGC ATI ACC AT 118-146" '"778-800 147-171a' These sequences were aligned upon obtaining the corresponding primer. The tu-f sequences determined by our group. The nucleotide positions refer to the gene fragment E. faecalis tuf. (SEQ ID NO: 132). 1 These sequences are from the opposite DNA strand of the origin sequence given in the Sequence Lysia. Sequences of the Database. _ The positions of the nucleotide refer to the fragment of the gene N. meningi tidis asd. The nucleotide positions refer to the fragment of the S. auze? S tuf gene (SEQ ID NO: 140). The positions of the nucleotide are -referred to the gene S. pneumoniae zecA (SEQ ID NO: 34). The nucleotide positions refer to the fragment of the E. col i tuf gene (SEQ ID NO: 154).
Annex VI: ubiquitous and specific primers for DNA amplification. SEC. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of 5 NO Nucleotide Antibiotic resistance gene: blaj, "37 5 '-CTA TGT GGC GCG GTA TTA TC 38 5' -CGC AGT GTT ATC ACT CAT GG 39 5 '-CTG AAT GAA GCC ATA CCA AA - - 40 5' -ATC AGC AAT AAA CCA GCC AG Antibiotic resistance gene: bl ,, - ,, 41 5 '-TTA CCA TGA GCG ATA ACA GC - - 15 42 5' -CTC ATT CAG TTC CGT TTC CC 43 5 '-CAG CTG CTG CAG TGG ATG GT 44 5' -CGC TCT GCT TTG TTA TTC GG Antibiotic resistance gene: -_ > la-.ß_, 45 5 '-TAC GCC AAC ATC GTG GAA AG "- 46 5' -TTG AAT TTG GCT TCT TCG GT - - 47 5 '-GGG ATA CAG AAA CGG GAC AT - - _ 48 5 '-TAA ATC TTT TTC AGG CAG CG SEC. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of NO Nucleotide Antibiotic resistance gene: Day -, - * --- 49 5 '-GAT GGT TTG AAG GGT TTA TTA TAA G 110' 686-710 50"5 '-AAT TTA GTG TGT TTA GAA TGG TGA T 110"802-826 Antibiotic Resistance Gene: blaZ -_ 51 5'-ACT TCA ACA CCT GCT TCC 111 '511-531 52"5' -TCA CCA CTT TCA TCA GCA ACC" lll1 663-683 Antibiotic resistance gene: aadB 53 5 '-GGC AAT AGT TGA AAT GCT CG 54 5' -CAG CTG TTA CAA CGG ACT GG - - Antibiotic resistance gene: aacCl 55 5 '-TCT ATG ATC TCG CAG TCT CC 56 5' -ATC GTC ACC GTA ATC TGC TT Sequences of the Database. These sequences are from the opposite DNA strand of the sequence of the given fragment given - in the Sequence Lisca.
Annex VI: ubiquitous and specific primers for DNA amplification. SEC. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of NO Nucleotide Antibiotic resistance gene: ascC2 - 57 5 '-CAT TCT CGA TTG CTT TGC TA 58 5' -CCG AAA TGC TTC TCA AGA TA Antibiotic resistance gene: ascC3 59 5 '-CTG GAT TAT GGC TAC GGA GT 60 5' - AGC AGT GTG ATG GTA TCC AG Antibiotic resistance gene: aacC6'-IIa 61 5'-GAC TCT TGA TGA AGT GCT GG 112"123-142 62 5 '-CTG GTC TAT TCC TCG CAC TC 112 284-303 63 5'-TAT GAG AAG GCA GTC TTC GT 112 445-464 64"5 '-GCT TTC TCT CGA AGG CTT GT 1121 522-541 Antibiotic resistance gene: aacC4 65 5 '-GAG TTG CTG TTC AAT GAT CC ¿6 5' -GTG TTT GAA CCA TGT ACA CG Antibiotic resistance gene: aad -.6 ') SEC. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of NO Nucleotide 173 5 '-TCT TTA GCA. GAA CAG GAT GAA - - -174 5 '-GAA TAA TTC ATA TCC TCC G - - - Antibiotic resistance gene: ranA 67 5 '-TGT AGA GGT CTA GCC CGT GT 68 5' -ACG GGG ATA ACG ACT GTA TG 69 5 '-ATA AAG ATG ATA GGC CGG TG 70 5' -TGC TGT CAT ATT GTC TTG CC _ - Antibiotic resistance gene: vanB -1 5 '-ATT ATC TTC GGC GGT TGC TC 116p 22-41 72 '5' -GAC TAT CGG CTT CCC ATT CC 116"171-190 ^ 3 5'-CGA TAG AAG CAG CAG GAC AA 116 '575-594 74 5'-CTG ATG GAT GCG GAA GAT AC 1161 713-732 Sequences of the Database. - - These sequences are from the opposite DNA strand of the originated fragment sequence given in the Sequence List.
Annex VI: ubiquitous and specific primers for DNA amplification. S? C. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of NO Nucleotide Antibiotic resistance gene: vanC 75 5 '-GCC TTA TGT ATG AAC AAA TGG 117' 373-393 76"5 '-GTG ACT TTW GTG ATC CCT TTT GA 117" "541-563 Antibiotic resistance gene: marA 77 5 '-TCC AAT CAT TGC ACA AAA TC - - -78 5' -AAT TCC CTC TAT TTG GTG GT 79 5 '-TCC CAA GCC AGT AAA GCT AA 80 5' -TGG TTT TTC AAC TTC TTC CA Antibiotic resistance gene: satA 81 5 '-TCA TAG AAT GGA TGG CTC AA 82 5' -AGC TAC TAT TGC ACC ATC CC Antibiotic resistance gene: aac (6 ') -aph (2") 83 5' -CAA TAA GGG CAT ACC AAA AAT C -84 5'-CCT TAA CAT TTG TGG CAT TAT C - SEC. "ID NO Nucleotide sequence DNA fragment Originated SEC ID Position of NO Nucleotide 85 5 '-TTG GGA AGA TGA AGT TTT TAG A -86 5' -CCT TTA CTC CAA TAA TTT GGC T Antibiotic resistance gene: vat __ _ 87 5T-TTT CAT CTA 'TTC AGG ATG GG - - -88 5' - GGA GCA ACA TTC TTT GTG AC - ~ - Antibiotic resistance gene: vga 89 5 '-TGT GCC TGA AGA AGG TAT TG 90 5' -CGT GTT ACT TCA CCA CCA CT "- - Antibiotic resistance gene: ermA 91 5 '-TAT CTT ATC GTT GAG AAG GGA TT 113"370-392 92 '5'-CTA CAC TTG GCT TAG GAT GAA A 113' 487-508 Database Sequences. These sequences are from the opposite DNA strand of the sequence of the original fragment given in the Sequence List.
Annex VI: ubiquitous and specific primers for DNA amplification. SEC. ID. NO Nucleotide Sequence DNA fragment Originated SEC. ID Position of 5 NO Nucleotide Antibiotic resistance gene: ermB 93 5 '-CTA TCT GAT TGT TGA AGA AGG ATT 114"366-389 94 5'-GTT TAC TCT TGG TTT AGG ATG AAA 114 484-507 Antibiotic resistance gene: ermC 95 5 '-CTT GTT GAT CAC GAT AAT TTC C 115n 214-235 96"5'-ATC TTT TAG CAA ACC CGT ATT C 115" 382-403 Antibiotic resistance gene: mecA 15 97 5 '-AAC AGG TGA ATT ATT AGC ACT TGT AAG - - - 93 5' -ATT GCT GTT AAT ATT TTT TGA GTT GAA Antibiotic resistance gene: mt 99 5 '-GTG ATC GAA ATC CAG ATC C - - 20 100 5' -ATC CTC GGT TTT CTG GAA G 101 5 '-CTG GTC ATA CAT GTG ATG G - - 102 5' -GAT GTT ACC CGA GAG CTT G - - Antibiotic resistance gene: sul _ ..
SEC. ID. NO Sequence of nucleus DNA fragment Originated SEC. ID Position of Nucles 103 5 '-TTA AGC GTG CAT AAT AAG CC - - 104 5' -TTG CGA TTA CTT CGC CAA CT 105 5 '-TTT ACT AAG CTT GCC CCT TC 106 5' -AAA AGG CAG CAA TTA TGA GC- - Database Sequences. These sequences are from the opposite DNA strand of the sequence of the original fragment given in the Sequence List.
SEQUENCE LIST (1) GENEAL INFORMATION: (i) APPLICANT: (A) NAME: INFECTIO DIAGNOSTIC (T.D. I.) INC. (B) STREET: 2050, BOULEVARD RENE LEVESQUE OUEST, 4E ETAGE (C) CITY: STE-FOY (D) STATE: QUEBEC (E) COUNTRY: CANADA (F) ZIP CODE (ZIP): GLV 2K8 (G) TELEPHONE: (418) 681-4343 (H) TELEFAX: ( 418) 681-5254 (A) NAME: BERGERON, MICHEL G. (B) STREET: 2069 RULE BRULARD (C) CITY: SILLERY (D) STATE: QUEBEC (E) COUNTRY: CANADA (F) ZIP CODE: G1T 1G2 (A) NAME: PICARD, FRANCOIS J. (B) STREET: 1245, RULE OF THE SAPINIERE (C) CITY: CAP-ROUGE (DJ STATE: QUEBEC (E) COUNTRY: CANADA (F) POSTAL CODE (ZIP): G1Y 1A1 (A) NAME: OUELLETTE, MARC (B) STREET: 1035 OF PLOERMEL (C) CITY: SILLERY (D) STATE: QUEBEC (E) COUNTRY: CA ADÁ (F) ZIP CODE: GIS 3S1 (A) NAME: ROY, PAUL H. (B) STREET: 28, R É CHARLES GARNIER (C) CITY: LORETTEVILLE (D) STATE: QUEBEC (E) COUNTRY: CANADA (F) POSTAL CODE (ZIP): G2A 3S1 (ll) TITLE OF THE INVENTION: SPECIFIC DNA, SPECIFIC GENE, AND UNIVERSAL DNA PROBES AND SPECIFICATION PRIMERS FOR AMPLIFICATION TO DETECT AND IDENTIFY RAPIDLY PATHOGENS BACTERIALS AND ANTIBIOTICS COMMUNE "AND ANTIBIOTIC RESISTANCE GENES ASSOCIATED FROM CLINICAL SPECIMENS FOR THE DIAGNOSIS IN MICROBIOLOGY LABORATORIES .. (iii) NUMBER OF SEQUENCES: 174 (ív) METHOD OF READING ON THE COMPUTER: (A) TYPE OF MEDIA: Soft disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM :. PC-DQS / MS-DOS (D) SOFTWARE: Patentln Reeléase # 1.0, Version # 1.30 (EPO) (vi) PREVIOUS APPLICATION DATA: (A) APPLICATION NUMBER: US 08 / 743,637 (B) DATE OF SUBMISSION: 04 -NOV-1996 (2) INFORMATION FOR SEC. ID. NO: 1: (l) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Entezococcus faecium (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 1: TGCTTTAGCA ACAGCCTATC AG 22 (2) INFORMATION FOR SEC. ID. NO: 2: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (3) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecium (xi) DESCRIPTION OF SEQUENCE: SEC. ID. NO: 2: TAAACTTCTT CCGGCCTTC G 21 (2) INFORMATION FOR SEC. ID. NO: 3: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Lis teria monocytogenes (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 3: TGCGGCTATA AATGAAGAGG C 21 (2) INFORMATION FOR SEC. ID. NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs "(B) TYPE: nucleic acid (C) FOR-MA CHAIN: simple (D) TOPOLOGY: linear (11) TYPE OF MOLECULE: DNA (genomic (vi) ORIGINAL SOURCE: (A) ORGANISM: Lis teria monocytogenes (xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 4: ATCCGATGAT GCTATGGCTT T 21 (2) INFORMATION FOR SEC. ID. NO: 5: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningi tidis (xi) DESCRIPTION OF THE SEQUENCE: SEC-. ID. NO: 5: CCAGCGGTAT TGTTTGGTGG T 21 , 2) INFORMATION FOR SEC. ID. NO: 6: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neissepa memngi tidis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 6: CAGGCGGCCT TTAATAATTT C 21 (2) INFORMATION FOR SEC. ID. NO: 7: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus sapropnyticus (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 7: í-GATCGAATT CCACATGAAG GTTATTATGA 30 , 2) INFORMATION FOR SEC. ID. NO: 8: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (Cj CHAIN FORM: simple (D. TOPOLOGY: linear di) TYPE OF MOLECULE: DNA ( genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus sapzophyt cus (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 8: TCGCTTCTCC CTCAACAATC AAACTATCCT 30 (2) INFORMATION FOR SEC. ID. NO: 9: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Stzeptococcus agalactiae (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 9: TTTCACCAGC TGTATTAGAA GTA 23 (2) INFORMATION FOR SEC. ID. NO: 10: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 pairs of oases (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Stzeptococcus agalactiae (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 10: GTTCCCTGAA CATTATCTTT GAT - 23 (2) INFORMATION FOR SEC. ID. NO: 11: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida albicans (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 11: CAAGAAGGTT GGTTACAACC CAAAGA 26 (2) 'INFORMATION FOR SEC. ID. NO: 12: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid - (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida al ticans (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 12: AGGTCTTACC AGTAACTTTA CCGGAT 26 (2) INFORMATION FOR SEC. ID. NO: 13: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs - (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE : DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 13; TACTGACAAA CCATTCATGA TG 22 (2) INFORMATION FOR SEC. ID. NO: 14:. (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC- ID. NO: 14:? ACTTCG? CA CCAACGCGAA C 21 , 2) INFORMATION FOR THE? EC. ID. NO: 15: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple 5 (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) ) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 15: CTGGCGCGGT ATGGTCGGTT - 20 (2) INFORMATION FOR SEC. ID. NO: 16: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple 15 (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE : DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 16: GCCGACGTTG GAAGTGGTAA AG 22 12) INFORMATION FOR SEC. ID. NO: 17: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (Bi TYPE: nucleic acid --- (C) CHAIN FORM: simple 25 -D TOPOLOGY: linear (ii) MOLECULE TIEO: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 17: CCGTGTTGAA CGTGGTCAAA TCAAA 25 (2) INFORMATION FOR SEC. ID. NO: 18: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC ".-ID NO: 18: TRTGTGGTGT RATWGWRCCA GGAGC" 25 (2) INFORMATION FOR SEC. ID. NO: 19: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) FORM OF THE CHAIN: simple (Dj TOPOLOGY: linear (il) MOLECULE TYPE: DNA (genomic) (xi) DESCRIPTION OF SEQUENCE: SECTION ID NO: 19: ACAACGTGGW CAAGTWTTAG CWGCT 25 -2l INFORMATION FOR SEC. ID. NOí 20: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 20: ACCATTTCWG TACCTTCTGG TAAGT 25 (2) INFORMATION FOR SEC. ID. NO: 21: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION ": 12 (D) OTHER INFORMATION: / note =" n = mosma "(xi) DESCRIPTION OF THE SEQUENCE: SEC. NO: 21: GAAATTGCAG GNAAATTGAT TGA 23 , 2) INFORMATION FOR SEC. ID. NO: 22: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / note = "n = mos na" (xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 22: TTACGCATGG CNTGACTCAT CAT 23 (2) INFORMATION FOR SEC. ID. NO: 23: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid ---- (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 3 (D) OTHER INFORMATION: / note = "n = inosine" (ix) FEATURE: (A) NAME / KEY: mise feature (B) LOCATION: 6 (D) OTHER INFORMATION: / note = "n = inosma" (x) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 9 (D) OTHER INFORMATION: / note = "n = inosxna "(IX) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / nota =" n = inosma "(ix) CHARACTERISTIC: (A) ÑAME / KEY: misc_feature ( B) LOCATION: 15 (D) OTHER INFORMATION: / nota = "n = ímsune" - (xi) DESCRIPTION OF THE SEQUENCE: SEC. XD- NO: 23: - ACKKNACNG GNGTNGARAT GTT 23 (2) INFORMATION FOR SEC. ID. NO: 24: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid - - (C) CHAIN FORM: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (geno ico) (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 6 (D) OTHER INFORMATION: / note = "n = inosina" (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 9 (D) OTHER INFORMATION: / note = .'n = inosina "(ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / nota =" n = inosina "(ix) CHARACTERISTIC ( A) NAME / KEY: misc_f eature (B) UBIC-ACION: 18 (D) OTHER INFORMATION: / nota = "n = inosina" (xi) DESCRIPTION OF THE SEQUENCE: SEC- ID NO: 24: AYRTTNTCNC CNGGCATNAC CAT 23 (21 INFORMATION FOR SECTION ID NO: 25: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (DI TOPOLOGY: linear ii) TYPE OF MOLECULE: DNA (genomic) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 25: TCGCTTCTCC 10 (2) INFORMATION FOR SEC. ID. NO: 26: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 600 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Entezococcus faecium (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 26: TTCTTAGAGA CATTGAM ™ T GCCTTATGTC GGCGCAGGCG TATTGACCAG TGCATGTGCC 60 ATGGATAAAA TCATGACCAA GTATATTTTA CAAGCTGCTG GTGTGCCGCA AGTTCCTTAT 120 GTACCAGTAC TTAAGAATCA ATGGAAAGAA AATCCTAAAA AAGTATTTGA TCAATGTGAA 180 GGTTCTTTGC TTTATCCGAT GTTTGTCAAA CCTGCGAATA TGGGTTCTAG TGTCGGCATT 240 ACAAAGGCAG AAAACCGAGA AGAGCTGCAA AATGCTTTAG CAACAGCCTA TCAGTATGAT 300 TCTCGAGCAA TCGTTGAACA AGGAATTGAA GCGCGCGAAA TCGHAGTTGC TGTATTAGGA 360 AATGAAGATG TTCGGACGAC TTTGCCTGGC GAAGTCGTAA AAGACGTAGC ATTCTATGAT 420 TATGAAGCCA AATATATCAA TAATAAAATC GAAATGCAGA TTCCAGCCGA AGTGCCGGAA - 480 GAAGTTTATC -AAAAAGCGCA AGAGTACGCG AAGTTAGCTT ACACGATGTT AGGTGGAAGC 540 '? GATTGAGCC GGTGCGATTT CTTTTTTGACA AATAAAAATG AATTATTCCT GAATGAATTA 600 ?2! INFORMATION FOR SEC. ID. NO: 27: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 1920 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Lis teria monocytogenes (XI) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 27: GTGGGATTAA ACAGATTTAT GCGTGCGATG ATGGTGGTTT TCATTACTGC CAATTGCATT 60 ACGATTAACC CCGACATAAT ATTTGCAGCG ACAGATAGCG AAGATTCTAG TCTAAACACA 120 GATGAATGGG AAGAAGAAAA AACAGAAGAG CAACCAAGCG AGGTAAATAC GGGACCAAGA 180 TACGAAACTG CACGTGAAGT AAGTTCACGT GATATTAAAG AACTAGAAAA ATCGAATAAA 240 GTGAGAAATA CGAACAAAGC AGACCTAATA GCAATGTTGA AAGAAAAAGC AGAAAAAGGT 300 CCAAATATCA ATAATAACAA CAGTGAACAA ACTGAGAATG CGGCTATAAA TGAAGAGGCT 360 TCAGGAGCCG ACCGACCAGC TAIACAAGTG GAGCGTCGTC ATCCAGGATT GCCATCGGAT 420 AGCGCAGCGG AAATTAAAAA AAGAAGGAAA GCCATAGCAT CATCGGATAG TGAGCTTGAA 480 ^ GCCTTACTT ATCCGGATAA ACCAACAAAA GTAAATAAGA AAAAAGTGGC GAAAGAGTCA 540 GTTGCGGATG CTTCTGAAAG TGACTTAGAT TCTAGCATGC AGTCAGCAGA TGAGTCTTCA 600 CCACAACCTT TAAAAGCAAA CCAACAACCA TTTTTCCCTA AAGTATTTAA AAAAATAAAA 660 GATGCGGGGA AATGGGTACG TGATAAAATC GACGAAAATC CTGAAGTAAA GAAAGCGATT 720 GTTGATAAAA GTGCAGGGTT AATTGACCAA TTATTAACCA AAAAGAAAAG TGAAGAGGTA 780 AATGCTTCGG ACTTCCCGCC ACCACCTACG GATGAAGAGT TAAGACTTGC TTTGCCAGAG 840 ACACCAATGC TTCTTGGTTT TAATGCTCCT GCTACATCAG AACCGAGCTC ATTCGAATTT - 900 CCACCACCAC CTACGGATGA AGAGTTAAGA CTTGCTTTGC CAGAGACGCC AATGCTTCTT 960 GGTTTTAATG CTCCTGCTAC ATCGGAACCG AGCTCGTTCG AATTTCCACC GCCTCCAACA 1020 GAAGATGAAC TAGAAATCAT CCGGGAAACA GCATCCTCGC TAGATTCTAG TTTTACAAGA 1080 GGGGATTTAG CTAGTTTGAG AAATGCTATT AATCGCCATA GTCAAAATTT CTCTGATTTC 1140 CCACCAATCC CAACAGAAGA AGAGTTGAAC GGGAGAGGCG GTAGACCAAC ATCTGAAGAA "1200 TTTAGTTCGC TGAATAGTGG TGATTTTACA GATGACGAAA ACAGCGAGAC AACAGAAGAA 1260 GAAATTGATC GCCTAGCTGA TTTAAGAGAT AGAGGAACAG GAAAACACTC AAGAAATGCG 1320 GGTTTTTTTAC CATTAAATCC GTTTGCTAGC AGCCCGGTTC CTTCGTTSSG TCCAAAGGTA 1380 TCGAAAATAA GCGACCGGGC TCTGATAAGT GACAT-AACTA AAAAAACGCC ATTTAAGAAT 1440 CCATCACAGC CATTAAATGT GTTTAATAAA AAAACTACAA CGAAAACAGT GACTAAAAAA 1500 CCAACCCCTG TAAAGACCGC ACCAAAGCTA GCAGAACTTC CTGCCACAAA ACCACAAGAA 1560 ACCGTACTTA GGGAAAATAA AACACCCTTT ATAGAAAAAC AAGCAGAAAC AAACAAGCAG 1620 TCAATTAATA TGCCGAGCCT ACCAGTAATC CAAAAAGAAG CTACAGAGAG CGATAAAGAG 1680 GAAATGAAAC CACAAACCGA GGAAAAAATG GTAGAGGAAA GCGAATCAGC TAATAACGCA 1740 AACGGAAAAA ATCGTTCTGC TGGCATTGAA GAAGGAAAAC TAATTGCTAA AAGTGCAGAA 1800 GACGAAAAAG CGAAGGAAGA ACCAGGGAAC CATACGACGT TAATTCTTGC AATGTTAGCT 1860 ATTGGCGTGT TCTCTTTAGG GGCGTTTATC AAAATTATTC AATTAAGAAA AAATAATTAA 1920 (2) INFORMATION FOR SEC. ID. NO: 28: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 415 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: double (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningi tidis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 28: TACCGGTACG CTAAATATTG GTGATSTATT GGATATTATG ATTTGGGAAG CGCCGCCAGC 60 GGTATTGTTT GGTGGTGGCC TTTCTTCGAT GGGCTCGGGT AGTGCGCAAC AAACCAAGTT 120 GCCGGAGCAA CTGGTGACGG CACGTGGTAC GGTTTCTGTG CCGTTTGTTG GCGATATTTC * 180 GGTGGTCGGT AAAACGCCTG GTCAGGTTCA GGAAATTATT AAAGGCCGCC TGAAAAAAAT 240 GGCCAATCAG CCGCAAGTGA TGGTGCGCTT GGTGCAGAAT AATGCGGCAA ATGTATCGGT 300 GATTCGCGCA GGCAATAGTG TGCGTATGCC GTTGACGGCA GCCGGTGAGC GTGTGTTGGA 360 TGCGGTGGCT GCGGTAGGTG GTTCAACGGC AAATGTGCAG GATACGAATG TGCAG 415 (2) INFORMATION FOR SEC. ID. NO: 29: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 438 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Staphyl ococcus saprophyticus (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 29: TCGCTTCTCC AGAAGAAATT TTAGAAACAT ATCTAGAAAA TCCCAAATTA GATAAACCGT 60 TTATATTATG TGAATACGCA CATGCAATGG GAAATTCACC AGGAGATCTT AATGCATATC 120 AAACATTAAT TGAAAAATAT GATAGTTTTA TTGGCGGTTT TGTTTGGGAA TGGTGTGATC 180 ATAGCATTCA GGTTGGGATA AAGGAAGGTA AACCAATTTT TAGATATGGT GGAGATTTTG 240 GTGAGGCCTT ACATGACGGT AATTTTTGTG TTGATGGTAT TGTTTCGCCA GATCGAATTC 300 CACATGAAGG TTATTATGAG TTTAAACATG AACATAGACC TTTGAGATTG GTTAACGAAG 360 AGGATTATCG GTTTACATTG AAGAATCAAT TTGATTTTAC AAATGCGGAG GATAGTTTGA 420 TTGTTGAGGG AGAAGCGA 438 (2) INFORMATION FOR SEC. ID. NO: 30: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 768 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae (xi) SEQUENCE DESCRITION: SEC. -ID. NO: 30: ATGAACGTTA CACATATGAT GTATCTATCT GGAACTCTAG TGGCTGGTGC ATTGTTATTT 60 TCACCAGCTG TATTAGAAGT ACATGCTGAT CAAGTGACAA CTCCACAAGT GGTAAATCAT 120 GTAAATAGTA ATAATCAAGC CCAGCAAATG GCTCAAAAGC TTGATC AGA TAGCATTCAG 180 TTGAGAAATA TCAAAGATAA TGTTCAGGGA ACAGATTATG AAAAACCGGT TAATGAGGCT 240 ATTACTAGCG TGGAAAAATT AAAGACTTCA TTGCGTGCCA ACCCTGKGAC AGTTTATGAT 300 TTGAATTCTA TTGGTAGTCG TGTAGAAGCC TTAACAGATG TGATTGAAGC AATCACTTTT 360 TCAACTCAAC ATTTAACAAA TAAGGTTAGT CAAGCAAATA TTGATATGGG ATTTGGGATA 420 ACTAAGCTAG TTATTCGCAT TTTAGATCCA TTTGCTTCAG TTGATTCAAT TAAAGCTCAA 480 GTTAACGATG TAAAGGCATT AGAACAAAAA GTTTTAACTT ATCCTGATTT AAAACCAACT 540 GATAGAGCTA CCATCTATAC AAAATCAAAA CTTGATAAGG AAATCTGGAA TACACGCTTT 600 ACTAGAGATA AAAAAGTACT TAACGTCAAA GAATTTAAAG TTTACAATAC TTTAAATAAA 660 GCAATCACAC ATGCTGTTGG AGTTCAGTTG AATCCAAATG TTACGGTACA ACAAGTTGAT "20 CAAGAGATTG TAACATTACA AGCAGCACTT CAAACAGCAT TAAAATAA 768 (2) INFORMATION FOR SEC. ID. NO: 31: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 421 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 31: ATGAAAGTAG OTTTCGTCGG CTGGCGCGGT ATGGTCGGTT CGGTTTTGAT GCAOCGTATG 60 AAAGAAGAAA ACGACTTCGC CCACATTCCC GAAGCGTTTT TCTTTACCAC TTCCAACGTC 120 GGCGGCGCAC GCCCTGATTT CGGTCAGGCG GCTAAAACAT TATTGGACGC GAACAACGTT 180 GCCGAGCTGG CAAAAATGGA CATCATCGTT ACCTGCCAAG GCGGCGACTA CACCAAATCC 240 GTCTTCCAAG CCCTGCGCGA CAGCGGCTGG AACGGCTACT GGATTGACGC GGCATCCTCG 300 CTGCGTATGA AAGACGACGC GATTATCGTC CTCGACCCCG TCAACCGCAA CGTCATCGAC 360 AACGGCCTCA AAAACGGCGT GAAAAACTAC ATCGGCGGCA- ACTGTACCGT TTCCCTGATG 420 c 421 (2) INFORMATION FOR SEC. ID. NO: 32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 pairs of Bases (B) TYPE: nucleic acid - (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (i) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus gordonii (xi) ) DESCRIPTION OF THE SEQUENCE: SEC- ID. NO: 32: TTCATAGACG CTGAGCACGC TTTGGATCCA TCTTACGCGG CTGCTCTAGG TGTAAATATT 60 GATGAGCTGT TGCTATCTCA ACCAGATTCT GGTGAGCAAG GTTTAGAAAT TGCAGGAAAA - 120 TTGATTGACT CTGGGGCAGT TGATTTAGTT GTCATCGACT CTGTTGCAGC TCTTGTACCA 180 CGTGCGGAAA TCGATGGAGA TATCGGTGAT AGC 213 (2) INFORMATION FOR SEC. ID. NO: 33 (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 692 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus mutans (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 33: " GC-GCCGGAAT CTTCTGGTAA GACAACTGTC GCTCTTCATG CTGCTGCTCA GGCGCAAAAA 60 GATGGCGGTA TTGCCGCTTT CATTGATGCA GAACATGCCC TTGATCCAGC CTATGCTGCT 120 GCTCTTGGCG TTAATATTGA TGAGCTTTTG CTTTCACAAC CAGATTCAGG AGAACAGGGT 180 CTTGAAATTG CAGGGAAATT GATTGATTCT GGCGCTGTTG ATTTAGTTGT TGTTGACTCA 240 GTGGCAGCTT TAGTACCACG TGCGGAGATT GACGGAGATA TTGGTAATAG TCATGTTGGC 300 TTACAAGCAC GCATGATGAG TCAAGCGATG CGTAAATTAT CAGCTTCAAT CAATAAAACA 360 AAAACCATTG CTATTTTTAT TAATCAATTG CGGGAAAAAG TTGGTATTAT GTTTGGTAAT 420 CCAGAAACAA CCCCTOGCGG GCGTGCCTTG AAGTTTTATT CTTCTGTGCG TCTTGATGTC 480 CGCGGCAATA CTCAAATTAA AGGAACCGGG GAACAAAAAG ACAGCAATAT TGGTAAAGAG 540 ACCAAAATTA AAGTTGTTAA AAATAAAGTT GCTCCACCAT TTAAGGAAGC TTTTGTAGAA 600 ATTATATATG GTGAAGGCAT TTCTCGTACA GGTGAATTAG TTAAGATTGC CAGTGATTTG 660 GGAATTATCC AAAAAGCTGG AGCTTGGTAC TC 692 (2) INFORMATION FOR SEC. ID. NO: 34: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 1204 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 34: ATGGCGAAAA AACCAAAAAA ATTAGAAGAA ATTTCAAAAA AATTTGGGGC AGAACGTGAA 60 AAGGCCTTGA ATGACGCTCT TAAATTGATT GAGAAAGACT TTGGTAAAGG ATCAATCATG 120 CGTTTGGGTG AACGTGCGGA GCAAAAGGTG CAAGTGATGA GCTCAGGTTC TTTAGCTCTT 180 GACATTGCCC TTGGCTCAGG TGGTTATCCT AAGGGACGTA TCATCGAAAT CTATGGCCCA "240 GAGTCATCTG GTAAGS-CAAC GG TGCCCTT CATGCAGTTG CACAAGCGCA AAAAGAAGGT '300 GGGATTGCTG CCTTTATCGA TGCGGAACAT GCCCTTGATC CAGCTTATGC TGCGGCCCTT 360 GGTGTCAATA TTGACGAATT GCTCTTGTCT CAACCAGACT CAGGAGAGCA AGGTCTTGAG 420 ATTGCGGGAA SATTGATTGA CTCAGGTGCA GTTGATCTTG TCGTAGTCGA CTCAGTTGCT 480 GCCCTTGTTC CTCGTGCGGA AATTGATGGA GATATCGGAG ATAGCCATGT TGGTTTGCAG 540 GCTCGTATGA TGAGCCAGGC CATGCGTAAA CTTGGCGCCT CTATCAATAA AACCAAAACA 600 ATTGCCATTT TTATCAACCA ATTGCGTGAA AAAGTTGGAG TGATGTTTGG AAATCCAGAA 660 ACAACACCGG GCGGACGTGC TTTGAAATTC TATGCTTCAG TCCGCTTGGA TGTTCGTGGT 720 AATACACAAA TTAAGGGAAC TGGTGATCAA AAAGAAACCA ATGTCGGTAA AGAAACTAAG 780 ATTAAGGTTG TAAAAAATAA GGTAGCTCCA CCGTTTAAGG AAGCCGTAGT TGAAATTATG ~ 840 TACGGAGAAG GAATTTCTAA GACTGGTGAG CTTTTGAAGA TTGCAAGCGA TTTGGATATT 900 ATCAAAAAAG CAGGGGCTTG GTATTCTTAC AAAGATGAAA AAATTGGGCA AGGTTCTGAG 960-- AATGCTAAGA AATACTTGGC AGAGCACCCA GAAATCTTTG ATGAAATTGA TAAGCAAGTC 1020 CGTTCTAAAT TTGGCTTGAT TGATGGAGAA GAAGTTTCAG AACAAGATAC TG-VAAACAAA 1080 AAAGATGAGC CAAAGAAAGA AGAAGCAGTG AATGAAGAAG TTCCGCTTGA CTTAGGCGAT 1140 GAACTTGAAA TCGAAATTGA AGAATAAGCT GTTAAAGCAG TGGAGAAATC CGCTACTTTT 1200 TCGA 1204 (2) INFORMATION FOR SEC. ID. NO: 35: (i) CHARACTERISTICS OF THE SEQUENCE; (A) LENGTH: 981 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 35: ATGCGTTCAG GAAGTCTAGC TCTTGATATT GCTTGGATAG CTGGTGGTTA TCCTAAAGGA 60 CGTATCATCG AAATCTATGG TCCAGAGTCT TCCGGTAAAA CGACTGTGGC TTTACATGCT 120 GTAGCACAAG CTCAAAAAGA AGGTGGAATC GCAGCCTTTA TCGATGCCGA GCATGCGCTT 180 GATCCAGCTT ATGCTGCTGC GCTTGGGGTT AATATTGATG AACTTCTCTT GTCTCAACCA "240 GATTCTGGAG AACAAGGACT TGAAATTGCA GGTAAATTGA TTGATTCTGG TGCGGTTGAC 300 CTGGTTGTTG TCGATTCAGT AGCAGCTTTA GTGCCACGTG CTGAAATTGA TGGTGATATT 360 GGCGATAGCC ATGTCGGATT GCAAGCACGT ATGATGAGTC AGGCCATGCG TAAATTATCA 420 GCTTCTATTA ATAAAACAAA AACTATCGCA ATCTTTATCA ACCAATTGCG TGAAAAAGTT 480 GGTGTGATGT TTGGAAATCC TGAAACAACA CCAGGTGGTC GAGCTTTGAA ÁTTCTATGCT 540 TCTGTTCGGC TGGATGTGCG TGGAAACAAC CAAATTAAAG GAACTGGTGA CCAAAAGATA 600 GCCAGCATTG GTAAGGAGAC CAAAATCAAG GTTGTTAAAA ACAAGGTCGC TCCGCCATTT 660 AAGGTAGCAG AAGTTGAAAT CATGTATGGG GAAGGTATTT CTCGTACAGG GGAGCTTGTG 720 AAAATTGCTT CTGATTTGGA CATTATCCAA AAAGCAGGTG CTTGGTTCTC TTATAATGGT 780 GAGAAGATTG GCCAAGGTTC TGAAAATGCT AAGCGTTATT TGGCCGATCA TCCACAATTG - 840 TTTGATGAAA TCGACCGTAA AGTACGTGTT AAATTTGGTT TGCTTGAAGA AAGCGAAGAA 900 GAATCTGCTA TGGCAGTAGC ATCAGAAGAA ACCGATGATC TTGCTTTAGA TTTAGATAAT 960 GGTATTGAAA TTGAAGATTA A 981 (2) INFORMATION FOR SEC. ID. NO: 36: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xi) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Stzeptococcus salivari us (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 36: - GCGTATGCAC GAGCTCTAGG TGTTAATATC GATGAGCTTC TTTTGTCGCA GCCTGATTCT 60 GGTGAGCAAG GTCTCGAAAT TGCAGGTAAG CTGATTGACT CTGGTGCAGT GGATTTAGTT 120 GTTGTTGACT CAGTTGCGGC CTTCGTACCA CGTGCAGAAA TTGATGGAGA TAGTGGTGAC 180 AGTCATGTAG GACTTCAAGC GCGTATGATG AGTCAAGCCA TGCGTAAACT TTCTGCATCT 240 ATTAATAAAA CAAAAACGAT TGCTATCTTT ATTAACCAGT TGCGTGAAAA AGTTGGTATC 300 ATGTTTGGTA AC 312 (2) INFORMATION FOR SEC. ID. NO: 37: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: lxneal (i) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 37: CTATGTGGCG CGGTATTATC 20 '2) INFORMATION FOR THE. SEC. ID. NO: 38: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 38: CGCAGTGTTA TCACTCATGG '_ 20 (2) INFORMATION FOR SEC. ID. NO: 39: ~ (i) CHARACTERISTICS OF THE SEQUENCE: "(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) -TIPO OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF SEQUENCE-: SEC- ID NO: 39: CTGAATGAAG CCATACCAAA 20 (2) INFORMATION FOR SEC. ID. NO: 40: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid "(C) CHAIN FORM: simple (D) TOPOLOGY: linear | ) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE. SEC. ID. NO: 40: ATCAGCAATA AACCAGCCAG 20 (2) INFORMATION FOR THE SEC- ID. NO '41: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 41: TTACCATGAG CGATAACAGC 20 (2) INFORMATION FOR SEC. ID. NO: 42: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomix) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 42: TCATTCAGT TCCGTTTCCC 20 2) INFORMATION FOR SEC. ID. DO NOT. 43: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (germ) omico) (Xl) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 43: CAGCTGCTGC AGTGGATGGT 20 (2) INFORMATION FOR THE? EC. ID. NO: 44: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple. (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genoraic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 44: CGCTCTGCTT TGTTATTCGG 20 (2) INFORMATION FOR SEC. ID. NO: 45: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 45: TACGCCAACA TCGTGGAAAG 20 (2) INFORMATION FOR SEC. ID. NO: 46: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (xi) TYPE OF MOLECULE: DNA (genomic) (XX) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 46: TTGAATTTGG CTTCTTCGGT 20 (2) INFORMATION FOR SEC. ID. NO: 47: (x) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (TOPOLOGY Dj: linear (xi) TYPE OF MOLECULE: DNA (genomic) (xx) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 47: GGGATACAGA AACGGGACAT 20 (2) INFORMATION FOR SEC. ID. NO: 4B: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 48: TAAATCTTTT TCAGGCAGCG 20 (2) INFORMATION FOR SEC. ID. NO: 49: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 49: GATGGTTTGA AGGGTTTATT ATAAG 25 (2) INFORMATION FOR SEC. ID. NO: 50: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 50: AATTTAGTGT GTTTAGAATG GTGAT - - 25 (2) INFORMATION FOR SEC. ID. NO: 51: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 51: ACTTCAACAC CTGCTGCTTT C _ 21 (2) INFORMATION FOR SEC. ID. NO: 52: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (geno icoj (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52: TGACCACTTT TATCAGCAAC C 21 (2) INFORMATION FOR SEC. ID. NO: 53: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH; 20 base pairs (B) TYPE: nucleic acid (C) STRING FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF SEQUENCE: SEC. ID. NO: 53: GGCAATAGTT GAAATGCTCG 20 (2) INFORMATION FOR SEC. ID. NO: 54: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 54: CAGCTGTTAC AACGGACTGG 20 (2) INFORMATION FOR SEC. ID. NO: 55: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 55: TCTATGATCT CGCAGTCTCC 20 (2) INFORMATION FOR SEC. ID. NO: 56: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) "" (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 56: ATCGTCACCG TAATCTGCTT 20 (2) INFORMATION FOR SEC. ID. NO: 57: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 57: CATTCTCGAT TGCTTTGCTA 20 -2) INFORMATION FOR SEC. ID. NO: 58: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (geno ico) ) (Xl) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 58: CCGAAATGCT TCTCAAGATA 20 (2) INFORMATION FOR SEC. ID. NO: 59: (l) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FOP-1A: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 59: CTGGATTATG GCTACGGAGT 20 (2) INFORMATION FOR SEC. ID. NO: 60: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 60: AGCAGTGTGA TGGTATCCAG "20 (2) INFORMATION FOR THE? EC. ID. NO: 61: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid - - - (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) "" (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 61: -GACTCTTGAT GAAGTGCTGG - - 20 (2) INFORMATION FOR SEC. ID. NO: 62: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID .. NO: 62: CTGGTCTATT CCTCGCACTC "20 (2) INFORMATION FOR SEC. ID. NO: 63: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) FORM OF THE, STRING: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (gene) ? mico) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 63: TATGAGAAGG CAGGATTCGT 20 (2) INFORMATION FOR SEC. ID. NO: 64: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 64: GCTTTCTCTC GAAGGCTTGT - 20 (2) INFORMATION FOR SEC. ID. NO: 65: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs - (B) TYPE: nucleic acid (C) CHAIN FORM: simple D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 65: GAGTTGCTGT TCAATGATCC 20 (2) INFORMATION FOR SEC. ID. NO: 66: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: lxneal (xx) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 66: GTGTTTGAAC CATGTACACG 20 (2) INFORMATION FOR SEC. ID. NO: 67: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 67: TGTAGAGGTC TAGCCCGTGT 20 (2) INFORMATION FOR THE? EC. ID. NO: 68: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 68: ACGGGGATAA CGACTGTATG 20 (2) INFORMATION FOR SEC. ID. NO: 69: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs _- (B) TYPE: nucleic acid - (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 69: ATAAAGATGA TAGGCCGGTG 20 (2) INFORMATION FOR SEC. ID. NO: 70: (l) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 70: TGCTGTCATA TTGTCTTGCC 20 (2) INFORMATION FOR SEC. ID. NO: 71: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs "(B) TYPE: nucleic acid (C) FORM OF THE CHAIN: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA. {Genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71 ATTATCTTCG GCGGTTGCTC "" 20 (2) INFORMATION FOR SEC. ID. NO: 72: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 72: GACTATCGGC TTCCCATTCC 20 (2) INFORMATION FOR SEC. ID. NO: 73: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (genomix) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 73: CGATAGAAGC AGCAGGACAA 20 (2) INFORMATION FOR SEC. ID. NO: 74: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nuclexco acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 74: CTGATGGATG CGGAAGATAC 20 .2) INFORMATION FOR SEC. ID. NO: 75: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (? i) TYPE OF MOLECULE: DNA (genomic) (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 75: GCCTTATGTA TGAACAAATG G 21 (2) INFORMATION FOR THE? EC. ID. NO: 76: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (3) TYPE: nucleic acid (OR CHAIN FORM: simple (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (genomics) (xi) DESCRIPTION OF THE SEQUENCE-: SEQ ID NO: 76: GTGACTTTWG TGATCCCTTT TGA 23 (2) INFORMATION FOR SEC. ID. NO: 77: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 77: TCCAATCATT GCACAAAATC 20 '21 INFORMATION FOR SEC. ID. NO: 78: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 78: AATTCCCTCT ATTTGGTGGT 20 (2) INFORMATION FOR SEC. ID. NO: 79: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 79: TCCCAAGCCA GTAAAGCTAA 20 2) INFORMATION FOR SEC. ID. NO: 80: - (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (Bi TYPE: nucleic acid (C) CHAIN FORM: simple "" (D) TOPOLOGY: linear - - (i?) TYPE OF MOLECULE: DNA (genomic) (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 80: TGGTTTTTCA ACTTCTTCCA 20 (2) INFORMATION FOR SEC. ID. NO: 81: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: simple- (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 81: TCATAGAATG GATGGCTCAA 20 (2) INFORMATION FOR SEC. ID. NO: 82: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 pairs of bases (B) TYPE: nucleic acid (C) FORM OF THE CHAIN: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE : DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 82: AGCTACTATT GCACCATCCC 20 (2) INFORMATION FOR SEC. ID. NO: 83: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 83: CAATAAGGGC ATACCAAAAA TC - 22 (2) INFORMATION FOR SEC. ID. NO: 84: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear - (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 84: CCTTAACATT TGTGGCATTA TC 22 (2) INFORMATION FOR SEC. ID. NO: 85: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 85: TTGGGAAGAT GAAGTTTTTA GA 22 (2) INFORMATION FOR SEC. ID. NO: 86: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 86: "CCTTTACTCC AATAATTTGG CT 22 (2) INFORMATION FOR SEC. ID. NO: 87: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear ii) TYPE OF MOLECULE: DNA (genC'-tiico) (x) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 87: TTTCATCTAT TCAGGATGGG 20 (2) INFORMATION FOR SEC. ID. NO: 88: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomicT ( xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88: GGAGCAACAT TCTTTGTGAC. (2) INFORMATION FOR SEC. ID. NO: 89: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRING OF THE CHAIN: simple (D) TOPOLOGY: linear di) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 89: TGTGCCTGAA GAAGGTATTG 20 (2) INFORMATION FOR SEC. ID. NO: 90: "" (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (Di TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 90: "CGTGTTACTT CACCACCACT 20 (2) INFORMATION FOR SEC. ID. NO: 91: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (Xl) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 91: TATCTTATCG TTGAGAAGGG ATT 23 (2) INFORMATION FOR SEC. ID. NO: 92: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) Linear TOPOLOGY (ll) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 92: CTACACTTGG CTTAGGATGA AA 22 (2) INFORMATION FOR SEC. ID. NO: 93: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 93: CTATCTGATT GTTGAAGAAG GATT 24 (2) INFORMATION FOR SEC. ID. NO: 94: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 94: GTTTACTCTT GGTTTAGGAT GAAA 24 (2) INFORMATION FOR SEC. ID. NO: 95: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. LD. NO: 95: CTTGTTGATC ACGATAATTT CC 22 (2) INFORMATION FOR THE? EC. ID. NO: 96: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 96: _ ATCTTTTAGC AAACCCGTAT TC 22 (2) INFORMATION FOR SEC. ID. NO: 97: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 97: AACAGGTGAA TTATTAGCAC TTGTAAG 27 .2) INFORMATION FOR SEC. ID. NO: 98: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 98: ATTGCTGTTA ATATTTTTTG AGTTGAA "27 .2) INFORMATION FOR SEC. ID. NO: 99: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 99: GTGATCGAAA TCCAGATCC 19 (2) INFORMATION FOR SEC. ID. NO: 100: (l) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (XI) OF? CRIPTION OF THE SEQUENCE: SEC. ID. NO: 100: ATCCTCGGTT TTCTGGAAG 19 (2) INFORMATION FOR SEC. ID. NO: 101: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomix) (XX) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 101: CTGGTCATAC ATGTGATGG 19 (2) INFORMATION FOR SEC. ID. NO: 102: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid - (OR CHAIN FORM: simple (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (gen ico) (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 102: GATGTTACCC GAGAGCTTG 19 (2) INFORMATION FOR SEC. ID. NO: 103: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 103: TTAAGCGTGC ATAATAAGCC 20 (2) INFORMATION FOR SEC. ID. NO: 104: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (geno ico) (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 104: TTGCGATTAC TTCGCCAACT 20 (2) INFORMATION FOR SEC. ID. NO: 105: (1) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (Di TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 105: TTTACTAAGC TTGCCCCTTC 20 (2) INFORMATION FOR SEC. ID. NO: 106: (i) CHARACTERISTICS? OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 106: AAAAGGCAGC AATTATGAGC 20 (2) INFORMATION FOR SEC. ID. NO: 107: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (gen ico) (ix) CHARACTERIST: (A) NAME / KEY: misc_feature (B) LOCATION: 9 (D) OTHER INFORMATION: / note = "n = mosina" (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / note = "n = xnosxna" (ix) FEATu-E: (A) NAME / KEY: misc_feature (B) ) LOCATION: 15 (D) OTHER INFORMATION: / note = "n = xnosxna" (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 18 (D) OTHER INFORMATION: / nota = "n = inosina "(xx) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 21 (D) OTHER INFORMATION: / nota =" n = xnosxna "(xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 107: AAYATGATNA CNGGNGCNGC NCARATGGA 2S (2) INFORMATION FOR SEC. ID. NO: 108: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (ix) CHARACTERISTIC: (A) NAME / KEY: raisc_feature (B) LOCATION: 3 (D) OTHER INFORMATION: / note = "n = inosma" (ix) CHARACTERISTIC: ( A) NAME / KEY: misc_feature (B) LOCATION: 6 (D) OTHER INFORMATION: / note = "n = mosma" (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 9 (D) ANOTHER INFORMATION: / note- "n = inosma" (ix) C-ARACTERISTCA: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / note = "n = mosina" (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 108: CCNACNGTNC KNCCRCCYTC RCG 23 • 2) INFORMATION FOR SEC. ID. NO: 109: (i) CHARACTERISTICS? OF THE SEQUENCE: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (C) CHAIN FORM: double (D) TOPOLOGY: linear (11) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 110: ATGAAAAACA CAATACATAT CAACTTCGCT ATTTTTTTTAA TAATTGCAAA TATTATCTAC 60 AGCAGCGCCA GTGCATCAAC AGATATCTCT ACTGTTGCAT CTCCATTATT TGAAGGAACT 120 GAAGGTTGTT TTTTACTTTA CGATGCATCC ACAAACGCTG AAATTGCTCA ATTCAATAAA 180 GCAAAGTGTG CAACGCAAAT GGCACCAGAT TCAACTTTCA AGATCGCATT ATCACTTATG 240 GCATTTGATG CGGAAATAAT AGATCAGAAA ACCATATTCA AATGGGATAA AACCCCCAAA 300 GGAATGGAGA TCTGGAACAG CAATCATACA CCAAAGACGT GGATGCAATT TTCTGTTGTT 360 TGGGTTTCGC AAGAAATAAC CCAAAAAATT AGATTAAATA AAATCAAGAA TTATCTCAAA 420 GATTTTGATT ATGGAAATCA AGACTTCTCT GGAGATAAAG AAAGAAACAA CGGATTAACA 480 GAAGCATGGC TCGAAAGTAG CTTAAAAATT TCACCAGAAG AACAAATTCA ATTCCTGCGT 540 AAAATTATTA ATCACAATCT CCCAGTTAAA AACTCAGCCA TAGAAAACAC CATAGAGAAC 600 ATGTATCTAC AAGATCTGGA TAATAGTACA AAACTGTATG GGAAAACTGG TGCAGGATTC 660 ACAGCAAATA GAACCTTACA AAACGGATGG TTTGAAGGGT TTATTATAAG CAAATCAGGA 720 CATAAATATG TTTTTGTGTC CGCACTTACA GGAAACTTOG GGTCGAATTT AACATCAAGC 780 ATAAAAGCCA AGAAAAATGC GATCACCATT CTAAACACAC TAAATTTATA A 831 , 2) INFORMATION FOR SEC. ID. NO: 111: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 846 base pairs (B) TYPE: nucleic acid - (OR CHAIN FORM: double (D) TOPOLOGY: 'linear (ii) TYPE OF MOLECULE: DNA (genomic) "(xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 11 TTGAAAAAGT TAATATTTTT AATTGTAATT GCTTTAGTTT TAAGTGCATG TAAITCAAAC 60 AGTTCACATG CCAAAGAGTT AAATGATTTA GAAAAAAAAT ATAATGCTCA TATTGTGTT 120 TATGCTTTAG ATACTAAAAG TGGTAAGGAA GTAAAATTTA ATTCAGATAA GAGATTTGCC "" 180 TATGCTTCAA CTTCAAAAGC GATAAATAGT GCTATTTTGT TAGAACAAGT ACCTTATAAT 240 AAGTTAAATA AAAAAGTACA TATTAACAAA GATGATATAG TTGCTTATTC TCCTATTTTA 300 GAAAAATATG TAGGAAAAGA TATCACTTTA AAAGCACTTA TTGAGGCTTC AATGACATAT 360 AGTGATAATA CAGCAAACAA TAAAATTATA AAAGAAATCG GTGGAATCAA AAAAGTTAAA 420 CAACGTCTAA AAGAACTAGG AGATAAAGTA ACAAATCCAG TTAGATATGA GATAGAATTA 480 AATTACTATT CACCAAAGAG CAAAAAAGAT ACTTCAACAC CTGCTGCTTT CGGTAAGACT 540 TTAAATAAAC TTATCGCAAA TGGAAAATTA AGCAAAGAAA ACAAAAAATT CTTACTTGAT 600 TTAATGTTAA ATAATAAAAG CGGAGATACT TTAATTAAAG ACGGTGTTCC AAAAGACTAT 660 AAGGTTGCTG ATAAAAGTGG TCAAGCAATA ACATATGCTT CTAGAAATGA TGTTGCTTTT 720 GTTTATCCTA AGGGCCAATC TGAACCTATT GTTTTAGTCA TTTTTACGAA TAAAGACAAT 780 AAAAGTGATA AGCCAAATGA TAAGTTGATA AGTGAAACCG CCAAGAGTGT AATGAAGGAA 840 TTTTAA 846 (2) INFORMATION FOR SEC. ID. NO: 112: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 555 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (Xl) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 112: ATGTCCGCGA GCACCCCCCC CATAACTCTT CGCCTCATGA CCGAGCGCGA CCTGCCGATG 60 CTCCATGACT GGCTCAACCG GCCGCACATC GTTGAGTGGT GGGGTGGCGA CGAAGAGCGA 120 CCGACTCTTG ATGAAGTGCT GGAACACTAC CTGCCCAGAG CGATGGCGGA AGAGTCCGTA 180 ACACCGTACA TCGCAATGCT GGGCGAGGAA CCGATCGGCT ATGCTCAGTC GTACGTCGCG 240 CTCGGAAGCG GTGATGGCTG GTGGGAAGAT GAAACTGATC CAGGAGTGCG AGGAATAGAC 300 CAGTCTCTGG CTGACCCGAC ACAGTTGAAC AAAGGCCTAG GAACAAGGCT TGTCCGCGCT 360 CTCGTTGAAC TACTGTTCTC GGACCCCACC GTGACGAAGA TTCAGACCGA CCCGACTCCG 420 AACAACCATC GAGCCATACG CTGCTATGAG AAGGCAGGAT TCGTGCGGGA GAAGATCATC 480 ACCACGCCTG ACGGGCCGGC GGTTTACATG GTTCAAACAC GACAAGCCTT CGAGAGAAAG 540 CGCGGTGTTG CCTAA 555 (2) INFORMATION FOR SEC. ID. NO: 113: (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 732 base pairs (B) TI PO: nucleic acid - (C) CHAIN FORM: double (D) TOPOLOGY: linear (II) TI PO OF MOLECULE: DNA (geno ico) (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 113: ATGAACCAGA AAAACCCTAA AGACACGCAA AATTTTATTA CTTCTAAAAA GCATGTAAAA 60 GAAATATTGA ATCACACGAA TATCAGTAAA CAAGACAACG TAATAGAAAT CGGATCAGGA 120 AAAGGACATT TTACCAAAGA GCTAGTCAAA ATGAGTCGAT CAGTTACTGC TATAGAAATT 180 GATGGAGGCT TATGTCAAGT GACTAAAGAA GCGGTAAACC CCTCTGAGAA TATAAAAGTG 2"0 ATTCAAACGG ATATTCTAAA ATTTTCCTTC CCAAAACATA TAAACTATAA GATATATGGT 300 AATATTCCTT ATAACATCAG TACGGATATT GTCAAAAGAA TTACCTTTGA AAGTCAGGCT 360 AAATATAGCT ATCTTATCGT TGAGAAGGGA TTTGCGAAAA GATTGCAAAA TCTGCAACGA 420 GCTTTGGGTT TACTATTAAT GGTGGAGATG GATATAAAAA TGCTCAAAAA AGTACCACCA 480 CTATATTTTC ATCCTAAGCC AAGTGTAGAC TCTGTATTGA TTGTTCTTGA ACGACATCAA 540 CCATTGATTT CAAAGAAGGA CTACAAAAAG TATCGATCTT TTGTTTATAA GTGGGTAAAC 600 CGTGAATATC GTGTTCTTTT CACTAAAAAC CAATTCCGAC AGGCTTTGAA GCATGCAAAT 660 GTCACTAATA TTAATAAACT ATCGAAGGAA CAATTTCTTT CAATTTCTTT TAGTTACAAA 720 TTGTTTCACT AA 732 (2) INFORMATION FOR THE? EC. ID. NO: 114: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 738 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 114: ATGAACAAAA ATATAAAATA TTCTCAAAAC TTTTTAACGA GTGAAAAAGT ACTCAACCAA 60 ATAATAAAAC AATTGAATTT AAAAGAAACC GATACCGTTT ACGAAATTGG AACAGGTAAA 120 GGGCATTTAA CGACGAAACT GGCTAAAATA AGTAAACAGG TAACGTCTAT TGAATTAGAC 180 AGTCATCTAT TCAACTTATC GTCAGAAAAA TTAAAATCGA ATACTCGTGT CACTTTAATT 240 CACCAAGATA TTCTACAGTT TCAATTCCCT AACAAACAGA GGTATAAAAT TGTTGGGAAT 300 ATTCCTTACC ATTTAAGCAC ACAAATTATT AAAAAAGTGG TTTTTGAAAG CCATGCGTCT 360 GACATCTATC TGATTGTTGA AGAAGGATTC TACAAGCGTA CCTTGGATAT TCACCGAACA 420 C AGGGTTGC TCTTGCACAC TCAAGTCTCG ATTCAGCAAT TGCTTAAGCT GCCAGCGGAA 480 TGCTTTCATC CTAAACCAAG AGTAAACAGT GTCTTAATAA AACTTACCCG CCATACCACA 540 GATGTTCCAG ATAAATATTG GAAGCTATAT ACGTACTTTG TTTCAAAATG GGTCAATCGA 600 GAATATCGTC AACTGTTTAC TAAAAATCAG TTTCATCAAG CAATGAAACA CGCCAAAGTA 660 AACAATTTAA GTACCGTTAC TTATGAGCAA GTATTGTCTA TTTTTAATAG TTATCTATTA 720 TTTAACGGGA GGAAATAA 738 (2) INFORMATION FOR SEC. ID. NO: 115: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 735 base pairs (B) T IPO: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (n) TYPE OF MOLECULE : DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 115: ATGAACGAGA AAAATATAAA ACACAGTCAA AACTTTATTA CTTCAAAACA TAATATAGAT 60 AAAATAATGA CAAATATAAG ATTAAATGAA CATGATAATA TCTTTGAAAT CGGCTCAGGA 120 AAAGGGCATT TTACCCTTGA ATTAGTACAG AGGTGTAATT TCGTAACTGC CATTGAAATA 180 GACCATAAAT TATGCAAAAC TACAGAAAAT AAACTTGTTG ATCACGATAA TTTCCAAGTT 240 TTAAACAAGG ATATATTGCA GTTTAAATTT CCTAAAAACC AATCCTATAA AATATTTGGT 300 AATATACCTT ATAACATAAG TACGGATATA ATACGCAAAA TTGTTTTTGA TAGTATAGCT 360 GATGAGATTT ATTTAATCGT GGAATACGGG TTTGCTAAAA GATTATTAAA TACAAAACGC 420 TCATTGGCAT TATTTTTAAT GGCAGAAGTT GATATTTCTA TATTAAGTAT GGTTCCAAGA 480 G.AATATTTTC ATCCTAAACC TAGAGTGAAT AGCTCACTTA TCAGATTAAA TAGAAAAAAA 540 TCAAGAATAT CACACAAAGA TAAACAGAAG TATAATTATT TCGTTATGAA ATGGGTTAAC 600 AAAGAATACA AGAAAATATT TACAAAAAAT CAATTTAACA ATTCCTTAAA ACATGCAGGA 660 ATTGACGATT TAAACAATAT TAGCTTTGAA CAATTCTTAT CTCTTTTCAA TAGCTATAAA 720 TTATTTAATA AGTAA 735 (2) INFORMATION FOR SEC. ID. NO: 116: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 1029 base pairs. (B) TYPE: nucleic acid (C) FORM OF THE CHAIN: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. "NO: 116 ATGAATAAAA TAAAAGTCGC AATTATCTTC GGCGGTTGCT CGGAGGAACA TGATGTGTCG "60 GTAAAATCCG CAATAGA-AAT TGCTGCGAAC ATTAATACTG AAAAATTCGA TCCGCACTAC 120 ATCGGAATTA CAAAAAACGG CGTATGGAAG CTATGCAAGA AGCCATGTAC GGAATGGGAA 180 GCCGATAGTC TCCCCGCCAT ATTCTCCCCG GATAGGAAAA CGCATGGTCT GCTTGTCATG - 240 AAAGAAAGAG AATACGAAAC TCGGCGTATT GACGTGGCTT TCCCGGTTTT GCATGGCAAA 300 TGCGGGGAGG ATGGTGCGAT ACAGGGTCTG TTTGAATTGT CTGGTATCCC CTATGTAGGC 360 TGCGATATTC AAAGCTCCGC AGCTTGCATG GACAAATC-AC TGGCCTACAT TCTTACAAAA 420 AATGCGGGCA TCGCCGTCCC CGAATTTCAA ATGATTGAAA AAGGTGACAA ACCGGAGGCG 480 AGGACGCTTA CCTACCCTGT CTTTGTGAAG CCGGCACGGT CAGGTTCGTC CTTTGGCGTA 540 ACCAAAGTAA ACAGTACGGA AGAACTAAAC GCTGCGATAG AAGCAGCAGG ACAATATGAT 600 GGAAAAATCT TAATTGAGCA AGCGATTTCG GGCTGTGAGG TCGGCTGCGC GGTCATGGGA 660 AACGAGGATG ATTTGATTGT CGGCGAAGTG GATCAAATCC GGTTGAGCCA CGGTATCTTC "720 CGCATCCATC AGGAAAACGA GCCGGAAAAA GGCTCAGAGA ATGCGATGAT TATCGTTCCA 780 GCAGACATTC CGGTCGAGGA ACGAAATCGG GTGCAAGAAA CGGCAAAGAA AGTATATCGG "840 GTGCTTGGAT GCAGAGGGCT TGCTCGTGTT GATCTTTTTT TGCAGGAGGA TGGCGGCATC 900 GTTCTAAACG AGGTCAATAC CCTGCCCGGT TTTACATCGT ACAGCCGCTA TCCACGCATG 960 GCGGCTGCCG CAGGAATCAC GCTTCCCGCA CTAATTGACA GCCTGATTAC ATTGGCGATA 1020 GAGAGGTGA 1029 (2) INFORMATION FOR SEC. ID. NO: 117: (l) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 1031 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (il) MOLECUBE TYPE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 117: ATGAAAAAAA TTGCCGTTTT ATTTGGAGGG AATTCTCCAG AATACTCAGT GTCACTAACC 60 TCAGCAGCAA GTGTGATCCA AGCTATTGAC CCGCTGAAAT ATGAAGTAAT GACCATTGGC 120 ATCGCACCAA CAATGGATTG GTATTGGTAT CAAGGAAACC TCGCGAATGT TCGCAATGAT 180 ACTTGGCTAG AAGATCACAA AAACTGTCAC CAGCTGACTT TTTCTAGCCA AGGATTTATA 240 TTAGGAGAAA AACGAATCGT CCCTGATGTC CTCTTTCCAG TCTTGCATGG GAAGTATGGC "300 OAGGATGGCT GTATCCAAGG ACTGCTTGAA CTAATG-AACC TGCCTTATGT TGGTTGCCAT 360 GTCGCTGCCT CCGCATTATG TATGAACAAA TGGCTCTTGC ATCAACTTGC TGATACCATG 420 GGAATCGCT-- GTGCTCCCAC TTTGCTTTTA TCCCGCTATG AAAACGATCC TGCCACAATC 480 GATCGTTTTA TTCAAGACCA TGGATTCCCG ATCTTTATCA AGCCGAATGA AGCCGGTTCT 540 TCAAAAGGGA TCACAAAAGT AACTGACAAA ACAGCGCTCC AATCTGCATT AACGACTGCT 600 TTTGCTTACG GTTCT ---- CTGT GTTGATCCAA --- AGGCGATAG CGGGTATTGA --- ATTGGCTGC 660 GGCATCTTAG GAAATGAGCA ATTGACGATT GGTGCTTGTG ATGCGATTTC TCTTGTCGAC 720 GGTTTTTTTG ATTTTGAAGA GAAATACCAA TTAATCAGCG CCACGATCAC TGTCCCAGCA 780 CCATTGCCTC TCGCGCTTGA ATCACAGATC AAGGAGCAGG CACAGCTGCT TTATCGAAAC 840 TTGGGA-CTGA CGGGTCTGGC TCGAATCGAT TTTTTCGTCA CCAATCAAGG AGCGATTTAT 900 TT ------ ACGA --- A TCAACACCAT GCCGGGATTT ACTGGGCACT CCCGCTACCC AGCTATGATG 960 GCGGAAGTCG GGTTATCCTA CGAAATATTA GTAGACAAT TGATTGCACT GGCAGAGGAG 1020 GACAAACGAT G 1031 (2) INFORMATION FOR SEC. ID. NO: 118: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 809 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Abiotrophia adiacene (XI) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 118: TGGTGCTATC TTAGTAGTAT CTGCAGCTGA TGGTCCAATG CCTCAAACAC GTGAACACAT 60 CTTATTATCA CGTCAAGTAG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAGTTGACAT 120 GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCAGA 180 ATACGATTTC CCAGGCGATG ACACTCCAGT TGTTGCAGGT TCTGCTTTAC GCGCTTTAGA 240 AGGCGACGCT TCATACRAAG AAAAAATCTT AOAATTAATG GCTGCTGTTG ACGAATACAT 300 TCCAACTCCA GAACGYGACG TTGACAAACC ATTCATGATG CCAGTTGAAG ACGTGTTCTC 360 AATCACAGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGTGTTGG 420 TGACGAAGTT GAAATCGTTG GTATTTCAGA AGAAACTTCA AAAACAACTG TAACTGGTGT 480 TGAAATGTTC CGTAAATTGT TAGACTACGC TGAAGCAGGG GATAACATTG GTACATTATT 540 ACGTGGTGTT ACACGTGACA ACATCGAACG TGGACAAGTT CTTGCTAAAC CAGGAACAAT 600 CACTCCACAT ACTAAATTCA AA.GCTGAAGT TTACGTATTA ACTAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCTCTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CAGACATCAC 720 TGGTGTTTGT GTGTT CCAG AAGGCGTTGA AATGGTAATG CCTGGTGATA ACGTAACTAT 780 GGAAGTTGAA TTAATTCACC CAGTAGCGA '809 (2) INFORMATION FOR SEC. ID. NO: 119: (1) SEQUENCE CHARACTBRISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear di) TYPE OF MOLECULE: DNA (gen) ico) (vi) ORIGINAL SOURCE: (A) ORGANISM: Abiotrophia defectiva (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 119: CGGCGCGATC CTCGTTGTAT CTGCTGCTGA CGGCCCAATG CCACAAACTC GTGAACACAT 60 CCTCTTGTCT CGTCAATTTG GTGTTCCTTA CATCGTAGTA TTCTTGAACA AAGTTGACAT 120 GGTTGACGAC GAAGAATTGC TCGAATTAGT TGAAATGGAA GTTCGTGACC TCTTGTCTGA 180 ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCTGGT TCAOCTTTGA AAGCTTTAGA 240 AGGCGACGCT AACTACGAAG CTAAAGTTTT AGAATTGATG GAACAAGTTG ATGCTTACAT 300 TCCAGAACCA GAACGTGACA CTGACAAGCC ATTCATGATG CCAGTCGAAG ACGTATTCTC 360 TATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGTCAAG TTCGCGTTGG 420 TGACGAAGTT GAAATCGTTG GTATCGAAGA AGAAACTTCT AAGACTACCG TTACCGGTGT 180 TGAAATGTTC CGTAAGTTAT TGGATTACGC TGAAGCTGGG GACAACGTTG GTACCTTGTT 540 ACGTGGTGTA ACTCGTGACC AAATCCAACG TGGTCAAGTA TTATCTAAAC CAGGTTCAAT 600 CACTCCGYAC ACTAAGTTCG AAGCTGAAGT GTACGTATTG TCTAAAGAAG AAGGTGGTCG - 660 TCACACTCCA TTCTTCTCTA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC 720 TGGTGTTGTT ACTTTACCAG AAGGTACTGA AATGGTTATG CCAGGCGACA ACGTACAAAT 780 GGTTGTTGAA TTGATCCACC CAATCGCGAT CGAAGAA 817 (2) INFORMATION FOR SEC. ID. NO: 120: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 754 base pairs (B) TYPE: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (gen xco) (vx) ORIGINAL SOURCE: (A) ORGANISM: Candida albicans (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 120: CTCTGTCAAA TGGGACAAAA ACAGATTTGA AGAAATCATC AAGGAAACCT CCAACTTCGT 60 CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT CCAATCTCTG GTTGGAATGG 120 TGACAAC TG ATTGAASCAT CCACCAACTG TCCATGGTAC AAGGGTTGGG AAAAGGAAAC 180 CAAATCCGGT AAAGTTACTG GTAAGACCTT GTTAGAAGCT ATTGACGCTA TTGAACCACC 240 AACCAGACCA ACCGACAAAC CATTGAGATT GCCATTRCA? GATGTTTACA AGATCGGTGG 300 -ATGGTACT GTGCCAGTCG GTAGAGTTGA AACTGGTATC ATCAAAGCCG GTATGGTWGT 360 TACTTTCGCC CCAGCTGGTG TTACCACTGA AGTCAARTCC GTTGAAATGC ATCACGAACA 420 ATTGGCTGAA GGTGTTCCAG GTGACAATGT TRGTTTCAAC GTTAAGAACR TTTCCGTTAA 480 AGAAATTAGA AGAGGTAACG TTTGTGGTGA CTCCAAGAAC GATCCACCAA AGGGTTGTGA 540 CTCTTTCAAT GCCCAAGTCA TTGTTTTGAA CCATCCAGGT CAAATCTCTG CTGGTTACTC 600 TCCAGTCTTG GATTGTCACR CTGCCCACAT TGCTTGTAAA TTCGACRCTT TGGTTGAAAA 660 GATTGACAGA AGAACTGGTA AGRAATTGGA AGAAAATCCA -A - ATT-CGT-C ---- AATCCGGTGA 720 TGCTGCTATC GTCAAGATOG TCCCAACCAA ACCA 754 (2) INFORMATION FOR SEC. ID. NO: 121: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 753 base pairs (B) TI PO: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ll) TYPE 7- -? MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida glabra ta (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 121: TCTGTCAAGT GGGATGAATC CAGATTCGCT GAAATCGTTA AGGAAACCTC CAACTTCATC 60 AAGAAGGTCG GTTACAACCC AAAGACTGTT CCATTCGTCC CAATCTCTGG TTGGAACGGT 120 GACAACATGA TTGAAGCCAC CACCAACGCT TCCTGGTACA AGGGTTGGGA AAAGGAAACC 180 AAGGCTGGTG TCGTC.AAGGG TAAGACCTTG TTGGAAGCCA TTGACGCTAT CGAACCACCA 240 ACCAGACCAA CTGACAAGCC ATTGAGATTG CCATTGCAAG ATGTCTACAA GATCGGTGGT 300 ATCGGTACGG TGCCAGTCGG TAGAGTCGAA ACCGGTGTCA TCAAGCCAGG TATGGTTGTT 360 ACCTTCGCCC CAGCTGGTGT TACCACTGAA GTCAAGTCCG TTGAAATGCA CCACGAACAA 420 TTGACTGAAG GTTTGCCAGG TGACAACGTT GGTTTCAACO TTAAGAACGT TTCCGTTAAG 480 GAAATCAGAA GAGGTAATGT CTGTGGTGAC TCCAAGAACG ACCCACCAAA GGCTGCTGCT 540 TCTTTCAACG CTACCGTCAT TGTCTTGAAC CACCCAGGTC AAATCTCTGC TGGTTACTCT 600 CCAGTTTTGG ACTGTCACAC CGCCCACATT GCTTGTAAGT TCGAAGAATT GTTGGAAAAG 660 AACGACAGAA GATCCGGTAA GAAGTTGGAA GACTCTCCAA AGTTCTTGAA GTCCGGTGAC 720 GCTGCTTTGG TTAAGTTCGT TCCATCCAAG CCA 753 (2) INFORMATION FOR SEC. ID. NO: 122: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 752 base pairs (B) TYPE: Nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: Ixneal (II) TYPE OF MOLECULE: DNA (genomix) (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida kruseí (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 122 CCGTTAAGTG GGATGAAAAC AGATTTGAAG AAATTGTCAA GGAAACCCAA AACTTCATCA 60 AGAAGGTTGG TTACAACCCA AAGACTGTTC CATTCGTTCC AATCTCTGGT TGGAATGGTG 120 ACAACATGAT TGAAGCATCC ACCAACTGTC CATGGTACAA OGGTTGGACT AAGGAAACCA 180 AGGCAGGTGT TGTTAAGGGT AAGACCTTAT TAGAAGCAAT CGATGCTATT GAACCACCTG 240 TCAGACCAAC CGAAAAGCCA TTAAGATTAC CATTACAAGA TGTTTACAAG ATTGGTGGTA 300"TGGTACTGT GCCAGTCGGT AGAGTCGAAA CCGGTGTCAT TAAGCCAGGT ATGGTTGTCA 360 CTTTGCTCC AGCAGGTGTC ACCACCGAAG TCAAATCCGT TGAAATGCAC CATGAACAAT 420 TAGAACAAGG TGTTCCAGGT GATAACGTTG GTTTCAACGT TAAGAACGTY TCTGTCAAGG 480 ATATCAAGAG AGGTAACGTT TGTGGTGACT CCAAGAACGA CCCACCAATC GGTGCAGCTT '• "O CTTTCAATGC TCAAGTCATT GTCTTGAACC ACCCTGGTCA AATTTCCGCT GGTTACTCTC 600 CAGTCTTGGA TTGTCACACT GCCCACATTG CATGTAAGTT CGACGAATTA ATCGAAAAGA 660 TTGACAGAAG AACTGGTAAG TCTGTTGAAG ACCATCCAAA GTCYGTCAAG TCTGGTGATG 720 CAGCTATCGT CAAGATGGTC CCAACCAAGC CA 752 (2) INFORMATION FOR SEC. ID. NO: 123: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 754 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Candida parapsilosis (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 123: CTCAGTCAAA TGGGACAAGA RCAGATACGA AGAAATTGTC AAGGAAACTT CCAACTTCGT 60 CAAGAAGGTT GGTTACAACC CTAAAGCTGT CCCATTCGTC CCAATCTCTG GTTGGAACGG 120 TGACAATATG ATTGAACCAT CAACCAACTG TCCATGGTAC AAGOGTTGGG AAAAGGAAAC 180 TAAAGCTGGT AAGGTTACCG GTAAGACCTT GTTGGAAGCT ATCGATGCTA TCGARCCACC 240 AACCAGACCA ACTGACAAGC CATTGAGATT GCCATTGCAA GATGTCTACA AGATTGGTGG 300 TATTGGAACT GTGCCAGTTG GTAGAGTTGA AACCGGTATC ATCAAGGCTG GTATGGTTGT 360 TACTTTTGCC CCAGCTGGTG TTACCACTGA AGTCAAGTCC GTTGAAATGC ACCACGAACA 420 ATTOACTGAA GGTGTCCCAG GTGACAATGT TGGTTTCAAC GTCAAGAACG TTTCAGTTAA 480 GGAAATCAGA AGAGGTAACG TYTGTGGTGA CTCCAAGAAC GATCCACCAA AGGGATGTGA 540 YTCCTTCAAT GCTCAAGTTA TTGTCTTGAA CCACCCAGGT CAAATCTCTG CTGGTTACTC 600 CCAGTCTTGG ATTGTCACAC TGCTCATATT GCTTGTAAAT TCGACACCTT GGTTGAAAAG 660 ATTGACAGAA GAACTGGTAA GAAATTGGAA GAAAATCCAA AATTCGTCAA ATCCGGTGAT 720 GCTGCTATTG TCAAGATGGT TCCAACCAAA CCA 753 (2) INFORMATION FOR SEC. ID. NO: 125: (i) CHARACTERISTICS OF THE SEQUENCE: (A) BENGTH: 814 base pairs (B) TYPE: nucleic acid "(OR CHAIN FORM: double (D) TOPOLOGY: l ineal (xi) MOBECUBE TYPE: DNA (genomic) (vi) SOVRCE ORIGINS: (A) ORGANIC: Cor'ynebacterxum accoXens (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 125: CGGCGCTATC CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GCGAGCACGT 60 TCTGCTTGCT CGCCAGGTTG GCGTTCCTTA CATCCTCGTT GCACTGAACA AGTGCGACAT 120 GGTTGATGAT GAGGAAATCA TCGAGCTCGT GGAGATGGAG ATCTCCGAGC TGCTCGCAGA 180 GCAGGACTAC GATGAGGAAG CTCCTATCGT TCACATCTCC GCTCTGAAGG CACTCGAGGG 240 TGACGAGAAG TGGGTACAGT CCATCGTTGA CCTGATGGAT GCCTGCGACA ACTCCATCCC 300 TGATCCGGAG CGCGCTACCG ATCAGCCGTT CTTGATGCCT ATCGAEGACA TCTTCACCAT 360 TACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGTCGTCTGA ACGTCAACGA 420 GGACGTTGAG ATCATCGGTA TCCAGGAGAA GTCCCAGAAC ACCACCGTTA CCGGTATCGA 4-80 GATGTTCCGC AAGATGATGG ACTACACCGA GGCTGGCGAC AACTGTGGTC TGCTTCTGCG "540 TGGTACCAAG CGTGAGGACG TTGAGCGTGG CCAGGTTGTT ATCAAGCCGG GCGCTTACAC 600 CCCTCACACC AAGTTCGAGG GTTCCGTCTA CGTCCTGAAG AAGGAAGAGG GCGGCCGCCA 660 CACCCCGYTC ATGAACAACT ACCGTCCTCA GTTCTACTTC CGCACCACCG ACGTTACCGG 720 TGTTGTGAAC CTGCCTGAGG GCACCGAGAT GGTTATGCCT GGCGACAACG TTGAGATGTC 780 TGTTGAGCTC ATCCAGCCTG TTGCTATGGA CGAG 814 (2) INFORMATION FOR THE? EC. ID. NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) MOL? CUDE TYPE : DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Coryne- --- cter ------ n diphteriae (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 126: CGGCGCAATC CTCGTTGTTG CTGCCACCGA CGGCCCAATG CCTCAGACCC GTGAGCACGT 60 TCTGCTCGCT CGCCAGGTCG GCGTTCCTTA CATCCTCGTT GCTCTGAACA AGTGCGACAT 120 GGTTGATGAT GAGGAAATCA TCGAGCTCGT CGAGATGGAG ATCCRTGAGC TGCTCGCTGA 180 GCAGGATTAC GACGAAGAGG CTCCAATCAT CCACATCTCC GCACTGAAGG CTCTTGAGGG 240 CGACGAGAAG TGGACCCAGT CCATCATCGA CCTCATGCAG GCTTGCKATG ATTCCATCCC 300 AGACCCAGAG CGTGAGACCG ACAAGCCATT CCTCATGCCT ATCGAGGACA TCTTCACCAT --360 CACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCTCCCTGA AGGTCAACGA 420 GGACGTCGAG '? TCATCGGTA TCCGCGAGAA KGCTACCACC ACCACCGTTA CCGGTATCGA 480 GATGTTCCGT AAGCTTCTCG ACTACACCGA GGCTGGCGAC AACTGTGGTC TGCTTCTCCG 540 TGGCGTTAAG CGCGAAGACG TTGAGCGTGG CCAGGTTGTT GTTAAGCCAG GCGCTTACAC 600 CC TCACACC GAGTTCGAGG GCTCTGTCTA CGTTCTGTCC AAGGACGAGG GTGGCCGCCA 660 CACCCCATTC TTCGACAACT ACCGCCCACA GTTCTACTTC CGCACCACCG ACGTTACCGG 720 TGTTGTGAAG CTTCCTGAGG GCACCGAGAT GGTCATGCCT GGCGACAACG TCGACATGTC 780 CGTCACCCTG ATCCAGCCTG TCGCTATGGA TGAG 8 14 (2) INFORMATION FOR SEC. ID. NO: 127: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Corynebacteri um geni tali um (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 127: CGGCGCCATC CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GTGAGCACGT 60 TCTGCTGGCT CGCCAGGTTG GCGTTCCGTA CATCCTAGTT GCACTGAACA AGTGCGACAT 120 GGTTGATGAT GAGGAGCTGC TGGAGCTCGT CGAGATGGAG GTCCGCGAGC TGCTGGCTGA 180 GCAGGACTTC GACGAGGAAG CACCTGTTGT TCACATCTCC GCACTGAAGG CCCTGGAGGG 240 CGACGAGAAG TGGGCTAAGC AGATCCTGGA GCTCATGGAG GCTTGCGACA ACTCCATCCC 300 GGATCCGGAG CGCGAGACCG ACAAGCCGTT CCTGATGCCG GTTGRGGACA TCTTCACCAT 360 TACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCGTCCTGA ACCTGAACGA? 20 CGAGGTCGAG ATCCTGGGCA TCCGCGAGAA GTCCACCAAG ACCACCGTTA CCTCCATCGA 480 GATGTTCAAC AAGCTGCTGG ACACCGCAGA GGCTGGCGAC AACGCCGCAC "TGCTGCTGCG 540 TGGCCTGAAG CGCGAAGATG TTGAGCGTGG TCAGATCGTT GCTAAGCCGG GCGAGTACAC 600 CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTTCTGTCC AAGGACGAGG GTGGCCGCCA 660 CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTATTTC CGCACCACCG ACGTTACCGG 720 TGTTGTGAAG CTGCCGGAGG GCACCGAGAT GGTTATGCCG GGCGACAACG TTGACATGTC 780 CGTCACCCTG ATCCAGCCGG TTGCTATGGA CGAG 814 (2) INFORMATION FOR SEC. ID. NO: 128: (x) CHARACTERISTIC? OF THE SEQUENCE: (A) LENGTH: 814 base pairs (B) TI PO: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (n) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Corynebac teri um j eikei um (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 128: CGGCGCCATC CTGGTTGTTG CCGCAACCGA TGGCCCGATG CCGCAGACCC GCGAGCACGT 60 TCTGCTGGCY CGCCAGGTTG GCGTTCCGTA CATCCTGGTT GCACTGAACA AGTGTGACAT 120 GGTTGACGAT GAGGAGCTGC TGGAGCTCGT CGAGATGGAG GTCCGCGAGC TGCTGGCTGA 180 GCAGGACTTC GACGAGGA-G CTCCGGTTGT TCACATCTCC GCACTGAAGG CCCTGGAGGG 240 CGACGAGAAG TGGGCTAACC AGATTCTCGA GCTGATGCAG GCTTGCGACG AGTCTATCCC 300 GGATCCGGAG CGCGAGACCG ACAAGCCGTT CCTOATGCCG GTTGWGGACA TCTTCACCAT 360 TACCGGTCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCATCCTGA ACCTGAACGA 420 CGAGGTTOAG ATCCTGGGTA TCCGCGAGAA GTCCCAGAAG ACCACCGTTA CCTCCATCGA 480 GATGTTCAAC AAGCTGCTGG ACACCGCAGA GGCTGGCRAC AACGCTGCAC TGCTGCTGCG 540 TGGTCTGAAG CGCGAGGACG TTGAGCGTGG CCAGATCATC GCTAAGCCGG GCGAGTACAC 600 CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTTCTGTCC AAGGACGAGG GCGGCCGCCA 660 CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTACTTC CGCACCACCG ACGTTACCGG 720 TGTTGTGAAG CTGCCTGAGG GCACCGAGAT GGTTATGCCG GGCGACAACG TYGACATGTC 780 CGTCACCCTG ATCCAGCCGG TTGCTATGGA CGAG 814 (2) INFORMATION FOR SEC. ID. NO: 129: (I) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 748 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (II) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium pseudodiphtepticum (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 129: CGGCGCTATC TTGGTTGTTG CAGCTACCGA CGGCCCAATG CCACAGACTC GCGAGCACGT 60 TCTGCTGGCT CGCCAGGTTG GCGTTCCTTA CATCCTGGTT GCACTAAACA AGTGCGACAT 120 GGTTGACGAC GAGGAAATCC TCGAGCTCGT CGAGATGGAG ATCCGCGAAT TGCTGGCTGA 180 CCAGGAATTC GACGAAGAAG CTCCAATCGT TCACATCTCC GCAGTCGGCG CCTTGGAAGG 240 CGAAGAGAGG TGGGTTAACG CCATCGTTGA ACTGATGGAT GCTTGTGACG AGTCGATCCC 300 TGATCCAGAC CGTGCTACCG ACAAGCCATT CCTGATGCCT ATCGAGGACA TCTTCACCAT 360 TACCGGTCGT GGCACCGTTG TTACGGGTCG TGTTGAGCGT GGTTCCCTGA AGGTCAACGA 420 AGAAGTCGAG ATCATCGGCA TCAAGGAAAA GTCCCAGAAG ACCACCATCA CCGGTATCGA 480 AATGTTCCGC AAGATGCTGG ACTACACCGA GGCCGGCGAC AACGCTGGTC TGCTGCTTCG 540 CGGTACCAAG CGTGAAGACG TTGAGCGTGG ACAGGTTATC GTTGCTCCAG GTGCTTACAG 600 CACCCACAAG AAGTTCGAAG GTTCCGTCTA CGTTCTTTCC AAGGACGAGG GCGGCCGCCA 660 CACCCCGTTC TTCGACAACT ACCGTCCTCA GTTCTACTTC CGCACCACCG ACGTTACCGG * 720 TGTTGTTACC CTGCCTGAGG GCACCGAG 748 (2) INFORMATION FOR SEC. ID. NO: 130: (X) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TI PO: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: lxneal (xx) TYPE OF MOLECULE : DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Cozybetactezium stpatu-p (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 130: GGCGCTATCT TGGTTGTTGC TGCAACCGAT GGCCCGRTGC CGCAGACCCG CGAGCACGTT 60 CTTCTGGCTC GCCAGGTTGG CGTTCCTTAC ATCCTCGTTG CACTGAACAA GTGCGACATG 120 GTTGACGACG AGGAAATTAT CGAGCTCGTC GAGATGGAGA TCCGCGAACT GCTCGCAGAG 180 CAGGACTACG ATGAGGAAGC TCCGATCGTT CACATCTCTG CTCTGAAGGC TCTTGAGGGC 240 GRCGAGAAGT GGGTACAGGC TATCGTTGAC CTGATGCAGG CTTGCGATGA CTCCATCCCG 300 GATCCGGAGC GCGAGCTGGA CAAGCCGTTC CTGATGCCAA TCGAGGACAT CTTCACCATC 360 ACCGGCCGCG GTACCGTTGT TACTGGCCGT GTTGAGCGTG GCTCCCTGAA CGTCAACGAG 420 GACGTTGAGA TCATCGGTAT CCAGGACARG TCCATCTCCA CCACCGTTAC CGGTATCGAG 480 ATGYTCCGCA AGATGATGGA CTACACCGAG GCTGGCGACA ACTGTGGTCT GCTTCTGCGT 540 GGTACCAAGC GTGAAGAGGT TGAGCGCGGC CAGGTTGTTA TTAAGCCGGG CGCTTACACC 600 CCTCACACCC AGTTCGAGGG TTCCGTCTAC GTCCTGAAGA AGGAAGAGGG CGGCCGCCAC 660 ACCCCGTTCA TGGACAACTA CCGTCCGCAG TTCTACTTCC GCACCACCGA CGTTACCGGC 720 GTCATCAAGC TGCCTGAGGG CACCGAGATG GTTATGCCTG GCGACAACGT CGAGATGTCY 780 GTCGAGCTGA TCCAGCCGGT CGCTATGGAC GAG 813 (2) INFORMATION FOR SEC. ID. NO: 131: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: Ixneal (xx) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus avium (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 131: CGGAGCTATC TTAGTAG.-AT CTGCTGCTGA TGGCCCTATG CCTCAAACTC GTGAACACAT 60 CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAATGGATAT 120 GGTTGACGAT GAAGAATTAC TTGAATTAGT TGAAATGGAA GTTCGTGACT TATTAACTGA 180 ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCAGGT TCAGCGTTGA AAGCTTTAGA 240 AGGCGACGCT TCATACGAAG AAAAAATCTT AGAATTAATG GCTGCTGTTG ACGAATATAT 300 CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG 420 TGACGAAGTT GAAATCGTAG GTATCGCTGA CGAAACTGCT AAAACAACTG TTACAGGTGT 480 TGAAATGTTC CGTAAATTGT TAGACTACGC TGAAGCAGGT GACAACATCG GTGCTTTGTT 540 ACGTGGTGTT GCACGTGAAG ATATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT 600 CACTCCACAT ACAAAATTCT CTGCAGAAGT TTATGTTCTA ACTAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC 720 TGGTGTAGTT GATCTACCAG AAGGTACTGA AATGGTWATG CCTGGGGATA ACGTAACTAT 780 GGAAGTTGAA TTGATYCACC CAATYGCGGT AGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 132: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 132: CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGTCCTATG CCTCAAACAC GTGAACATAT 60 CTTATTATCA CGTAACGTTG GTGTACCATA CATCGTTGTA TTCTTAAACA AAATGGATAT 120 GGTTGATGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCAGA 180 ATACGATTTC CCAGGCGATG ATGTTCCAGT TATCGCAGGT TCTGCTTTGA AAGCTTTAGA 240 AGGCGACGAG TCTTATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT 300 CCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC 360 AATCACTGGA CGTGGTACTG TTGCTACAGG ACGTGTTGAA CGTGGTGAAG TTCGCGTTGG 420 TGACGAAGTT GAAATCGTTG GTATTAAAGA CGAAACATCT AAAACAACYG TTACAGGTGT 480 TGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCAGGC GACAACHTCG GTGCTTTATT 540 ACGTGGTGTA GCACGTGAAG ATATCGAACG TGGACAAGTA TTAGCTAAAC CAGCTACAAT 600 CACTCCACAC ACAAAATTCA AAGCTGAAGT ATACGTATTA TCAAAAGAAG - AGGCGGACG ~ 660 TCACACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CAGACGTTAC 720 TGGTGTTGTA GAATTGCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACGTTGCTAT 780 GGACGTTGAA TTAATTCACC CAATCGCTAT CGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 133: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 774 base pairs (B) TI PO: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: l ineal (xi) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faeci um (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 133: CGGAGCTATC TTGGTAGTTT CTGCTGCTGA CGGCCCAATG CCTC-AACTC GTGAACACAT 60 CCTATTGTCT CGTCAAGTTG GTGTTCCTTA CATCGTTOTA TTCTTGAACA AAGTAGACAT 120 GGTTGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTAACAGA 180 ATACRAATTC CCTGGTGRCG ATGTTCCTGT AGTTGCTGGA TCAGCTTTGA AAGCTCTAGA 240 AGGCGACGCT TCATACGAAG AAAAAATTCT TGAATTAATG GCTGCAGTTG ACGAATACAT 300 CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ACGTGTTCTC 360 AATTACTGGA CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG 420 TGACGAAGTT GAAGTTGTTG GTATTGCTGA AGAAACTTCA AAAACAACAG TTACTGGTGT 480 TGAAATGTTC CGTAAATTGT TAGACYACGC TGAAGCTGGA GACRACATTG GTGCTTTACT 540 ACGTGGTGTT GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT 600 CACACCTCRT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACAAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC 720 AGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTCATG CCCGGTGACA ACGT 774 (2) INFORMATION FOR SEC. ID. NO: 134: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 809 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus gallínarum (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 134: CGGTGCGATC TTAGTAGTAT CTGCTGCTGA CGGTCCTATG CCTCAAACTC GTGAACACAT 60 CTTGTTATCA CGTAACGTTG GCGTACCATA CATCGTTGTT TTCTTGAACA AAATGGATAT 120 GGTTGAYGAC GAAGAATTGC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTGTCTGA 180 ATATGACTTC CCAGGCGACG ATGTTCCTGT AATCGCCGGT TCTGCTTTGA AAGCTCTTGA -240 AGGAGATCCT TCATACGAAG AAAAAATCAT GGAATTGATG GCTGCAGTTG ACGAATACGT 300 TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC 360 .AATCACTGGA CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGACAAG TTCGCGTTGG -420 TGATGAAGTA GAAATCGTTG GTATTGCTGA CGAAACTGCT AAAACAACTG TAACAGGTGT 480 TGAAATGTTC CGTAAATTGT TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT 540 ACGTGGGGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACAAT 600 CACACCTCAT ACAAAATTCA AAGCTGAAGT TTATGTTTTG ACAAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC 720 TGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTGATG CCTGGCGACA ACGTGACCAT 780 CGACGTTGAA TTGATRCACC CAATCGCTC - 809 (2) INFORMATION FOR SEC. ID. NO: 135: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 823 base pairs (3) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Garduerella vaginalis --- (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 135: TGGCGCAATC CTCGTGGTTG CTGCTACCGA CGGTCCAATG GCTCAGACCC GTGAACACGT 60 CTTGCTTGCT AAGCAGGTCG GCGTTCCAAA AATTCTTGTT GCTTTGAACA AGTGCGATAT 120 GGTTGACGAC GAAGAGCTTA TCGATCTCGT TGAAGAAGAG GTCCGTGACC TCCTCGAAGA 180 AAACGGCTTC GATCGCGATT GCCCAGTCYT CCGTACTTCC GCTTACGGCG CTTTGCATGA 240 TGACGCTCCA GACCACGACA AGTGGGTAGA GACCGTCAAG GAACTCATGA AGGCTGTTGA 300 c-GAGTACATC CCAACCCCAA CTCACGATCT TGACAAGCCA TTCTTGATGC CAATCGAAGA 360 TGTGTTCACC ATCTCCGGTC GTGGTYCCGT TGTCACCGGT CGTGTTGAGC GTGGTAAGCT 420 CCCAATCAAC ACCCCAGTTG AGATCGTTGG TTTGCGCGAT ACCCAGACCA CCACCGTCAC 480 CTCTATCGAG ACCTTCCACA AGCAGATGGA TGAGGCAGAG GCTGGCGATA ACACTGGTCT 540 TCTTCTCCGC GGTATCAACC GTACCGACGT TGAGCGTGGT CAGGTTGTGG CTGCTCCAGG 600 TTCTGTGACT CCACACACCA AGTTCGAAGG CGAAGTTTAC GTCTTGACCA AGGACGAAGG 660 TGGCCGTCAC TCGCCATTCT TCTCCAACTA CCGTCCACAG TTCTACTTCC GTACCACCGA 720 TGTTACTGGC GTTATCACCT TGCCAGACGG CATCGAAATG GTTCAGCCAG GCGATCACGC 780 AACCTTCACT GTTGAGTTGA TCCAGGCTAT CGCAATGGAA GAG "823 (2) INFORMATION FOR SEC. ID. NO: 136: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TI PO: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xi) TYPE OF MOLECULE : DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Listezia innocua (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 136: CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC "GTGAACATAT 60 CTTACTTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT 120 GGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGCGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240 AGGTGAAGCT GACTGGGAAG CTAAAATTGA CGAGTTAATG GAAGCTGTAG ATTCTTACAT 300 TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC 360 AATCACTGGT CGTGGAACAG TTGCAACTGG ACGTGTTGAA CGTGGACAAG TTAAAGTTGG 420 TGACGAAGTA GAAGTTATCG GTATTGAAGA AGAAAGCAAA AAAGTAGTAG TAACTGGAGT 480 AGAAATGTTC CGTAAATTAC TAGACTACGC TGAAGCTGGC GACAACATTG GCGCACTTCT 540 ACGTGGTGTT GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTAGCTAAAC CAGGTTCGAT 600 TACTCCACAC ACTAACTTCA AAGCTGAAAC TTATGTTTTA ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720 TGGTATTGTT ACACTTCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACATTGAGCT 780 TGCAGTTGAA CTAATTGCAC CAATCGCTAT CGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 137: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 818 base pairs - (B) TI PO: nucleic acid (C) CHAIN FORM: 'double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Listezia i vanovii (xi) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 137: CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGTCCAATG CCACAAACTC GTGAACATAT 60 TCTTACTTTC ACGTCAAGTT GGTGTTCCAT ACATCGTTGT ATTCATGAAC AAATGTGACA 120 TGGTTGACGA TGAAGAATTA CTTGAATTAG TTGAAATGGA AATTCGTGAT CTATTAACTG 180 AATATGAATT CCCTGGCGAC GACATTCCTG TAATCAAAGG TTCAGCTCTT AAAGCACTTC 240 AAGGTGAAGC TGATTGGGAA GCTAAAATTG ACGAGTTAAT GGAAGCTGTA GATTCTTACA 300 TTCCAACTCC AGAACGTGAT ACTGACAAAC CATTCATGAT GCCAGTTGAG GATGTATTCT 360 CAATCACTGG TCGTGGAACA GTTGCAACTG GACGTGTTGA ACGTGGACAA GTTAAAGTTG 420 GTGACGAAGT AGAAGTTATC GGTATTGAAG AAGAAAGCAA AAAAGTAGTA GTAACTGGAG 480 TAGAAATGTT CCGTAAATTA CTAGACTACG CTGAAGCTGG CGACAACATT GGCGCACTTC 540 TACGTGGTGT TGCTCGTGAA GATATCCAAC GTGGTCAAGT ATTAGCTAAA CCAGGTTCGA 600 TTACTCCACA TACTAACTTC AAAGCTGAAA CTTATGTTTT AACTAAAGAA GAAGGTGGAC 660 GTCATACTCC ATTCTTCAAC AACTACCGCC CACAATTCTA TTTCCGTACT ACTGACGTAA 720 CTGGTATTGT TACACTTCCA GAAGGTACTG AAATGGTAAT GCCTGGTGAT AACATTGAGC 2780 TTGCAGTTGA ACTAATTGCA CCAATCGCTA TCGAAGAC 818 (2) INFORMATION FOR THE? EC. ID. NO: 138: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Listezia monocytogenes (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 138: CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACATAT 60 CTTACTTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT 120 GGTTGACGAT GAAGAATTAC TAGAATTAGT TGAPATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGCGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240 AGGTGAAGCT GACTGGGAAG CTAAAATTGA CGAGTTAATG GAAGCTGTAG ATTCTTACAT 300 TCCAACTCCW GAACGTGATA CTGACAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC "360 AATCACTGGT CGTGGAACAG TTGCAACTGG ACGTGTTGAA CGTGGACAAG TTAAAGTTGG 420 TGACGAAGTA GAAGTTATCG GTATCGAAGA AGAAAGCAAA AAAGTAGTAG TAACTGGAGT 480 AGAAATGTTC CGTAAATTAC TAGACTACGC TGAAGCTGGC GACAACATTG GCGCACTTCT 540 ACGTGGTGTT GCTCGTGAAG ATATCCAACR TGGTCAAGTA TTAGCTAAAC CAGGTTCGAT 600 TACTCCACAC ACTAACTTCA AAGCTGAAAC TTATGTTTTA ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720 TGGTATTGTT ACACTTCCAG AAGGTACTGA AATGGTAAYG CCTGGTGATA ACATTGAGCT 780 TGCAGTTGAA CTAATTGCAC CAATCGCTAT CGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 139: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Listezia seeligezi (XX) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 139: CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACATAT 60 CTTACTTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT 120 GGTTGACGAT GAAGAATTAC TTGAATTAGT TGAAATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGTGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240 AGGTGAAGCT GACTGGGAAG CTAAAATTGA CGAGTTAATG GAAGCTGTAG ATTCTTACAT 300 TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC 360 AATCACTGGT CGTGGAACTG TTGCAACTGG ACGTGTTGAA CGTGGACAAG TTAAAGTTGG 420 TGACGAAGTA GAAGTTATCG GTATTGAAGA AGAAAGCAAA AAAGTAATAG TAACTGGAGT 480 AGAAATGTTC CGTAAATTAC TAGACTACGC TGAAGCTGGC GACAACATTG GCGCACTTCT 540 ACGTGGTGTT GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTAGCTAAAC CAGGTTCGAT 600 TACTCCACAT ACTAACTTCA AAGCTGAAAC TTATGTTTTA ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720 TGGTATTGTT ACACTTCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACATTGAGCT 780 TGCAGTTGAA CTAATTGCAC CAATCGCTAT CGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 140: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xi) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 140 CGGTGGTATC TTAGTAGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC GTGAACACAT 60 TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT 120 GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTAAGCGA 180 ATATGACTTC CCAGGTGACG ATGTACCTGT AATCGCTGGT TCAGCATTAR AAGCTTTAGA 240 AGGCGATGCT CAATACGAAG AAAAAATCTT AGAATTARTG GAAGCTGTAG ATACTTACAT 300 TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG 420 TGAAGAAGTT GAAATCATCG GTTTACATGA CACATCTAAA ACAACTGTTA CAGGTGTTGA 480 AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG 540 TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC 600 ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG GTGGACGTCA 660 CACTCCATTC TTCTCAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG 720 TGTTGTTCAC TTACCAGAAG GTACTGAAAT GGTAATGCCT GGTGATAACG TTGAAATGAC 780 AGTAGAATTA ATCGCTCCAA TCGCGATTGA AGAC 814 (2) INFORMATION FOR SEC. ID. NO: 141: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus epidermídis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 141: CGGCGGTATC TTAGTTGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC GTGAACACAT 60 CTTATTATCA CGTAACGTTG GTGTACCAGC ATTAGTTGTA TTCTTAAACA AAGTTGACAT 120 GGTAGACGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAAGCGA 180 ATATGACTTC CCAGGTGACG ATGTACCTGT AATCGCTGGT TCTGCATTA-- AAGCATTAGA 240 AGGCGATGCT GAATACGAAC AAAAAATCTT AGACTTAATG CAAGCAGTTG ATGATTACAT 300 TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC ~ 360 AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTWGG 420 TGAAGAAGTT GAAATCATCG GTATGCACGA AACTTCTAAA ACAACTGTTA CTGGTGTAGA 480 AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG 540 TGGTGTTGCA CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCTATTAC 600 ACCACACACA AAATTCAAAG CTGAAGTATA CGTATTATCT AAAGATGAAG GTGGACGTCA 660 CACTCCATTC TTCACTAACT ATCGCCCACA ATTCTATTTC CRTACTACTG ACGTAACTGG 720 TGTTGTAAAC TTACCAGAAG GTACAGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC 780 AGTTGAATTA ATCGCTCCAA TCGCTATCGA AGAC 814 (2) INFORMATION FOR SEC. ID. DO NOT. 142: (x) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM, double (D) TOPOLOGY: Ixneal (xx) TYPE OF MOLECULE: DNA (genomxco) (vx) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus (xx) DESCRIPTION OF THE SEQUENCE- SEC. ID. NO: 142: CGGAGCTATC TTAGTAGTAT CTGCTGCTOA TGGCCCAATG CCACAAACTC GTGAACACAT 60 TCTTTTATCA CGTRACGTTG GTGYTCCAGC ATTAGTTOTA TTCTTAAACA AAGTTGACAT 120 GGTTGACGAY GAAGAATTAT TAGAATTRGT AGAAATGGAA GTTCGTGRCT TATTAAGCGA 180 ATATGACTTC CCAGGTGACG ATGTACCTGT AATCTCTGGT TCTGCATTAA AAGCTTTAGA 240 AGGCGACGCT GACTATGAGC AAAAAATCTT AGACTTAATG CAAGCTGTTG ATGACTYCAT 300 TCCAACACCA GAACCTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTCGG 420 TGAAGAAATC GARATCATCG GTATGCAAGA AGAATCAAGC AAAACAACTG TTACTGGTGT ¿80 AGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCTGGT GACAACATTG GTGCATTATT 540 ACGTGGTGTT TCACGTGATG ATGTACAACG TGGTCAAGTT TTAGCTGCTC CTGGTACTAT 600 CACACCACAT ACAAAATTCA AAGCGGATGT TTACGTTTTA TCTAAAGATG AAGGTGGTCG 660 TCATACGCCA TTCTTCACTA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720 TGGTGTTGTT AACTTACCAG AAGGTACTGA AATGGTTATG CCTGGCGATA ACGTTGAAAT 780 GGATGTTGAA TTAATTTCTC CAATCGCTAT TGAAGAC 817 (2) INFORMATION FOR SEC. ID. NO: 143: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOBOGY: linear (xi) MOLECUBE TYPE: DNA (genomic) (vx) ORIGINAB SOURCE: (A) ORGANISM: Staphylococcus simulans (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 143: CGGCGGTATC TTAGTAGTAT CTGCTGCAGA TGGTCCAATG CCACAAACTC GTGAACACAT 60 CTTATTATCA CGTAACGTTG GTGTACCAGC TTTAGTTGTA TTCTTAAACA AAGCTGACAT 120 GGTTGACGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTATCTGA 180 ATACGACTTC CCTGGTGACG ATGTACCAGT TATCGTTGGT TCTGCATTAA AAGCTTTAGA 240 AGGCGACCCA GAATACGAAC AAAAAATCTT AGACTTAATG CAAGCTGTAG ATGACTACAT 300 CCCAACTCCA GAACGTGACT CTGATAAACC ATTCATGATG CCAGTTGAG1-- ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TAGCAACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTCGG 420 TGAAGAAGTT GAAATCATCG GTATCACTGA AGAAAGCAAG AAAACAACAG TTACAGGTGT 480 AGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCTGGT GACAACATCG GTGCTTTATT 540 ACGTGGTGTT GCACGTGAAG ACGTACAACG TGGACAAGTA TTAGCAGCTC CTGGCTCTAT 600 TACTCCACAC ACAAAATTCA AAGCTGATGT TTACGTTTTA TCTAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCACTA ACTACCGCCC ACAATTCTAC TTCCGTACTA CTGACGTAAC 720 TGGCGTTGTT CACTTACCAG AAGGTACTGA AATGGTTATG CCTGGCGATA ACGTAGAAAT 780 GACTGTTGAA TTGATCGCTC CAATCGCGAT TGAAGAC -817 (2) INFORMATION FOR SEC. ID. NO: 144: (X) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ll) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOVRCE: (A) ORGANYMO: Streptococcus agalactiae (xi) DE? CRIPTION OF THE SEQUENCE:? EC. ID. NO: 144: CGGAGCTATC CTTGTAGTTG CTTCAACTGA TGGACCAATG CCACAAACTC GTGAGCACAT 60 CCTTCTTTCA CGTCAAGTTG GTGTTAAACA CCTTATCGTA TTCATGAACA AAGTTGACCT 120 TGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATTCGTGACC TTCTTTCAGA 180 ATACGACTTC CCAGGT ATG ACCTTCCAGT TATCCAAGGT TCAGCTCTTA AAGCACTTGA 210 AGGCGACGAA AAATACGAAG ACATCATCAT GGAATTGATG AGCACTGTTG ATGAGTACAT 300 TCCAGAACCA GAACGTGATA CTGACAAACC TTTACTTCTT CCAGTTGAAG ATGTATTCTC 360 AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTACTG TTCGTGTCAA 420 CGACGAAGTT GAAATCGTTG GTATTAAAGA AGATATCCAA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTTCTTCT 540 TCGTGGTGTT CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT 600 CAACCCACAC ACTAAATTTA AAGGTGAAGT TTACATCCTT TCTAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCAACA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC 720 AGGTTCAATC GAACTTCCAG CAGGAACAGA AATGGTTATG CCTGGTGATA ACGTTACTAT 780 CGAAGTTGAA TTGATTCACC CAATCGCCGT AGAACAA 817 (2) INFORMATION FOR SEC. ID. NO: 145: (i) CHARACTERISTIC? OF THE? ECUENCE: (A) LENGTH: 817 base pairs - (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) ( vi) ORIGINAL SOURCE: (A) ORGANYMO: Streptococcus pneumonia (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 145: CGGAGCTATC CTTGTAGTAG CTTCAACTGA CGGACCAATG CCACAAACTC GTGAGCACAT 60 CCTTCTTTCA CGTCAGGTTG GTGTTAAACA CCTTATCGTC TTCATGAACA AAGTTGACTT 120 GGTTGACGAC GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TATTGTCAGA 180 ATACGACTTC CCAGGTGACG ATCTTCCAGT TATCCAAGGT TCAGCACTTA AAGCTCTTGA 240 AGGTGACTCT AAATACGAAG ACATCGTTAT GGAATTGATG AACACAGTTG ATGAGTATAT 300 CCCAGAACCA GAACGTGACA CTGACAAACC ATTGCTTCTT CCAGTCGAGG ACGTATTCTC 360 AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTATCG TTAAAGTCAA 420 CGACGAAATC GAAATCGTTG GTATCAAAGA AGAAACTCRA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGAAGG TCTTGCTGGA GATAACGTAG GTGTCCTTCT 540 TCGTGGTGTT CAACGTGATG AAATCGAACG TGGACAAGTT ATCGCTAAAC CAGGTTCAAT 600 CAACCCACAC ACTAAATTCA AAGGTGAAGT CTACATCCTT ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGTCC ACAATTCTAC TTCCGTACTA CTGACGTTAC 720 AGGTTCAATC GAACTTCCAG CAGGTACTGA AATGGTAATG CCTGGTGATA ACGTGACAAT 780 CGACGTTGAG TTGATTCACC CAATCGCCGT AGAACAA 817 (2) INFORMATION FOR SEC. ID. NO: 146: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus salivarius (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 146: _ CGGTGCGATC CTTGTAGTAG CATCTACTGA CGGACCAATG CCACAAACTC GTGAGCACAT 60 CCTTCTTTCA CGTCAGGTTG GTGTTAAACA CCTTATCGTC TTCATGAACA AAGTTGACTT 120 GGTTGACGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TTCTTTCAGA 180 ATACGATTTC CCAGGTGATG ACATTCCAGT TATCCAAGGT TCAGCTCTTA AAGCTCTTGA 240 AGGTGATTCT AAATACGAAG ACATCATCAT GGACTTGATG AACACTGTTG ACGAATACAT 300 CCCAGAACCA GAACGTGACA CTGACAAACC ATTGTTGCTT CCAGTCGAAG ACGTATTCTC 360 - AATCACTGGT CGTGGTACTG TTGCTTCAGG ACGTATCGAC CGTGGTGTTG TTCGTGTCAA 420 TGACGAAGTT GAAATCGTTG GTCTTAAAGA AGACATCCAA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGRAGG TATTGCCGGA GATAACGTCG GTGTTCTTCT 540 TCGTGGTATC CAACGTGATG AAATCGAACG TGGTCAAGTA TTGGCTGCAC CTGGTTCAAT 600 CAACCCACAC ACTAAATTCA AAGGTGAAGT TTACATCCTT TCTAAAGAAG AAGGTGGACG 66t TCACACTCCA TTCTTCAACA ACTACCGTCC ACAGTTCTAC TTCCGTACAA CTGACGTAAC 72O AGGTTCAATC GAACTTCCTG CAGGTACTGA AATGGTTATG CCTGGTGATA ACGTGACTAT 780 CGACGTTGAG TTGATCCACC CAATCGCCGT TGAACAA 817 (2) INFORMATION FOR SEC. ID. NO: 147: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 897 base pairs (B) TYPE: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: lxneal (xx) TYPE OF MOLECULE: DNA (genomix) (vx) ORIGINAL SOURCE: (A) ORGANISM: Agrobacterium tumefaciens (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 147: AACATGATCA CCGGTGCTGC COAGATGGAC GGCGCGATCC TGGTTTGCTC GGTGCCGAC 60 GGCCCGATGC CACAGACCCG CGAGCACATC CTGCTTGCCC GTCAGGTGGG CGTTCCGGCC 120 ATCGTCGTGT TCCTCAACAA GGTCGACCAG GTTGACGACG CCGAGCTTCT CGAGCTCGTC 180 GAGCTTGAAG TTCGCGA ^ CT TCTGTCGTCC TACGACTTCC CGGGCGACGA TATCCCGATC 2 ^ 0 ATCAAGGGTT CGGCACTTGC TGCTCTTGAA GATTCTGACA AGAAGATCGG TGAAGACGCG 300 ATCCGCGAGC TGATGGCTGC TGTCGACGCC TACATCCCGA CGCCTGAGCG TCCGATCGAC 360 CAGCCGTTCC TGATGCCGAT CGAAGACGTG TTCTCGATCT CGGGTCGTGG TACGGTTGTG 420 ACGGGTCGCG TTGAGCGCGG TATCGTCAAG GTTGGTGAAG AAGTCGAAAT CGTCGGCATC 480 CGTCCGACCT CGAAGACGAC TGTTACCGGC GTTGAAATGT TCCGCAAGCT GCTCGACCAG 540 GGCCAGGCCG GCGACAACAT CGGTGCACTC GTTCGCGGCG TTACCCGTGA CGGCGTCGAG 600 CGTGGTCAGA TCCTGTGCAA GCCGGGTTCG GTCAAGCCGC ACAAGAAGTT CATGGCAGAA 660 GCCTACATCC TGACGAAGGA AGAAGGCGGC CGTCATACGC CGTTCTTCAC GAACTACCGT 720 CCGCAGTTCT ACTTCCGTAC GACTGACGTT ACCGGTATCG TTTCGCTTCC TGAAGGCACG 780 GAAATGGTTA TGCCTGGCGA CAACGTCACT GTTGAAGTCG AGCTGATCGT TCCGATCGCG 810 ATGGAAGAAA AGCTGCGCTT CGCTATCCGC GAAGGCGGCC GTACCGTCGG CGCCGGC B97 (2) INFORMATION FOR SEC. ID. NO: 148: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 885 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus subtnlis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 148: ATGATCACTG GTGCTGCGCA AATGGACGGA GCTATCCTTG TAGTATCTGC TGCTGATGGC 60 CCAATGCCAC AAACTCGTGA GCACATCCTT CTTTCTAAAA ACGTTGGTGT ACCATACATC 120 GTTGTATTCT TAAACAAATG CGACATGGTA GACGACGAAG AGCTTCTTGA ACTAGTTGAA 180 ATGGAAGTTC GCGATCTTCT TAGCGAATAC GACTTCCCTG GTGATGATGT ACCAGTTGTT 240 AAAGGTTCTG CTCTTAAAGC TCTTGAAGGA GACGCTGAGT GGGAAGCTAA AATCTTCGAA 300 CTTATGGATG CGGTTGATGA GTACATCCCA ACTCCAGAAC GCGACACTGA AAAACCATTC 360 ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACAGTTGC TACTGGCCGT 420 GTAGAACGCG GACAAGTTAA AGTCGGTGAC GAAGTTGAAA TCATCGGTCT TCAAGAAGAG 480 AACAAGAAAA CAACTGTTAC AGGTGTTGAA ATGTTCCGTA AGCTTCTTGA TTACGCTGAA 540 GCTGGTGACA ACATTGGTGC CCTTCTTCGC GGTGTATCTC GTGAAGAAAT CCAACGTGGT 600 CAAGTACTTG CTAAACCAGG TACAATCACT CCACACAGCA AATTCAAAGC TGAAGTTTAC 660 GTTCTTTCTA AAGAAGAGGG TGGACGTCAT ACTCCATTCT TCTCTAACTA CCGTC-CTCAG 720 TTCTACTTCC GTACAACTGA CGTAACTGGT ATCATCCATC TTCCAGAAGG CGTAGAAATG 780 GTTATGCCTG GAGATAACAC TGAAATGAAC GTTGAACTTA TTTCTACAAT CGCTATCGAA 840 GAAGGAACTC GTTTCTCTA T TCGTGAAGGC GGACGTACTG TTGGT 885 (2) INFORMATION FOR SEC. ID. NO: 150: (X) SEQUENCE CHARACTERISTICS: (A) LENGTH: 888 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Borrelia burgdozfezi '(xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 150: AATATGATTA CAGGAGCAGC TCAAATGGAT GCAGCGATAC TTTTAGTTGC TGCTGATAGT 60 GGTGCTGAGC CTCAAACAAA AGAGCATTTG CTTCTTGCTC AAAGAATGGG AATAAAGAAA 120 ATAATAGTTT TTTTAAATAA ATTGGACTTA GCAGATCCTG AACTTGTTGA GCTTGTTGAA 180 GTTGAAGTTT TAGAACTTGT TGAAAAATAT GGCTTTTCAG CTGATACTCC AATAATCAAA 240 GGTTCAGCTT TTGGGGCTAT GTCAAATCCA GAAGATCCTG AATCTACAAA ATGCGTTAAA 300 GAACTTCTTG AATCTATGGA TAATTATTTT GATCTTCCAG AAAGAGATAT TGACAAGCCA 360 TTTTTGCTTG CTGTTGAAGA TGTATTTTCT ATTTCAGGAA GAGGCACTGT TGCTACTGGG 420 CGTATTGAAA GAGGTATTAT TAAAGTTGGT CAAGAAGTTG AAATAGTTGG AATTAAAGAA 480 ACCAGAAAAA CTACTGTTAC TGGTGTTGAA ATGTTCCAGA AAATTCTTGA GCAAGGTCAA 540 GCAGGGGATA ATGTTGGTCT TCTTTTGAGA GGCGTTGATA AAAAAGACAT TGAGAGGGGG "600 CAAGTTTTGT CAGCTCCAGG TACAATTACT CCACACAAGA AATTTAAAGC TTCAATTTAT 660 TGTTTGACTA AAGAAGAAGG CGGTAGGCAC AAGCCATTTT TCCCAGGGTA TAGACCACAG 720 TTCTTTTTTA GAACAACCGA TGTTACTGGA GTTGTTGCTT TAGAGGGCAA AGAAATGGTT" 780 ATGCCTGGTG ATAATGTTGA TATTATTGTT GAGCTGATCT CTTCAATAOC TATGGATAAG 840 AATGTAGAAT TTGCTGTT CG AGAAGGTGGA AGAACCGTTG CTTCAGGA 388 (2) INFORMATION FOR SEC. ID. NO: 151: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: -Brevi-bacteri-r-linens (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 151 AACATGATCA CCGGTGCCGC TCAGATGGAC GGTGCGATCC TCGTCGTCGC CGCTACCGAC 60 GGACCGATGC CCCAGACCCG TGAGCACGTG CTGCTCGCGC GTCAGGTCGG CGTTCCCTAC 120 ATCGTCGTGG CTCTGAACAA GTCCGACATG GTCGATGACG AGGAGCTCCT CGAGCTCGTC 180 GAATTCGAGG TCCGCGACCT GCTCTCGAGC CAGGACTTCG ACGGAGACAA CGCTCCGGTC 240 ATTCCGGTGT CCGCTCTCAA GGCGCTGGAA GGCGACGAGA AGTGGGTCAA GAGCGTTCAG 300 GATCTCATGG CTGCCGTCGA TGACAACGTT CCGGAGCCGG AGCGCGATGT CGACAAGCCG 360 TTCCTCATGC CCGTCGAGGA CGTCTTCACG ATCACCGGTC GTGGAACCGT CGTCACCGGT 420 CGTGTCGAGC GCGGCGTGCT CCTGCCTAAC GACGAAATCG AAATCGTCGG CATCAAGGAG "480 AAGTCGTCCA AGACGACTGT CACCGCTATC GAGATGTTCC GCAAGACCCT GCCGGATGCC --540 CGTGCAGGTG AGAACGTCGG TCTGCTCCTC CGCGGCACCA AGCGCGAGGA TGTTGAGCGC 600 GGTCAGGTCA TCGTGAAGCC GGGTTCGATC ACCCCGCACA CCAAGTTCGA GGCTCAGGTC 660 TACATCCTGA GCAAGGACGA GGGCGGACGT CACAACCCGT TCTACTCGAA CTACCGTCCG 720 CAGTTCTACT TCCGGACCAC GGACGTCACC GGTGTCATCA CGCTGCCCGA GGGCACCGAG 780 ATGGTCATGC CCGGCGACAA CACCGATATG TCGGTCGAGC TCATCCAGCC GATCGCTATG 840 GAGGACCGCC TCCGCTTCGC AATCCGCGAA GGTGGCCGCA CCGTCGGCGC CGGT 894 (2) INFORMATION FOR SEC. ID. NO: 152: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 888 base pairs --- (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) MOLECUDE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Bur-ijolderia cepacia (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 152: ATGATCACGG GCGCAGCGCA GATGGACGGC GCGATCCTGG TTTGCTCGGC AGCAGACGGC 60 CCGATGCCGC AAACGCGTGA GCACATCCTG CTGGCGCGTC AGGTTGGTGT TCCGTACATC 120 ATCGTGTTCC TGAACAAGTG CGACAGTGTG GACGACGCTG AACTGCTCGA GCTGGTCGAG 180 ATGGAAGTTC GCGAACTCCT GTCGAAGTAC GACTTCCCGG GCGACGACAC GCCGATCGTG 240 AAGGGTTCGG CCAAGCTGGC GCTGGAAGGC GACACGGGCG AGCTGGGCGA AGTGGCGATC 300 ATGAGCCTGG CAGACGCGCT GGACACGTAC ATCCCGACGC CGGAGCGTGC AGTTGACGGC 360 GCGTTCCTGA TGCCGGTGGA AGACGTGTTC TCGATCTCGG GCCGTGGTAC GGTGGTGACG 420 GGTCGTGTCG AGCGCGGCAT CGTGAAGGTC GGCGAAGAAA TCGAAATCGT CGGTATCAAG 480 CCGACGGTGA AGACGACCTG CACGGGCGTT GAAATGTTCC GCAAGCTGCT GGACCAAGGT 540 CAGGCAGGCG ACAACGTCGG TATCCTGCTG CGCGGCACGA AGCGTGAAGA CGTGGAGCGT 600 GGCCAGGTTC TGGCGAAGCC GGGTTCGATC ACGCCGCACA CGCACTTCAC GGCTGAAGTG 660 TACGTGCTGA GCAAGGACGA AGGCGGCCGT CACACGCCGT TCTTCAACAA CTACCGTCCG 720 CAGTTCTACT TCCGTACGAC GGACGTGACG GGCTCGATCG AGCTGCCGAA GGACAAGGAA 780 ATGGTGATGC CGGGCGACAA CGTGTCGATC ACGGTGAAGC TGATTGCTCC GATCGCGATG 840 GAAGAAGGTC TGCGCTTCGC AATCCGTGAA GGCGGCCGTA CGGTCGGC 888 (2) INFORMATION FOR SEC. ID. NO: 153: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Chlamydia trachama tis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 153: AACATGATCA CCGGTGCGGC TCAAATGGAC GGGGCTATTC TAGTAGTTTC TGCAACAGAC 60 GGAGCTATGC CTCAAACTAA AGAGCATATT CTTTTGGCAA GACAAGTTGG GGTTCCTTAC 120 ATCGTTGTTT TTCTCAATAA AATTGACATG ATTTCCGAAG AAGACGCTGA ATTGGTCGAC "180 TTGGTTOAGA TGGAGTTGGC TGAGCTTCTT GAAGAGAAAG GATACAAAGG GTGTCCAATC 240 ATCAGAGGTT CTGCTCTGAA AGCTTTGGAA GGAGATGCTG CATACATAGA GAAAGTTCGA 300 GAGCTAATGC AAGCCGTCGA TGATAATATC CCTACTCCAG AAAGAGAAAT TGACAAGCCT 360 TTCTTAATGC CTATTGAGGA CGTGTTCTCT ATCTCCGGAC GAGGAACTGT AGTAACTGGA 420 CGTATTGAGC GTGGAATTGT TAAAGTTTCC GATAAAGTTC AGTTGGTCGG TCTTAGAGAT 480 ACTAAAGAAA CGATTGTTAC TGGGGTTGAA ATGTTCAGAA AAGAACTCCC AGAAGGTCGT 540 GCAGGAGAGA ACGTTGGATT GCTCCTCAGA GGTATTGGTA AGAACGATGT GGAAAGAGGA 600 ATGGTTGTTT GCTTGCCAAA CAGTGTTAAA CCTCATACAC AGTTTAAGTG TGCTGTTTAC 660 GTTCTGCAAA AAGAAGAAGG TGGACGACAT AAGCCTTTCT TCACAGGATA TAGACCTCAA 720 TTCTTCTTCC GTACAACAGA CGTTACAGGT GTGGTAACTC TGCCTGAGGG AGTTGAGATG 780 GTCATGCCTG GGGATAACGT TGAGTTTGAA GTGCAATTGA TTAGCCCTGT GGCTTTAGAA 840 GAAGGTATGA GATTTGCGAT TCGTGAAGGT GGTCGTACAA TCGGTGCTGG A 891 (2) INFORMATION FOR SEC. ID. NO: 154: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 154: AACATGATCA CCGGTGCTGC GCAGATGGAC GGCGCGATCC TGGTAGTTGC TGCGACTGAC 60 GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC 120 ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT 180 GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC 240 GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCCTO 300 GAACTGGCTG GCTTCCTGGA TTCTTACATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG 360 TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCC --- TC GTGGTACCGT TGTTACCGGT 420 CGTGTAGAAC GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG 480 ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT "540 GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT 600 CAGGTACTGG CTAAGCCGGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC 660 ATTCTGTCCA AAGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG 720 TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG 780 GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC 840 GACGGTCTGC GTTTCGC AAT CCGTGAAGGC GGCCGTACCG TTGGCGCGGG C ~ «91 (2) INFORMATION FOR SEC. ID. NO: 155: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid "" "(C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Fibrobacter succinogenes (xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 155: AACATGGTGA CTGGTGCTGC TCAGATGGAC GGCGCTATCC TCGTTGTTGC CGCTACTGAC 60 GGTCCGATGC CGCAGACTCG CGAACACATC CTTCTCGCTC ACCAGGTTGG CGTGCCGAAG 120 ATCGTCGTGT TCATGAACAA GTGCGACATG GTTGACGATG CTGAAATTCT CGACCTCGTC 180 GAAATGGAAG TTCGCGAACT CCTCTCCAAG TATGACTTCG ACGGTGACAA CACCCCGATC 240 ATCCGTGGTT CCGCTCTCAA GGCCCTCGAA GGCGATCCGG AATACCAGGA CAAGGTCATG 300 GAACTCATGA ACGCTTGCGA CGAATACATC CCGCTCCCGC AGCGCGATAC CGACAAGCCG 360 TTCCTCATGC CGATCGAAGA CGTGTTCACG ATTACTGGCC GCGGCACTGT CGCTACTGGC 420 CGTÁTCGAAC GCGGTGTCGT TCGCTTGAAC GACAAGGTTG AACGTATCGG TCTCGGTGAA 480 ACCACCGAAT ACGTCATCAC CGGTGTTGAA ATGTTCCGTA AGCTCCTCGA CGACGCTCAG 540 GCAGGTGACA ACGTTGGTCT CCTCCTCCGT GGTGCTGAAA AGAAGGACAT CGTCCGTGGC 600 ATGGTTCTCG CAGCTCCGAA GTCTGTCACT CCGCACACCG AATTTAAGGC TGAAATCTAC 660 GTTCTCACGA AGGACGAAGG TGGCCGTCAC ACGCCGTTCA TGAATGGCTA CCGTCCGCAG 720 TTCTACTTCC GCACCACCGA CGTTACTGGT ACGATCCAGC TCCCGGAAGG TGTCGAAATG 780 GTTACTCCGG GTGACACGGT CACGATCCAC GTGAACCTCA TCGCTCCGAT CGCTATGGAA 840 AAGCAGCTCC GCTTCGCTA T CCGTGAAGGT GGACGTACTG TTGGTGCTGG C 891 (2) INFORMATION FOR SEC. ID. NO: 156: (x) CHARACTERISTIC? OF THE? ECUENCE: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANI? MO: Flavo - >; acterx-¡-p fezzugi n eum (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 156: AACATGATCA CCGGTGCTGC CCAGATGGAC GGTGCTATCT TAGTTGTGGC TGCATCAGAC 60 GGTCCTATGC CTCAAACAAA AGAACACATC CTGCTTGCTG CCCAGGTAGG TGTACCTAAA 120 ATGGTTGTGT TTCTGAATAA AGTTGACCTC GTTGACGACG AAGAGCTCCT GGAGCTGGTT 180 GAGATCGAGG TTCGCGAAGA ACTGACTAAA CGCGGTTTCG ACGGCGACAA CACTCCAATC 240 ATCAAAGGTT CCGCTACAGG CGCCCTCGCT GGTGAAGAAA AGTGGGTTAA AGAAATTGAA 300 AACCTGATGG ACGCTGTTGA CAGCTACATC CCACTGCCTC CTCGTCCGGT TGATCTGCCG 360 TTCCTGATGA GCGTAGAGGA CGTATTCTCT ATCACTGOTC GTGGTACTGT TGCTACCGGT 420 CGTATCGAGC GTGGCCGTAT CAAAGTTGGT OAGCCTGTTG AGATCGTAGG TCTGCAGGAG 480 TCTCCCCTGA ACTCTACCGT TACAGGTGTT GAGATGTTCC GCAAACTCCT CGACGAAGGT 540 GAAGCTGGTG ATAACGCCGG TCTCCTCCTC CGTGGTGTTG AAAAAACACA GATCCGTCGC 600 GGTATGGTAA TCGTTAAACC CGGTTCCATC ACTCCGCACA CGGACTTCAA AGGCGAAGTT 660 TACGTACTGA GCAAAGACGA AGGTGGCCGT CACACTCCAT TCTTCAACAA ATACCGTCCT 720 CAATTCTACT TCCGTACAAC TGACGTTACA GGTGAAGTAG AACTGAACGC AGGAACAGAA 780 ATGGTTATGC CTGGTGATAA CACCAACCTG ACCGTTAAAC TGATCCAACC GATCGCTATG 840 GAAAAAGGTC TGAAATTCGC GATCCGCGAA GGTGGCCGTA CCGTAGGTGC AGGA 894 (2) INFORMATION FOR SEC. ID. NO: 157: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Haemophilus influenzae (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 157: AATATGATTA CTGGTGCGGC ACAAATGGAT GGTGCTATTT TAGTAGTAGC AGCAACAGAT 60 GGTCCTATGC CACAAACTCG TGAACACATC TTATTAGGTC GCCAAGTAGG TGTTCCATAC 120 ATCATCGTAT TCTTAAACAA ATGCGACATG GTAGATGACG AAGAGTTATT AGAATTAGTC 180 GAAATGGAAG TTCGTGA? CT TCTATCTCAA TATGACTTCC CAGGTGACGA TACACCAATC 240 GTACGTGGTT CAGCATTACA AGCGTTAAAC GGCGTAGCAG AATGGGAAGA AAAAATCCTT 300 GAGTTAGCAA ACCACTTAGA TACTTACATC CCAGAACCAG AACGTGCGAT TGACCAACCG 360 TTCCTTCTTC CAATCGAAGA TGTGTTCTCA ATCTCAGGTC GTGGTACTGT AGTAACAGGT 420 CGTGTAGAAC GAGGTATTAT CCGTACAGGT GATGAAGTAG AAATCGTCGC3 TATC-AAAGAT 480 ACAGCGAAAA CTACTGTAAC GGGTGTTGAA ATGTTCCGTA AATTACTTGA CGAAGGTCGT 540 GCAGGTGAAA ACATCGGTGC ATTATTACGT GGTACCAAAC GTGAAGAAAT CGAACGTGGT 600 CAAGTATTAG CGAAACCAGG TTCAATCACA CCACACACTG ACTTCGAATC AGAAGTGTAC 660 GTATTATCAA AAGATGAAGG TGGTCGTCAT ACTCCATTCT TCAAAGGTTA CCGTCCACAA 720 TTCTATTTCC GTACAACAGA CGTGACTGGT ACAATCGAAT TACCAGAAGG CGTGGAAATG 780 GTAATGCCAG GCGATAACAT CAAGATGACA GTAAGCTTAA TCCACCCAAT TGCGATGGAT 840 CAAGGTTTAC GTTTCGCA AT CCGTGAAGGT GGCCGTACAG TAGGTGCAGG C 891 (2) INFORMATION FOR SEO- ID. NO: 158: (X) CHARACTERISTIC? OF THE SEQUENCE: (A) LENGTH: 906 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (vx) SOURCE ORIGINAL: (A) ORGANISM: Helicobacter pylori (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 158: - AACATGATCA CCGGTGCGGC GCAAATGGAC GGAGCGATTT TGGTTGTTTC TGCAGCTGAT 60 GGCCCTATGC CTCAAACTAG GGAGCATATC TTATTGTCTC GTCAAGTAGG CGTGCCTCAC 120 ATCGTTGTTT TCTTAAACAA ACAAGACATG GTAGATGACC AAGAATTGTT AGAACTTGTA 180 GAAATGGAAG TGCGCGAATT GTTGAGCGCG TATGAATTTC CTGGCGATGA CACTCCTATC 240 GTAGCGGGTT CAGCTTTAAG AGCTTTAGAA GAAGCAAAGG CTGGTAATGT GGGTGAATGG ~ 300 GGTGAAAAAG TGCTTAAACT TATGGCTGAA GTGGATGCCT ATATCCCTAC TCCAGAAAGA '360 GACACTGAAA AAACTTTCTT GATGCCGGTT GAAGATGTGT TCTCTATTGC GGGTAGAGGG 420 ACTGTGGTTA CAGGTAGGAT TGAAAGAGGC GTGGTGAAAG TAGGCGATGA AGTGGAAATC 480 GTTGGTATCA GACCTACACA AAAAACGACT GTAACCGGTG TAGAAATGTT TAGGAAAGAG 540 TTGGAAAAAG GTGAAGCCGG CGATAATGTG GGCGTGCTTT TGAGAGGAAC TAAAAAAGAA 600 GAAGTGGAAC GCGGTATGGT TCTATGCAAA CCAGGTTCTA TCACTCCGCA CAAGAAATTT 660 GAGGGAGAAA TTTATGTCCT TTCTAAAGAA GAAGGCGGGA GACACACTCC ATTCTTCACC 720 AATTACCGCC CGCAATTCTA TGTGCGCACA ACTGATGTGA CTGGCTCTAT CACCCTTCCT 780 -AAGGCGTAG AAATGGTTAT GCCTGGCGAT AATGTGAAAA TCACTGTAGA GTTGATTAGC 840 CCTGTTGCGT TAGAGTTGGG AACTAAATTT GCGATTCGTG AAGGCGGTAG GACCGTTGGT 900 GCTGGT 906 (2) INFORMATION FOR SEC. ID. NO: 159: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TI PO: nucleic acid ----- (C) CHAIN FORM: double (D) TOPOLOGY: linear ( ii) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: My crococcus l uteus (xi) DE? CRIPTION OF THE SEQUENCE: SEC. ID. NO: 159 AACATGATCA CCGGCGCCGC TCAGATGGAC GGCGCGATCC TCGTGGTCGC CGCTACCGAC 60 GGCCCGATGG CCCAGACCCG TGAGCACGTG CTCCTGGCCC GCCAGGTCGG CGTGCCGGCC 120 CTGCICGTGG CCCTGAACAA GTCGGACATG GTGGAGGACG AGGAGCTCCT CGAGCGTGTC 180 GAGATGGAGG TCCGGCAGCT GCTGTCCTCC AGGAGCTTCG ACGTCGACGA GGCCCCGGTC 240 ATCCGCACCT CCGCTCTGAA GGCCCTCGAG GGCGACCCCC AGTGGGTCAA GTCCGTCGAG "" 300 GACCTCATGG ATGCCGTGGA CGAGTACATC CCGGACCCGG TGCGCGACAA GGACAAGCCG 360 TTCCTGATGC CGATCGAGGA CGTCTTCACG ATCACCGGCC GTGGCACCGT GGTGACCGGT 420 CGCGCCGAGC GCGGCACCCT GAAGATCAAC TCCGAGGTCG AGATCGTCGG CATCCGCGAC 480 GTGCAGAAGA CCACTGTCAC CGGCATCGAG ATGTTCCACA AGCAGCTCGA CGAGGCCTGG 540 GCCGGCGAGA ACTGCGGTCT GCTCGTGCGC GGTCTGAAGC GCGACGACGT CGAGCGCGGC 600 CAGGTGCTGG TGGAGCCGGG CTCCATCACC CCGCACACCA ACTTCGAGGC GAACGTCTAC 660 ATCCTGTCCA AGGACGAGGG TGGGCGTCAC ACCCCGTTCT ACTCGAACTA CCGCGCGCAG 720 TTCTACTTCC GCACCACCGA CGTCACCGGC GTCATCACGC TGCCCGAGGG CACCGAGATG 780 GTCATGCCCG GCGACACCAC CGAGATGTCG GTCGAGCTCA TCCAGCCGAT CGCCATGGAG 840 GAGGGCCTCG GCTTCGCCAT CCGCGAGGGT GGCCGCACCG TGGGCTCCGG C 891 (2) INFORMATION FOR SEC. ID. NO: 160: (x) CHARACTERISTIC? OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) SOURCE ORIGINAL: (A) ORGANISM: Mycobacterium um tuberculosis (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 160: AACATGATCA CCGGCGCCGC GCAGATGGAC GGTGCGATCC TGGTGGTCGC CGCCACCGAC 60 - GGCCCGATGC CCCAGACCCG CGAGCACGTT CTGCTGGCGC GTCAAGTGGG TGTGCCCTAC 120 ATCCTGGTAG CGCTGAACAA GGCCGACGCA GTGGACGACG AGGAGCTGCT CGAACTCGTC 180 GAGATGGAGG TCCGCGAGCT GCTGGCTGCC CAGGAATTCG ACGAGGACGC CCCGGTTGTG 240 CGGGTCTCGG CGCTCAAGGC GCTCGAGGGT GACGCGAAGT GGGTTGCCTC TGTCGAGGAA 300 CTGATGAACG CGGTCGACGA GTCGATTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC 360 CTGATGCCGG TCGAGGACGT CTTCACCATT ACCGGCCGCG GAACCGTGGT CACCGGACGT 420 GTGGAGCGCG GCGTGATCAA CGTGAACGAG GAAGTTGAGA TCGTCGGCAT TCGCCCATCG 480 ACCACCAAGA CCACCGTCAC CGGTGTGGAG ATGTTCCGCA AGCTGCTCGA CCAGGGCCAG 540 GCGGGCGACA ACGTTGGTTT GC GCTGCGG GGCGTCAAGC GCGAGGACGT "CGAGCGTGGC 600 CAGGTTGTCA CCAAGCCCGO CACCACCACG CCGCACACCG AGTTCGAAGG CCAGGTCTAC 660 ATCCTGTCCA AGGACGAGGG CGGCCGGCAC ACGCCGTTCT TCAACAACTA CCGTCCGCAG 720 TTCTACTTCC GCACCACCGA CGTGACCGGT GTGGTGACAC TGCCGGAGGG CACCGAGATG 780 GTGATGCCCG GTGACAACAC CAACATCTCG GTGAAGTTGA TCCAGCCCGT CGCCATGGAC 840 GAAGGTCTGC GTTTCGCGAT CCGCGAGGGT GGCCGCACCG TGGGCGCCGG C 891 12) INFORMATION FOR SEC. ID. NO: 161: (i) CHARACTERISTICS? OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xx) TYPE OF MOLECULE: DNA (genomic) (vi) SOURCE ORIGINAL: (A) ORGANISM: Mycoplasma geni talin (xx) DESCRIPTION OF THE SEQUENCE:? EC. ID. NO: 161: AATATGATCA CAGGTGCTGC ACAAATGGAT GGAGCTATTC TAGTTGTTTC AGCAACTGAT 60 AGTGTGATGC CCCAAACCCG CGAGCACATC TTACTTGCCC GCCAAGTAGG GGTTCCTAAA 120 YTGGTAGTTT TTCTAAACAA GTGTGATATT GCTAGTGATG AAGAGGTACA AGAACTTGTT 180 GCTGAAGAAG TACGTGATCT GTTAACTTCC TATGGTTTTG ATGGTAAGAA CACTCCTATT 240 ATTTATGGCT CAGCTTTAAA AGCATTGGAA GGTGATCCAA AGTGGGAGGC TAAGATCCAT 300 GATTTGATTA AAGCAGTTGA TGAATGGATT CCAACTCCTA CACGTGAAGT AGATAAACCT 360 TTCTTATTAG CAATTGAAGA TACGATGACC ATTACTGGTA GAGGTACAGT TGTTACAGGA 420 AGAGTTGAAA GAGGTGAACT CAAAGTAGGT CAAGAAGTTG AAATTGTTGG TTTAAAACCA 480 ATTAGAAAAG CAGTTGTTAC TGGAATTGAA ATGTTCAAAA AGGAACTTGA "TTCAGCAATG 540 GCTGGTGACA ATGCTGGGGT ATTATTACGT GGTGTTGAAC GTAAAGAAGT TGAAAGAGGT 600 CAAGTTTTAG CAAAACCAGG CTCTATTAAA CCGCACAAGA AATTTAAAGC TGAGATCTAT 660 GCTTTAAAGA AAGAAGAAOG TGGTAGACAC ACTGGTTTTT TAAACGGTTA CCGTCCTCAA 720 TTCTATTTCC GTACCACTGA TGTAACTGGT TCTATTOCTT TAGCTGAAAA TACTGAAATG 780 GTTCTACCTG GTGATAATGC TTCTATTACT GTTGAGTTAA TTGCTCCTAT CGCTTGTGAA 840 AAAGGTAGTA AGTTCTCAAT TCGTGAAGGT GGTAGAACTG TAGGGGCAGG C 891 (2) INFORMATION FOR THE? EC. ID. NO: 162: (x) CARACT? RI? TICAS OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nuclexco acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ll) TYPE DF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neissepa gonorrneae (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 162: AACATGATTA CCGGCGCCGC ACAAATGGAC GGTGCAATCC TGGTATGTTC TGCTGCCGAC 60 GGCCCTATGC CGCAAACCCG CGAACACATC CTGCTGGCCC GTCAAGTAGG CGTACCTTAC 120 ATCATCGTGT TCATGAACAA ATGCGACATG GTCGACGATG CCGAGCTGTT CCAACTGGTT 180 GAAATGGAAA TCCGCGACCT GCTGTCCAGC TACGACTTCC CCGGCGACGA CTGCCCGATC 240 GTACAAGGTT CCGCACTGAA AGCCTTGGAA GGCGATGCCG CTTACGAAGA AAAAATCTTC 300 GAACTGGCTA CCGCATTGGA CAGATACATC CCGACTCCCG AGCGTGCCGT GGACAAACCA 360 TTCC-GCTGC CTATCGAAGA CGTGTTCTCC ATTTCCGGCC GCGGTACCGT AGTCACCGGC 420 CGTGTAGAGC GAGGTATCAT CCACGTTGGT GACGAGATTG AAATCGTCGG TCTGAAAGAA 480 ACCCAAAAAA CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGTCAG 540 GCGGGCGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC GTGAAGACGT AGAACGCGGT 600 CAGGTATTGG CCAAACGGGG TACTATCACT CCTCACACCA AGTTCAAAGC AGAAGTGTAC 660 GTATTGAGCA AAGAAGAGGG CGGCCCCCAT ACCCCGTTTT TCGCCAACTA CCGTCCCCAA "" 720 TTCTACTTCC GTACCACTGA CGTAACCGGC ACGATTACTT TGGAAAAAGG TGTGGAAATG "780 GTAATGCCGG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT CGCTATGGAA 840 GAAGGTCTGC GCTTTGCGAT TCOCGAAGGC GGCCGTACCG TGGGTGCCGG C 891 (2) INFORMATION FOR SEC. ID. NO: 163: Z (x) SEQUENCE CHARACTERISTICS: "" (A) LENGTH: 891 base pairs - (B) TYPE: nucleic acid (OR CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: "" (A) ORGANISM: Rickettesia prowazekii (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 163: -AATATGATAA CTGGTGCCGC TCAGATGGAT GGTGCTATAT TAGTAGTTTC TGCTGCTGAT 60 GGTCCTATGC CTCAAACTAG AGAACATATA TTACTGGCAA AACAGGTAGG TGTACCTGCT 120 ATGGTAGTAT TTTTGAATAA AGTAGATATG GTAGATGATC CTGACCTATT AGAATTAGTT 180 GAGATGGAAG TAAGAGAATT ATTATCAAAA TATGGTTTCC CTGGTAATGA AATACCTATT 240 ATTAAAGGTT CTGCACTTCA AGCTTTAGAA GGAAAACCTG AAGGTGAAAA AGCTATTAAT 300 '- AGTTAATGA ATGCAGTAGA TACGTATATA CCTCAGCCTA TAGAGCTACA AGATAAACCT 360 TTTTTAATGC CAATAGAGGA TGTATTTTCT ATTTCAGGCA GAGGTACCGT TGTAACTGGT 420 AGAGTGGAGT CAGGCATAAT TAAGGTGGGT GAAGAAATTG AAATAGTAGG TCTAAAAAAT 480 ACGCAAAAAA CGACTTGTAC AGGTGTAGAA ATGTTCAGAA AATTACTTGA TGAAGGACAA 540 TCTGGA.GATA ATGTCGGTAT ATTACTACGT GGTACAAAAA GAGAAGAAGT AGAAAGAGGA 600 CAAGTACTTG CAAAACCTGG GAGCATAAAA CCGCATGATA AATTTGAAGC TGAAGTGTAT 660 GTGCTTAGTA AAGAGGAAGG TGGACGTCAT ACCCCATTTA CTAATGATTA TCGCCCACAG 720 TTCTATTTTA GAACAACAGA TGTTACCGGC ACAATAAAAT TGCCTTCTGA TAAGCAGATG 780 GTTATGCCTG GAGATAATGC TACTTTTTCA GTAGAATTAA TTAAGCCGAT TGCTATGCAA 840 GAAGGGTTAA AATTCTCTAT ACGTGAAGGT GGTAGAACAG TAGGAGCCGG T 891 (2) INFORMATION FOR SEC. ID. NO: 164: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Salmonella tiphimurdup- (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 164: AACATGATCA CCGGTGCTGC TCAGATGGAC GGCGCGATCC TGGTTGTTGC TGCGACTGAC 60 GGCCCGATGC CGCAGACCCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC 120 ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT 180 GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCOATC 240 GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC 300 GAACTGGCTG GCTTCCTGGA TTCTTATATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG 360 TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT 420 CGTGTAGAGC GCGGTATCAT CAAAGTGGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAG 480 ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA- CGAAGGCCGT 540 GCCGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT 600 CAGGTACTGG CTAAGCCGGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC 660 ATTCTGTCCA AAGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG 720 TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG 780 GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT "CGCGATGGAC - 840 GACGGTCTGC GTTTCGCAAT CCGTGAAGGC GGCCGTACCG TTGGCGCGGG C 891 (2) INFORMATION FOR SEC. ID. NO: 165: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 881 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (li) TYPE OF MOLECULE: DNA (genomic) - (vi) ORIGINAL SOURCE: (A) ORGANISM: S - ewaneiia pu tlda (xi) DESCRIPTION OF THE? ECUENCY: SEC. ID. NO: 1 65 ATGATCACTG GTGCTGCACA GATGGACGGC GCGATTCTGG TAGTCGCTTC AACAGACGGT 60 CCAATGCCAC AGACTCGTGA GCACATCCTG CTTTCTCGTC AGGTTGGCGT ACCATTCATC 120 ATCGTATTCA TGAACAAATG TGACATGGTA GATGACGAAG AGCTGTTAGA GCTAGTTGAG 180 ATGGAAGTGC GTGAACTGTT ATCAGAATAC GATTTCCCAG GTGATGACTT ACCGGTAATC 240 CAAGGTTCAG CTCTGAAAGC GCTAGAAGGC GAGCCAGAGT GGGAAGCAAA AATCCTTGAA 300 TTAGCAGCGG CGCTGGATTC TTACATTCCA GAACCACAAC GTGACATCGA TAAGCCGTTC 360 CTACTGCCAA TCGAAGACGT ATTCTCAATT TCAGGCCGTG GTACAGTAGT AACAGGTCGT 420 GTTGAGCGTG GTATTGTACG CGTAGGCGAC GAAGTTGAAA TCGTTGGTGT ACGTGCGACA 480 ACTAAGACAA CGTGTACTGG TGTAGAAATG TTCCGTAAAC TGCTTGACGA AGGTCGTGCA - 540 GGTGAGAACT GTGGTATTTT GTTACGTGGT ACTAAGCGTG ATGACGTAGA ACGTGGTCAA 600 GTATTAGCGA AGCCAGGTTC AATCAACCCA CACACTACTT TTGAATCAGA AGTTTACGTA 660 CTGTCAAAAG AAGAAGGTGG TCGTCACACG CCATTCTTCA AAGGCTACCG TCCACAGTTC - 720 TACTTCCGTA CAACTGACGT AACCGGTACT ATCGAACTGC CAGAAGGCGT AßAGATGGTA 780 ATGCCAGGCG ATAACATCAA GATGGTAGTG ACACTGATTT GCCCAATCGC GATGGACGAA 840 GGTTTACCTCT TCGCAATCCG TGAAGGCGGT CGTACAGTGG T 881 (2) INFORMATION FOR SEC. ID. NO: 166: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 897 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (vx) ORIGINAL SOURCE: (A) ORGANISM: Stigmatella aurantiaca (xx) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 166 .AACATGATCA CGGGCGCGGC GCAGA-TGGAC GGAGCGATTC TGGTGGTGTC CGCGGCCGAC 60 GGCCCGATGC CCCAGACGCG TGAGCACATC CTGCTGGCCA GGCAGGTGGG CGTGCCCTAC 120 ATCGTCGTCT TCCTGAACAA GGTGGACATG CTGGACGATC CGGAGCTGCG CGAGCTGGTG 180 GAGATGGAGG TGCGCGACCT GCTCAAGAAG TACGAGTTCC CGGGCGACAG CATCCCCATC 240 ATCCCTGGCA GCGCGCTCAA GGCGCTGGAG GGAGACACCA GCGACATCGG CGAGGGAGCG 300 ATCCTGAAGC TGATGGCGGC GGTGGACGAG TACATCCCGA CGCCGCAGCG TGCGACGGAC 360 AAGCCGTTCC TGATGCCGGT GGAAGACGTG TTCTCCATCG CAGGCCGAGA-GG AACGGTGGCG 420 ACGGGCCCCGG TGGAGCGCGG CAAGATCAAG GTGGGCGAGG AAGTGGAGAT CGTGGGGATC 480 CGTCCGACGC AGAAGACGGT CATCACGGGG GTGGAGATGT TCCGCAAGCT GCTGGACGAG 540 GGCATGGCGG GAGACAACAT CGGAGCGCTG CTGCGAGGCC TGAAGCGCGA GGACCTGGAG 600 CGTGGGCAGG TGCTGGCGAA CTGGGGGAGC ATCAACCCGC ACACGAAGTT CAAGGCGCAG 660 GTGTACGTGC TGTCGAAGGA AGAGGGAGGG CGGCACACGC CGTTCTTCAA GGGATACCGG 720 CCGCAGTTCT ACTTCCGGAC GACGGACGTG ACCGGAACGG TGAAGCTGCC GGACAACGTG 780 GAGATGGTGA TGCCGGGAGA CAACATCGCC ATCGAGGTGG AGCTCATTAC TCCGGTCGCC 840 ATGGAGAAGG AGCTGCCGTT CGCCATCCGT GAGGGTGGCC GCACGGTGGG CGCCGGC 897 (2) INFORMATION FOR SEC. ID. NO: 167: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ix) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 167: (2) INFORMATION FOR SEC. ID. NO: 168: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 897 base pairs (B) TYPE: nucleic acid (OR CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Thiobacrillus cuprinus (xi) DESCRIPTION OF SEQUENCE: SEQ ID NO: 168: AACATGATCA CTGGTGCCGC TCAAATGGAC GGAGCTATCC TTGTAGTTOC TTCAACTGAT 60 GGACCAATGC CACAAACTCG TGAGCACATC CTTCTTTCAC GTCAGGTTGG TGTTAAACAC 120 CTTATCGTGT TCATGAACAA AGTTGACCTT GTTGATGACG AAGAGTTGCT TGAATTAGTT 180 GAGATGGAAA TTCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA CCTTCCAGTT 240 ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGCGACACTA AATTTGAAGA CATCATCATG 300 GAATTGATGG ATACTGTTGA TTCATACATT CCAGAACCAG AACGCGACAC TGACAAACCA 360 TTGCTTCTTC CAGTCGAAGA CGTATTCTCA ATTACAGGTC GTGGTACAGT TGCTTCAGGA 420 CGTATCGACC GTGGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA 480 GAAACTAAAA AAGCTGTTGT TACTGGTGTT GAAATGTTCC GTAAACAACT TGACGAAGGT 540 CTTGCAGGAG ACAACGTAGG TATCCTTCTT CGTGGTGTTC AACGTGACGA AATCGAACGT 600 GGTCAAGTTA TTGCTAAACC AAGTTCAATC AACCCACACA CTAAATTCAA AGGTGAAGTA 660 TATATCCTTT CTAAAGACGA AGGTGGACGT CACACTCCAT TCTTCAACAA CTACCGTCCA 720 , -AATTCTACT TCCGTACAAC TGACGTAACA GGTTCAATCG AACTTCCAGC AGGTACAGAA 780 ATGGTTATGC CTGGTGATAA CGTGACAATC AACGTTGAGT TGATCCACCC AATCGCCGTA 840 GAACAAGGTA CTACTTTCTC AATCCGTGAA GGTGGACGTA CTGTTGGTTC AGGT 897 (2) INFORMATION FOR SEC. ID. NO: 169: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: Genomic DNA i) (i) ORIGINAL SOURCE: (A) ORGANISM: Treponema pallidum (i) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 169: AATATGATCA CGGGTGCTGC GCAGATGGAC GGTGGTATTC TCGTCGTGTC TGCGCCTGAC 60 GGCGTTATGC CACAGACGAA GGAGCATCTT CTGCTCGCCC GTCAGGTTGG TGTTCCCTCC - 120 ATCATTGTTT TTTTGAACAA GGTTGATTTG GTTGATGATC CTGAGTTGCT AGAGCTGGTG 180 GAAGAAGAGG TGCGTGJ.TGC GCTTGCTGGA TATGGGTTTT CGCGTGAGAC GCCTATCGTC 240 AAGGGGTCTG CGTTTAAAGC TCTGCAOGAT GGCGCTTCCC CGGAGGATGC AGCTTGTATT 300 GAGGAACTGC TTGCGGCCAT GGATTCCTAC TTTGAAGACC CAGTGCGTGA CGACGCAAGA 360 CCTTTCTTGC TCTCTATCGA GGATGTGTAC ACTATTTCTG GGCGTGGTAC CGTTGTCACG 420 GGGCGCATCG AATGTGGGGT AATTAGTCTG AATGAAGAGG TCGAGATCGT CGGGATTAAG 480 CCCACTAAGA AAACAGTGGT TACTGGCATT GAGATGTTTA ATAAGTTGCT TGATCAGGGA 540 ATTGCAGGTG ATAACGTGGG GCTGCTTTTG CGCGGGGTGG ATAAAAAAGA GGTTGAGCGC 600 GGTCAGGTGC TTTCTAAGCC CGGTTCTATT AAGCCACACA CCAAGTTTGA GGCGCAGATC 660 TACGTGCTCT CTAAGGAAGA GGGTGGCCGT CACAGTCCTT TTTTTCAAGG TTATCGTCCG 720 CAGTTTTATT TTAGAACTAC TGACATTACC GGTACGATTT CTCTTCCTGA AGGGGTAGAC 780 ATGGTGAAGC CGGGGGATAA CACCAAGATT ATAGGTGAGC TCATCCACCC GATAGCTATG 840 GACAAGGGTC TGAAGCTTGC GATTCGTGAA GGGGGGGCGCA CTATTGCTTC TGGT 894 (2) INFORMATION FOR SEC. ID. NO: 170: (i) CHARACTERISTIC? OF THE SEQUENCE: (A) LENGTH: 891 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (ll) MOLECUDE TYPE: DNA (genomic) (vi) ORIGINAT- SOURCE: (A) ORGANISM: Ureaplasma urealyticum (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 170: AATATGATTA CAGGGGCAGC ACAAATGGAT GGAGCAATTT TAGTTATTGC TGCATCTGAT 60 GGGGTTATGG CTCAAACTAA AGAACATATT TTATTAGCAC GTCAAGTTGG TGTTCCAAAA 120 ATCGTTGTTT TCTTAAACAA ATGTGATTTC ATGACAGATC CAGATATGCA AGATCTTGTT 180 GAAATGGAAG TTCGTGAATT ATTATCTAAA TATGGATTTG ATGGCGATAA CACACCAGTT 240 ATTCGTGGTT CAGGTCTTAA GGCTTTAGAA GGAGATCCAG TTTGAGAAGC AAAAATTGAT 300 GAATTAATGG ACGCAGTTGA TTCATGAATT CCATTACCAG AACGTAGTAC TGACAAACCA 360 TTCTTATTAG CAATTGAAGA TGTATTCACA ATTTCAGGAC GTGGTACAGT AGTAACTGGA 420 CGTGTTGAAC GTGGTGTATT AAAAGTTAAT GATGAGGTTG AAATTGTTGG TCTAAAAGAC 480 ACTCAAAAAA CTGTTGTTAC AGGAATTGAA ATGTTTAGAA AATCATTAGA TCAAGCTGAA 540 GCTGGTGATA ATGCTGGTAT TTTATTACGT GGTATTAAAA AAGAAGATGT TGAACGTGGT 600 CAAGTACTTG TAAAACCAGG ATCAATTAAA CCTCACCGTA CTTTTACTGC TAAAGTTTAT 660 ATTCTTAAAA AAGAAGAAGG TGGACGTCAT ACACCTATTG TTTCAGGATA CCGTCCACAA 720 TTCTATTTTA GAACAACAGA TGTAACAGGT GCTATTTCAT TACCTGCTGG TGTTGATTTG 780 GTTATGCCAG GTGATGACGT TGAAATGACT GTAGAATTAA TTGCTCCAGT TGCGATTGAA 840 GATGGATCTA AATTCTCAAT CCGTGAAGGT GGTAAAACTG TAGGTCATGG T 891 (2) INFORMATION FOR THE? EC. ID. NO: 171: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 909 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: double (D) TOPOLOGY: linear (xi) TYPE OF MOLECULE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Wolinella su-ccinogenes (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 171: AACATGATTA CAGGTGCTGC TCAAATGGAT GGCGCGATTC TTGTTGTTTC TGCGGCGGAT 60 GGCCCCATGC CCCAAACTAG GGAGCACATT CTTCTTTCTC GACAAGTAGG CGTTCCTTAC 120 ATCGTGGTTT TCTTGAACAA AGAAGATATG GTTGATGACG CTGAGCTTCT TGAGCTTGTT 180 GAAATGGAAG TTAGAGAACT TCTTAGCAAC TACGACTTCC CTGGAGATGA CACTCCTATC 240 GTTGCAGGTT CCGCTCTTAA AGCTCTTGAA GAGGCTAACG ACCAGGAAAA TGTTGGCGAG 300 TGGGGCGAGA AAGTATTGAA GCTTATGGCT GAGGTTGACC GATATATTCC TACGCCTGAG 360 CGAGATGTGG ATAAGCCTTT CCTTATGCCT GTTGAAGACG TATTCTCCAT CGCGGGTCGT 420 GGAACCGTTG "TGACAGGAAG AATTGAAAGA GGCGTGGTTA AAGTCGGTGA CGAAGTAGAA 480 ATCGTTGGTA TCCGAAACAC ACAAAAAACA ACCGTAACTG GCGTTGAGAT GTTCCGAAAA 540 GAGCTCGACA AGGGTGAGGC GGGTGACAAC GTTGGTGTTC TTTTGAGAGG CACCAAGAAA 600 GAAGATGTTG AGAGAGGTAT GGTTCTTTGT AAAATAGGTT CTATCACTCC TCACACTAAC 660 TTTGAAGGTG AAGTTTACGT TCTTTCCAAA GAGGAAGGCG GACGACACAC TCCATTCTTC 720 AATGGATACC GACCTCAGTT CTATGTTAGA ACTACAGACG TTACCGGTTC TATCTCTCTT 780 CCTGAGGGCG TAGAGATGGT TATGCCTGGT 840 GACAACGTTA AGATCAATGT TGAGCTTATC GCTCCTGTAG CCCTCGAAGA GGGAACACGA TTCGCGATCC GTGAAGGTGG TCGAACCGTT 900 GGTGCGGGT 909 (2) INFORMATION FOR SEC. ID. NO: 172: (x) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) FORM OF THE CHAIN: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 6 (D) OTHER INFORMATION: / nota = nn = inosina "(ix) CHARACTERISTIC: (A) NAME / KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: / nota =" n = inosina "(ix) CHARACTERISTIC: (A) ) NAME / KEY: misc_feature (B) LOCATION: 18 (D) OTHER INFORMATION: / nota = "n = inosina" (xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 172: (2) INFORMATION FOR SEC. ID. NO: 173; (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (il) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID-NO: 173: (2) INFORMATION FOR SEC. ID. NO: 174: (i) CHARACTERISTICS OF THE SEQUENCE: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) CHAIN FORM: simple (D) TOPOLOGY: linear (ii) TYPE OF MOLECULE: DNA (genomic) (xi) DESCRIPTION OF THE SEQUENCE: SEC. ID. NO: 174:

Claims (47)

  1. CLAIMS 1. A method for using amplification probes and / or primers that are specific, ubiquitous and sensitive for determining the presence and / or quantity of nucleic acids: - from a bacterial antibiotic resistance gene selected from the group consisting of bla. ", , blatoo bla .. ,,, blaoxa, blaZ, aadB, aacCl, aacC2, aacC3, aacd1- 11a, aaA4, aad (6 '), vanA, vanB, vanC, msrA, satA, aac (6') - aph ( 2"), vat, vga, ermA, ermB, ermC, mecA, ini, and sul, and from specific bacterial and fungal species selected from the group consisting of Enterococcus faeciu, Listeria monocytogenes, Neisseria meningi tidis, _ Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, in any sample suspected of containing said bacterial and / or fungal nucleic acids, wherein each nucleic acid or variant or part thereof comprises a region or selected target that can be hybridized with said probes or primers; said method is characterized in that it comprises the following steps: contacting the sample with the probes or primers and detecting the presence and / or amount of probes or amplified products hybridized as an indication of the presence and / or quantity of said specific bacterial and / or fungal species and bacterial antibiotic resistance genes.
  2. 2. The method according to claim 1, further characterized in that it makes use of probes and / or primers that are specific, ubiquitous and sensitive to determine the presence and / or amount of nucleic acids for any bacterium or fungus.
  3. 3. The method according to claim 1, characterized in that it is performed directly from a test sample.
  4. 4. The method according to claim 1, characterized in that it is carried out directly from a test sample consisting of a culture or suspension and / or fungal.
  5. 5. The method according to claim 1, characterized in that the acids are all detected under uniform hybridization or amplification conditions.
  6. 6. The method according to claim 1, characterized in that the nucleic acids are amplified through a method selected from the group consisting of: a) polymerase chain reaction (PCR), b) ligase chain reaction (LCR) , c) amplification based on nucleic acid sequence (NA.SBA), d) autostanstenida sequence replication - (3SR), e) structure displacement amplification (SDA), f) branched-DNA signal amplification (Bdna), g) transcription-mediated amplification (TMA), h) de-cyclization probe technology (CPT), i) nested PCR, and j) multiple PCR.
  7. 7. The method in accordance with the claim 6, characterized in that the nucleic acids are amplified by PCR.
  8. 8. The method according to claim, characterized in that the PCR protocol is achieved, in one hour under uniform amplification conditions, the determination of the presence of nucleic acids performing for each amplification cycle a recumbent step of thirty seconds at 45-55 ° C and a denaturing step of only one second at 95 ° C without any time specifically allowed for an elongation step.
  9. 9. A method for the detection, identification and / or quantification of a microorganism selected from the group consisting of Enterococcus faeci um, Listepa monocytogenes, Neissepa menmgitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida -albicans, Enterococcus species, Neissepa species, Staphylococcus specimens, Streptococcus species and Candida species, directly from ana test sample or from bacterial and / or fungal cultures, characterized because it comprises the following stages: a) deposit yf? 3ar on an inert support or leave in solution the microorganism -DNA of the sample or of a substantially homogeneous population of said microorganism isolated from that sample, or inoculate the sample or the substantially homogeneous population of the microorganism isolated from this sample on an inert support and lisar m if your sample shows inoculated or the isolated microorganism to release the microorganism's DNA, said microorganism DNA is made in a substantially individual structure form; b) contacting the individual structure DNA with a probe, said probe comprising at least one nucleic acid of individual chain structure whose nucleotide sequence is selected from the group consisting of SEC. FROM IDENT. NOS: 26, 27, 28", 29,, 30, 120, 131 to 134, 31, 140 to 143, 32 to 36, 120 to 124, a complementary sequence thereof, a part thereof having at least 12 nucleotides of length, and a variant thereof, which recose specifically and ubiquitously with strains or representatives of Enterococcus faecium, Lysteria monocytogenes, Neisseria meningi tidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albi cans, Enterococcus species, Neisseria species, species Staphylococcus, Streptococcus species and Candida species, respectively, under conditions such that the nucleic acid of the probe can selectively hybridize with the microorganism DNA, whereby a hybridization complex is formed; and c) detecting the presence of the hybridization complex on said inert support or in the solution as an indication of the presence and / or quantity of the microorganism, in the test sample. A method for detecting the presence and / or quantity of a microorganism selected from the group consisting of Enterococcus faecium, Listepa monocytogenes, Neisseria memngi tidis, Staphyl ococcus sapzophyticus, Streptococcus agalactiae, Candida albicans, species In terococcus ^ species -Veis-sena, Staphylococcus species, Streptococcus species and Candida species, in a test sample characterized in that it comprises the following steps: a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of the primers being able to hybridize selectively with one of the two complementary structures of the DNA of-iicroorgamsm containing an objective sequence, and the other of the primers being able to hybridize with the other of the structures of chain in order to form an extension product containing the target sequence as a template, at least one oar of primers being selected from a nucleotide sequence within the group consisting of SEC. FROM IDENT. NOS: 26, 27, 28, 29, 30, 120, 131 to 134, 31, 140 to 143, 32 to 36, 120 to 124, respectively with respect to the microorganism, a complementary sequence thereof and a variant thereof; bi synthesize an extension product of each of the primers, said extension product containing the target sequence, and amplify the target sequence, if nay, at a detectable level; and c) detecting the presence and / or amount of the amplified target sequence as an indication of the presence and / or amount of said microorganisms in the test sample. 11. The method according to claim 10, characterized in that said pair of primers is defined in SEQ. DE IDE T. NOS: and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12, 13 and 14, 15 and 16, 17 to 20, 21 and 22, respectively, for each of the species Enterococcus faecium, Listeria monocytogenes, Neisseria meningi tidis, Staphyl ococcus sapzophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neissepa species, species Staphyl ococcus, Streptococcus species and Candida species. 12. A method for detecting the presence and / or quantity of any bacteria directly from a test sample or a bacterial culture, characterized in that it comprises the following steps: a) depositing and fixing on an inert support or in "solution" the bacterial DNA of the sample or of a substantially homogeneous population of bacteria isolated from this sample, or inoculate the sample or the population substance to the homogeneous entity of isolates isolated from this sample on an inert support and lyse m if you sample it inoculated or the isolated bacteria to release the bacterial DNA, said DNA is made in a substantially individual chain structure form, b) contacting the individual chain structure DNA with a probe, the probe comprising at least one nuclexco acid of xndxvxdual chain structure whose sequence of nucleotides is select from the group consisting of SEC. FROM IDENT. NOS: 118, 119, 125 to 171, a complementary sequence thereof, a part of it having at least 12 nucleotides in length, and a vanant thereof, which specifies and ubiquitously recose with strains or representatives of any species bacterial, under conditions such that the nucleic acid to the probe can selectively hybridize with the bactepno DNA, whereby a hybridization complex is formed, and c) detect the presence of the hybridization complex on the inert support or in the solution as a indication of the presence and / or quantity of any bacteria in the test sample. 13. A method for detecting the presence and / or quantity of any bacteria in a test sample characterized in that it comprises the following steps: a) treating the sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of the primers being able to selectively hybridize with one of the two complementary structures of any bacterial-DNA containing an objective sequence, and the other of the primers being able to hybridize with the other of the chain structures to form here an extension product containing the target sequence as a template, at least one pair of the primers is chosen from a nucleotide sequence within the group consisting of SEQ ID NO: 118, 119, 125 A -171, a complementary sequence thereof, and a variant thereof; b) synthesizing an extension product of each of the primers, the extension product containing the target sequence and amplifying the target sequence, if any, to a detectable level; and c) detecting the presence and / or amount of the amplified o-b sequence as an indication of the presence and / or amount of any bacteria in the test sample. 14. The method according to claim 13, characterized in that the pair of primers is defined in SEQ. FROM IDENT. NOS: 23 and 24. 15. A method for obtaining tu-f sequences from any bacteria directly from a test sample or a culture of bacteria, characterized in that it comprises the following steps: a) treating the sample with an aqueous solution containing a pair of primers having a sequence selected within the nucleotide sequences defined in SEC. FROM IDENT. NOS: 107 to 108, a part thereof having at least 12 nucleotides in length, a sequence complementary to the xsma, a variant thereof, one of the primers being capable of selectively hybridizing with one of the complementary base structures of the bacterial tuf gene containing an objective sequence, and the other of the primers being able to hybridize with the other chain structure in order to form an extension product containing the target sequence as a template; b) synthesizing an extension product of each of the primers, the extension product containing the target sequence and amplifying the target sequence, if any, at a detectable level; c) detecting the presence and / or amount of the amplified target sequence; and d »determining the nucleotide sequence of the target sequence amplified using any method of DNA sequencing. 16. A method for detecting the presence and / or quantity of any fungus directly from a test sample to a fungus culture, characterized in that it comprises the following steps; a) depositing and fixing on an inert support or leaving in solution the fungal DNA of the sample or of a substantially homogeneous population of fungi isolated from this sample, inoculating the sample or the substantially homogeneous population of fungi isolated from this sample on an inert support and list m if you sample it inoculated or the fungi isolated to release the fungal DNA, the DNA is made in a substantially individual chain structure form; b) contacting the individual chain structure DNA with a probe, the probe comprising at least one nucleotide sequence of individual chain structure, the group consisting of SEC. OF IOENT. NOS: 120 to 124, a co-oil sequence of the same, a part the same having at least 12 nucleotides in length, and a variant thereof, which specifies and ubiquitously recose with strains or representatives of any fungus, ba or conditions so that the nucleic acid of the probe can selectively hybridize the fungal DNA, so that a complex of h_bpdac? on is formed, and c) detecting the presence of the complex of on the inert support or in the solution as an indication of the presence and / or amount of any fungus in the sample of proof. 17 A method for detecting the presence and / or quantity of any fungus in a test sample characterized in that it comprises the following steps a) treating the sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of the primers being able to hybridize selectively with one of the two complementary structures of any ungenic DNA containing an objective sequence, and the other of the primers being able to hybridize with the other of the chain structures with In order to form an extension product containing the target sequence as an olantilla, at least one pair of primers is chosen from a nucleotide sequence within the group consisting of SEC FROM IDENT. NOS: 120 to 124, a complementary sequence thereof, and a variant thereof; b) synthesizing a product d-e extension of each of the primers, said extension product containing the target sequence and amplifying the target sequence, if any, at a detectable level; c) detecting the presence and / or amount of the amplified target sequence as an indication of the presence and / or amount of any fungus in the test sample. 18. A method for obtaining tuf sequences for any fungus directly from a test sample or a fungal culture, characterized in that it comprises the following steps: a) treating the sample with an aqueous solution containing a pair of primers having a selected sequence within the sequence of nucleotide defined in SEC. FROM IDENT. NOS: 109 and 172, and part thereof having at least 12 nucleotides in length, a complementary sequence thereof and a variant thereof, one of the primers being able to selectively hybridize with one of the two chain structures complementary to the fungal t uf gene that contains an objective sequence, and the other of the primers being able to hybridize with the other of the chain structures in order to form an extension product that contains the target sequence as a template; b) synthesizing an extension product of each of the primers, said extension product containing the target sequence and amplifying the target sequence, if any, at a detectable level; c) detecting the presence and / or 'amount of the amplified target sequence; and d) determining the nucleotide sequence of the target sequence amplified using any DNA sequencing method. 19. The method according to claim 1, characterized in that it comprises the evaluation of the presence of a bacterial resistance mediated by a bacterial antibiotic resistance gene selected from the group consisting of blaoxi, blaZ, aac6'-lla ermA, ermB, ermC , vanB, vanC, directly in a test sample or a bacterial culture, comprising the following steps: a) deposit and fix on an inert support or leave in solution the bacterial DNA of the sample or a substantial population homogeneous of bacteria isolated from this sample, or inoculating the sample or the substantially homogenous population of bacteria isolated from this sample onto an inert support and lysing if the inoculated sample or isolated bacteria to release the bacterial DNA, said bacterial DNA is made in a substantially individual chain structure form; or) contacting the individual strand structure DNA with a probe, the probe comprising at least one nucleotide sequence of individual strand structure having at least 12 nucleotides in length, and selected from the group consisting of SEQ. . FROM IDENT. NOS: 110, 111, 112, 113, 114, 115, 116 and 117, a complementary sequence thereof, a variant thereof that specifically hybridizes with the bacterial antibiotic resistance gene, respectively; and c) detecting the presence of a hybridization complex as an indication of a bacterial-mediated resistance by bacterial antibiotic resistance genes. 20. The method of conformity with the claim 1, characterized in that it comprises the evaluation of the presence of a bacterial resistance mediated by a bacterial antibiotic resistance gene selected from the group consisting of bla * -, blaZ, aac6 -lia ermA, ermB, er C, vanB, vanC, directly from a test sample or a bacterial culture, comprising the following steps: a) treating the sample with an aqueous solution, containing at least one pair of primers having at least one 5 minus 12 nucleotides in length, one of the primers being capable of selectively hybridizing with one of the two complementary strand structures of the bacterial antibiotic resistance gene containing an objective sequence, and the other of the primers being able to hybridize with the Another chain structure with the purpose of forming an extension product containing the target sequence as a template, at least one pair of primers is selected from a nucleotide sequence within the group consisting of SEC. FROM IDENT. NOS: 110, _- 111, 112, 113, -114, 15 115, 116, 117, respectively with respect to the bacterial antibiotic resistance gene, a complementary sequence thereof and a variant thereof; b) synthesize an extension product of each one. of the primers, the extension product containing the 20 target sequence, and amplify the target sequence, if any, to a detectable level; and c) detecting the presence and / or amount of the amplified target sequence as an indication of a bacterial resistance mediated by one of the genes of 25 Bacterial antibiotic resistance. 21. The method according to claim 1, characterized in that it comprises the evaluation of the presence of a bacterial resistance gene selected from the group consisting of bla --- .., blah, hv, bla-, blah, xa, blaZ, 5 aadB, aacCl, aacC2, aacC3, aac6'-Ila, aacA4, aad (6 '), goes A, vanB, vanC, msrA, satA, aac (6') -aph (2"), vat, vga, ermA , ermB, ermC, mecA, int and sul, directly from a test sample or bacterial culture, which comprises the following steps: a) treat the sample with an aqueous solution containing at least one pair of primers having a selected sequence from the group consisting of SEQ ID NOS: 37 to 40, 41 to 44, 45 to 48, 49 and 50, 51 and 52, 53 and 54, 55 and 56, 07 and 58, 59 to 60, 61 a 64, 65 and 66, 173 and 174, 15 67 to 70, 71 to 74, 75 and 76, 77 to 80, 81 and 82, 83 to 86, 87 and 88.89 and 90.91 and 92, 93 and 94, 95 and 96.97 and 98, 99 at 102, 103 to 106, a part thereof having at least 12 nucleotides in length, a complementary sequence thereof, a vanant thereof, and mixtures thereof, one 20 of the primers of the pair being capable of hybridizing selectively with one of the two complementary strand structures of its antibiotic resistance gene octepane containing an objective sequence, and the other of -os primers of the pair being able to hybridize with the other 25 of the chain structures in order to form a product extension that contains the target sequence as a template; b) synthesizing an extension product of each of the primers, the extension product containing the target sequence, and amplifying the target sequence, if any, to a detectable level; and c) detecting the presence and / or quantity of the amplified target sequence as an indication of a bacterial resistance mediated by a bacterial antibiotic resistance genes. . - - 22. A nucleic acid having the nucleotide sequence of any of SEC. FROM IDENT. NOS: 26 to 36, 110 to 171, a part thereof, a complementary sequence thereof, and a variant thereof, which, when in the form of an individual-chain structure, ubiquitously and specifically hybridizes with a bacterial DNA or fungal target as a probe or as an initiator. 23. An oligonucleotide having the nucleotide sequence of any of SEC. FROM IDENT. NOS: 1 to 25, 37 to 109, 172 to 174, a part thereof, a complementary sequence thereof, and a variant thereof, which, ubiquitously and specifically hybridizes to a bacterial or fungal target DNA as a probe or as an initiator. 24 The recombinant plamid characterized in that it comprises a nucleic acid as defined in claim 22. 25. A recombinant host that has been transformed or through a recombinant plasmid according to claim 24 26 A recominant host according to claim 25, characterized in that said host is Eschepcma coll. 27 A diagnostic equipment for the detection and / or quantification of nucleic acids of any combination of species and / or microbial genera selected from the group consisting of Entezococcus faecium, Listeria monocytogenes, Neissezia meningi tidis, Staphylococcus sapzopnyticus, Stzeptococcus agalactiae, Candida alb cans, Entezococcus species, Neissezia species, Staphylococcus species, Stzeptococcus species and Candida species, which comprises any suitable combination of probes of at least 12 nucleotides in length selected from the group consisting of SEC. FROM IDENT. NOS- 26 to 36, 120 to 124, 131 to 134, 140 to 1 3, complementary sequences thereof, and ..suppliers thereof. 28. A diagnostic equipment for the detection and / or quantification of the nucleic acids of any coir-Dinacicn to the species and / or microbial genera selected from the group consisting of -Snt-erocsccus faecium, Listepa monocytogenes, Neissepa meningi t dis, Staphylococcus sapzophyticus, Stzeptococcus agalactiae, Candida albicans, Enterococcus species, Neissepa species, Staphylococcus species, Streptococcus species and Candida species, characterized in that it comprises any suitable combination of primers of at least 12 nucleotides = in length selected from the group consisting of SEC. FROM IDENT. NOS: 26 to 36, 120 to 124, 131 to 134, 140 to 143, complementary sequences of the same, and vanantes of the same. 29. A diagnostic equipment for the detection and / or quantification of nucleic acids of any combination of the species and / or microbial genera selected from the group consisting of Enterococcus faec? um_, Lis teria monocytogenes, heissezia menrngi tidis, Staphylococcus sapzophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neissezia species, Staphylococcus species, Stzeptococcus species and Candida species, characterized in that it comprises any combination of at least 12 nucleotides at selected lengths. of the group consisting of SEC. FROM IDENT. US: 110 to 117, sequences complementary to the m-_sma, and / arlantes of the same. 30 A diagnostic equipment for the detection and / or quantification of nucleic acids of any combination of the bacterial resistance genes selected from the group consisting of bla, blaZ, aacßlia, ermA, ermB, ermC, vanB, vanC, caracter_zado because comprises any combustion of probes of at least 12 nucleothodes of length, selected from the group consisting of SEQ ID NO: 110 to 117, complementary sequences thereof and variants thereof 31 .. diagnostic equipment to stop the detection or quantification of nucleic acids of any combination of the resistance genes bac eriana selected from the group consisting of bla, blaZ, aac6 -lia, er A, er B, ezmC, vanB , vanC, which comprises any combination of suitable primers of at least 12 nucleotides in length, selected from the arupe consisting of SEQ ID NOs 110 to 117, complementary sequences thereof and variants thereof 32 A diagnostic equipment for the detection and / or quantification of nucleic acids of any type combination of the bacterial resistance genes selected from the group consisting of -b-Z < - - ,. , bla .... ,, bla,., n, bla,,, blaZ, aadB, aacCl, aacC2, aacC3, aac6 '-lia, aacA4, aad (ß'), vanA, vanB, vanC, msrA, sa tA, aac (6 ') -aph (2"), vat, vga, ermA, ermB, ermC, mecA, int and sul, characterized in that it comprises any suitable combination of primers selected from the group of SEQ ID NOS: 37 to 106, 173 and 174, a part thereof having at least 12 nucleotides in length, complementary sequences thereof and variants thereof. 33. A diagnostic equipment for the detection and / or quantification of the nucleic acids of any bacterium and / or fungus characterized in that it comprises any combination of the probes of at least 12 nucleotides in length selected from the group consisting of SEC. FROM IDENT. NOS: 118 to 171, complementary sequences of the same and variants thereof. 34. A diagnostic equipment for the detection and / or quantification of the nucleic acids of any bacterium and / or fungus characterized in that it comprises any combination of the probes of at least 12 nucleotides in length selected from the group consisting of SEC. FROM IDENT. NOS: 118 to 171, sequences complementary to it and variants of it. 35. A diagnostic equipment for the detection and / or quantification of the nucleic acids of any bacterium characterized in that it comprises a pair of primers having a selected sequence within the nucleotide sequence defimated in? EC. FROM IDENT. NOS: 23 and 24, parts of it having at least 12 nucleotides in length, complementary sequences thereof and variants thereof. 36. The diagnostic equipment according to claim 27, characterized in that it further comprises any combination of probes of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 118 to 171, complementary sequences thereof and variants thereof, for the detection and / or simultaneous quantification of nucleic acids of any bacterium and / or fungus. 37. The diagnostic equipment according to claim 28, further characterized in that it comprises any suitable combination of primers of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 118 a -71, complementary sequences thereof and variation thereof, for the detection and / or simultaneous quantification of nucleic acids in any bacterium and / or fungus 38 The diagnostic equipment according to claim 29, further characterized in that it comprises a pair of primers having a sequence selected from the nucleotide sequence defined in SEQ. DE IDENT Nos. 23 and 24, parts thereof having at least 12 nucleotides in length, sequences complementary thereto and vanantes thereof, for the detection and / or simultaneous quantification of nucleic acids of any bacterium 39. The diagnostic kit according to claim 27, further characterized in that it comprises any combination of sonaas of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. DE IDENT Nos. 110 to 117, complementary sequences thereof and variants thereof, for the detection and / or simultaneous quantification of nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of bla "? S, blaZ, aacß -lia, ermA, ermB, ermC, vanB, vanC Or the diagnostic equipment, according to claim 28, characterized in that it also comprises any suitable combination of primers of at least 12 nucleotides in length selected with a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 110 to 117, complementary sequences thereof and variants thereof, for the detection and / or simultaneous quantification of nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of blana, blaZ, aac6 -lia , ermA, ermB, ermC, vanB, vanC 41 Former diagnostic equipment, according to claim 29, characterized in that it comprises α-aemes any suitable combination of primers of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 37 to 106, 173 and 174, complementary sequences thereof and variants thereof, for the detection and / or quantification of the nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of bla ,,, , blasr.v, bla - ", -blaoxß, -blaZ, aadB, aacCl, aacCS, aacC3, aacA, aac6 -lia, aad (6), ermA, ermB, ezmC, mecA, vanA, vanB, vanC, satA , aac (6) -aph (2"), va t, vga, sul, msrA, sul and? ^ t. The diagnostic equipment, according to claim 30, characterized in that it further comprises any combination of probes of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 118 to 171, complementary sequences thereof and variants thereof, for the simultaneous detection and / or quantification of nucleic acids of any bacterium and / or fungus. 43. The diagnostic equipment, according to claim 31, characterized in that it further comprises any combination of primers of at least 12 nucleotides in length selected from a nucleotide sequence of the group that co < SEC. OF XDENT. Nos. 118 to 171, complementary sequences thereof and vanishing thereof, for the detection and / or simultaneous quantification of nucleic acids in any bacterium and / or fungus. The diagnostic equipment according to claim 32, characterized by comprising a pair of primers having a sequence selected from the sequence of the nucleotide defined in SEQ. FROM IDENT. NOS- 23 and 24, parts thereof having at least 12 nucleotides in length, complementary sequences thereof and vanishing of the same, for the detection and / or simultaneous quantification of nucleic acids of any bacterium. 45. The diagnostic equipment, according to claim 39, further characterized in that it comprises any commacion of probes of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 118 to 171, complementary sequences of same and vanantes of the same, for the detection and / or simultaneous quantification of nucleic acids of any bacterium and / or fungus. 46. The diagnostic equipment according to claim 40, further characterized in that it comprises any suitable combination of primers of at least 12 nucleotides in length selected from a nucleotide sequence of the group consisting of SEC. FROM IDENT. NOS: 118 to 171, complementary sequences thereof and vanishing thereof, for the detection and / or simultaneous quantification of nucleic acids of any bacterium and / or fungus. 47. The diagnostic equipment according to claim 41, characterized in that it comprises a pair of -ers having a sequence selected from the nucleotide sequence defined in SEQ. FROM IDENT. NOS: 23 and 24, parts of same having at least 12 nucleotides in length, complementary sequences thereof and carriers thereof, for the simultaneous detection and / or quantification of nucleic acids of any bacterium. SUMMARY DNA-based methods are described using primers or amplification probes to detect, identify and quantify in a test sample DNA from (i) any bacteria, (ii) the species of Streptococcus agalactiae, Staphylococcus saprophyticus, Enterococcus faecium, Neisseria meníngi tídis, Lis teria monocytogenes and Candida albicans, and (iii) any species of the genera Streptococcus, Staphylococcus, Enterococcus, Neisseria and Candida, are described. DNA-based methods that employ primers or amplification probes to detect, identify and quantify in a test sample antibiotic resistance genes selected from the group consisting of a-ß- ?, blar0, bla "v, blaO? a, blaZ, aadB, aacCl, aacC2, aacC3, aacA4, aac6 '-lia, ezmA, ermB, ezmC, mecA, vanA, vanB, vanC, satA, aac (6') -aph (2"), aad (6 '), vat, vga, mszA, sul and int, are also described.The foregoing microbial species, genera and resistance genes are all clinically relevant and commonly found in a variety of clinical specimens. DNA are fast, accurate and can be used in clinical microbiology laboratories for routine diagnosis. - These novel diagnostic tools should be useful to improve the speed and accuracy of the diagnosis of. microbial infections, thus allowing more effective treatments. Diagnostic equipment is also received and claimed for (i) the detection and universal quantification of bacteria, and / or (11) the detection, identification and quantification of the aforementioned bacterial and fungal species and / or genera, and / or ( 111) the detection, identification and quantification of antibiotic resistance genes also claimed
MXPA/A/1999/004119A 1996-11-04 1999-05-03 Specie MXPA99004119A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08743637 1996-11-04

Publications (1)

Publication Number Publication Date
MXPA99004119A true MXPA99004119A (en) 1999-10-14

Family

ID=

Similar Documents

Publication Publication Date Title
AU731850B2 (en) Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
US20030049636A1 (en) Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
EP1138786B1 (en) Specific and universal amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
US7943346B2 (en) Probes and primers for detection of bacterial pathogens and antibiotic resistance genes
Martineau et al. Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis
AU775763B2 (en) Species-specific, genus-specific and universal DNA probes and amplification primers to rapidly detect and identify common bacterial and fungal pathogens and associated antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
MXPA99004119A (en) Specie
AU705198C (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
MXPA01006838A (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories