MXPA02011522A - Metodo para detectar la direccion y la magnitud relativa del esfuerzo horizontal maximo en la corteza terrestre. - Google Patents

Metodo para detectar la direccion y la magnitud relativa del esfuerzo horizontal maximo en la corteza terrestre.

Info

Publication number
MXPA02011522A
MXPA02011522A MXPA02011522A MXPA02011522A MXPA02011522A MX PA02011522 A MXPA02011522 A MX PA02011522A MX PA02011522 A MXPA02011522 A MX PA02011522A MX PA02011522 A MXPA02011522 A MX PA02011522A MX PA02011522 A MXPA02011522 A MX PA02011522A
Authority
MX
Mexico
Prior art keywords
crust
earth
maximum horizontal
relative magnitude
horizontal stress
Prior art date
Application number
MXPA02011522A
Other languages
English (en)
Inventor
John Kenneth Davidson
Original Assignee
Petrecon Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrecon Australia Pty Ltd filed Critical Petrecon Australia Pty Ltd
Publication of MXPA02011522A publication Critical patent/MXPA02011522A/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Este invento se refiere a un metodo para determinar la direccion y la magnitud relativa del esfuerzo horizontal maximo en cuencas sedimentarias dentro de la corteza terrestre. En particular el metodo usa datos de reflexion sismica para determinar la direccion y la magnitud de los esfuerzos. El metodo involucra la identificacion de los datos sismicos que cortan la corteza continental superior y usa esas fallas en conjunto con estructuras compresivas globalmente simultaneas tales como el anticlinal, para trazar los esfuerzos horizontales. El invento tiene una aplicacion particular en la exploracion y en la industria de produccion de hidrocarburos y tiene la ventaja de proveer los resultados antes de la perforacion.
MXPA02011522A 2000-05-25 2001-05-18 Metodo para detectar la direccion y la magnitud relativa del esfuerzo horizontal maximo en la corteza terrestre. MXPA02011522A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPQ7746A AUPQ774600A0 (en) 2000-05-25 2000-05-25 Method for detecting direction and relative magnitude of maximum horizontal stress in earth's crust
PCT/AU2001/000568 WO2001090783A1 (en) 2000-05-25 2001-05-18 Method for detecting direction and relative magnitude of maximum horizontal stress in earth's crust

Publications (1)

Publication Number Publication Date
MXPA02011522A true MXPA02011522A (es) 2003-04-25

Family

ID=3821823

Family Applications (1)

Application Number Title Priority Date Filing Date
MXPA02011522A MXPA02011522A (es) 2000-05-25 2001-05-18 Metodo para detectar la direccion y la magnitud relativa del esfuerzo horizontal maximo en la corteza terrestre.

Country Status (17)

Country Link
US (1) US6885944B2 (es)
EP (1) EP1292849B1 (es)
CN (1) CN1206546C (es)
AR (1) AR028615A1 (es)
AT (1) ATE281654T1 (es)
AU (1) AUPQ774600A0 (es)
BR (1) BR0111130A (es)
CA (1) CA2409635C (es)
DE (1) DE60106912T2 (es)
DK (1) DK1292849T5 (es)
DZ (1) DZ3354A1 (es)
EA (1) EA004261B1 (es)
MX (1) MXPA02011522A (es)
NO (1) NO20025634L (es)
PE (1) PE20020114A1 (es)
UA (1) UA74824C2 (es)
WO (1) WO2001090783A1 (es)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440854B2 (en) * 2006-04-14 2008-10-21 William Christian Dickson Density and velocity based assessment method and apparatus
WO2008036152A2 (en) * 2006-09-20 2008-03-27 Exxonmobil Upstream Research Company Earth stress management and control process for hydrocarbon recovery
WO2008036153A2 (en) * 2006-09-20 2008-03-27 Exxonmobil Upstream Research Company Fluid injection management method for hydrocarbon recovery
CA2663526A1 (en) * 2006-09-20 2008-03-27 Exxonmobil Upstream Research Company Earth stress analysis method for hydrocarbon recovery
US7529624B2 (en) * 2007-02-21 2009-05-05 Geomechanics International, Inc. Method and apparatus for remote characterization of faults in the vicinity of boreholes
SA109300196B1 (ar) 2008-03-27 2013-12-10 بردريل ستريسيس ا التنبُّؤ بإمكانية حدوث إجهاد
US8154950B2 (en) * 2008-12-15 2012-04-10 Schlumberger Technology Corporation Method for displaying geologic stress information and its application to geologic interpretation
CN102466815B (zh) * 2010-11-08 2014-01-22 中国石油化工股份有限公司 三叠系碎屑岩油气藏识别方法
CN102253411B (zh) * 2011-06-02 2013-04-03 中国石油集团川庆钻探工程有限公司地球物理勘探公司 含逆断层的复杂地质构造三维地震解释层位插值的方法
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
US9045978B2 (en) * 2012-07-10 2015-06-02 Argosy Technologies Method of increasing productivity of oil, gas, and water wells
CN103901471B (zh) * 2014-03-31 2017-02-01 成都理工大学 一种恢复沉积层序原形剖面的方法
FR3036518B1 (fr) * 2015-05-20 2018-07-06 Services Petroliers Schlumberger Inversion pour contrainte tectonique
CN110579810B (zh) * 2018-06-08 2021-07-27 中国石油化工股份有限公司 一种稀有气体4He估算页岩气藏年龄的方法
CN111830564B (zh) * 2019-04-18 2023-06-30 中国石油天然气股份有限公司 识别断层的方法和装置
CN110618454B (zh) * 2019-10-24 2022-02-15 西南石油大学 一种沉积盆地内走滑断裂发育方向的判识方法
CN112859159B (zh) * 2021-01-13 2022-03-11 中国石油大学(北京) 一种雁列式正断层走滑带走滑位移量的计算方法
US20240111067A1 (en) * 2022-09-23 2024-04-04 Landmark Graphics Corporation Faulted seismic horizon mapping

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2407644A (en) * 1940-07-29 1946-09-17 Submarine Signal Co Ranging system
US2587301A (en) * 1945-11-16 1952-02-26 Us Navy Method of sound transmission
US2792067A (en) * 1952-11-12 1957-05-14 United Geophysical Corp Geophysical prospecting system
US2792068A (en) * 1953-05-06 1957-05-14 United Geophysical Corp Geophysical prospecting system
US3350634A (en) * 1964-12-22 1967-10-31 Mobil Oil Corp Electromagnetic investigation for salt webs interconnecting spaced salt domes
US5251184A (en) * 1991-07-09 1993-10-05 Landmark Graphics Corporation Method and apparatus for finding horizons in 3D seismic data
US5229976A (en) * 1991-11-06 1993-07-20 Conoco Inc. Method for creating a numerical model of the physical properties within the earth
US5189643A (en) * 1992-03-05 1993-02-23 Conoco Inc. Method of accurate fault location using common reflection point gathers
FR2725794B1 (fr) * 1994-10-18 1997-01-24 Inst Francais Du Petrole Methode pour modeliser la distribution spatiale d'objets geometriques dans un milieu, tels que des failles dans une formation geologique
US5930730A (en) * 1994-12-12 1999-07-27 Amoco Corporation Method and apparatus for seismic signal processing and exploration
US6014343A (en) * 1996-10-31 2000-01-11 Geoquest Automatic non-artificially extended fault surface based horizon modeling system
US5982707A (en) * 1997-01-16 1999-11-09 Geoquest Method and apparatus for determining geologic relationships for intersecting faults

Also Published As

Publication number Publication date
ATE281654T1 (de) 2004-11-15
CN1430730A (zh) 2003-07-16
UA74824C2 (en) 2006-02-15
US20030158669A1 (en) 2003-08-21
EA004261B1 (ru) 2004-02-26
WO2001090783A1 (en) 2001-11-29
EP1292849A1 (en) 2003-03-19
DK1292849T3 (da) 2005-03-14
NO20025634L (no) 2003-01-27
EA200201249A1 (ru) 2003-04-24
US6885944B2 (en) 2005-04-26
EP1292849A4 (en) 2003-07-23
CA2409635C (en) 2009-09-08
EP1292849B1 (en) 2004-11-03
BR0111130A (pt) 2003-04-08
DK1292849T5 (da) 2005-04-04
CA2409635A1 (en) 2001-11-29
DE60106912T2 (de) 2005-12-01
DZ3354A1 (fr) 2001-11-29
AUPQ774600A0 (en) 2000-06-15
PE20020114A1 (es) 2002-02-12
AR028615A1 (es) 2003-05-14
CN1206546C (zh) 2005-06-15
DE60106912D1 (de) 2004-12-09
NO20025634D0 (no) 2002-11-22

Similar Documents

Publication Publication Date Title
MXPA02011522A (es) Metodo para detectar la direccion y la magnitud relativa del esfuerzo horizontal maximo en la corteza terrestre.
Gabrielsen et al. Structuring of the Northern Viking Graben and the Møre Basin; the influence of basement structural grain, and the particular role of the Møre-Trøndelag Fault Complex
Bell et al. Strain migration during multiphase extension: Observations from the northern North Sea
Cook et al. How the crust meets the mantle: Lithoprobe perspectives on the Mohorovičić discontinuity and crust–mantle transition
Stoker et al. Sedimentary and oceanographic responses to early Neogene compression on the NW European margin
Tsikalas et al. Crustal structure of the Lofoten–Vesterålen continental margin, off Norway
Tore et al. The geometries and deep structure of the northern North Sea rift system
Kumar et al. Stratigraphic and tectonic framework of the US Chukchi Shelf: exploration insights from a new regional deep-seismic reflection survey
WO2008005690A3 (en) Interpretation of geologic depositional systems
Odum et al. Multisource, high-resolution seismic-reflection imaging of Meeman-Shelby fault and a possible tectonic model for a Joiner Ridge–Manila High stepover structure in the upper Mississippi Embayment region
Mahattanachai et al. The Andaman Basin Central Fault Zone, Andaman Sea: Characteristics of a major deepwater strike-slip fault system in a polyphase rift
WO2003032008A3 (en) System and method for assigning exploration risk to seismic attributes
Dirkzwager et al. Geo-mechanical and rheological modelling of upper crustal faults and their near-surface expression in the Netherlands
Inamori et al. Detection of methane hydrate‐bearing zones from seismic data
Ehrlich et al. The complexity of a ramp–flat–ramp fault and its effect on hanging-wall structuring: an example from the Njord oil field, offshore mid-Norway
Stuart et al. Application of 3-D seismic attributes analysis to mine planning Target gold deposit, South Africa
Fiordelisi et al. Revised processing and interpretation of reflection seismic data in the Travale geothermal area (Italy)
Skuce Forward modelling of compaction above normal faults: an example from the Sirte Basin, Libya
Mountain et al. If You've Got the Time, We've Got the Depth: The Importance of Accurate Core-Seismic Correlation
Hinsch et al. Basement control on oblique thrust sheet evolution: seismic imaging of the active deformation front of the Central Andes in Bolivia
Dhraief et al. Tectonosedimentary framework of Upper Cretaceous—Neogene series in the Gulf of Tunis inferred from subsurface data: implications for petroleum exploration
Gilbert et al. Gippsland, a composite basin-A case study from the offshore northern Strzelecki Terrace, Gippsland Basin, Australia
Klokov et al. Integrated evaluation of Roseneath-Epsilon-Murteree formations, Cooper Basin, Australia to develop an optimal approach for sweet spot determination
Whittaker et al. Seismotectonics and crustal stress in Great Britain
Arditto The eastern Otway Basin Wangerrip Group revisited using an integrated sequence stratigraphic methodology

Legal Events

Date Code Title Description
FG Grant or registration