MD136Y - Solar battery simulator - Google Patents
Solar battery simulator Download PDFInfo
- Publication number
- MD136Y MD136Y MDS20090017A MDS20090017A MD136Y MD 136 Y MD136 Y MD 136Y MD S20090017 A MDS20090017 A MD S20090017A MD S20090017 A MDS20090017 A MD S20090017A MD 136 Y MD136 Y MD 136Y
- Authority
- MD
- Moldova
- Prior art keywords
- resonant
- terminal
- voltage converter
- power supply
- load
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 12
- 230000010355 oscillation Effects 0.000 claims abstract description 5
- 230000033228 biological regulation Effects 0.000 abstract description 2
- 238000004870 electrical engineering Methods 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Control Of Electrical Variables (AREA)
- Dc-Dc Converters (AREA)
Abstract
Inventia se refera la domeniul electrotehnicii, si anume la sistemele de alimentare electrica prin utilizarea bateriilor solare si este destinata pentru functionarea si incercarea reglarii extremale a consumului energetic in regim de putere maxima a bateriilor solare. Imitatorul bateriei solare este executat in forma de bloc de alimentare, care include doua convertizoare de tensiune (1, 2) cu cvasirezonanta cu curentii de scurt circuit similari, primul (1) dintre acestea fiind executat cu caracteristica de sarcina apropiata de cea dreptunghiulara, iar cel de-al doilea (2) - cu caracteristica de sarcina apropiata de o linie inclinata. Iesirile convertizoarelor de tensiune (1, 2) sunt conectate consecutiv. Fiecare convertizor de tensiune (1, 2) cu cvasirezonanta contine un generator de impulsuri de comutare, iesirile caruia sunt unite cu bazele tranzistoarelor suportului semipunte, colectorul primului tranzistor al caruia este conectat la doua bobine de rezonanta, unite consecutiv, iesirea carora este conectata la o borna a sursei de alimentare, la a doua borna a careia este conectatemitorul tranzistorului al doilea al suportului semipunte. Convertizorul de tensiune (1, 2) mai contine un condensator de rezonanta, o borna a caruia este conectata la borna medie a suportului semipunte, iar a doua, prin bobina primara a transformatorului de iesire cu sarcina - la borna comuna a bobinelor de rezonanta. Tranzistoarele suporturilor semipunte ale fiecarui convertizor de tensiune (1, 2) sunt conectate la generatoarele de impulsuri de comutare in asa mod, incat perioada de repetare Tc a impulsurilor primului convertizor de tensiune (1) sa corespunda conditiei:Tc>= 2T0 , unde T0 este perioada oscilatiilor proprii, stabilite de bobina de rezonanta si condensatorul de rezonanta, iar perioada de repetare a impulsurilor convertizorului de tensiune (2) sa corespunda conditiei:2T0 >= Tc >= T0 .The invention relates to the field of electrical engineering, namely to power supply systems using solar batteries and is intended for operation and testing of extreme regulation of energy consumption in maximum power of solar batteries. The imitator of the solar battery is made in the form of a power supply, which includes two voltage converters (1, 2) with quasi-resonance with similar short-circuit currents, the first (1) of which is made with a load characteristic close to the rectangular one, and the second (2) - with the load characteristic close to an inclined line. The outputs of the voltage converters (1, 2) are connected consecutively. Each quasi-resonant voltage converter (1, 2) contains a switching pulse generator, the outputs of which are connected to the bases of the half-bridge transistors, the collector of the first transistor whose is connected to two resonant coils, joined consecutively, the output of which is connected to a terminal of the power supply, at the second terminal of which is the connector of the second transistor of the half-bridge support. The voltage converter (1, 2) also contains a resonant capacitor, one terminal of which is connected to the middle terminal of the half-bridge support, and the second, through the primary coil of the output transformer with load - to the common terminal of the resonant coils. The transistors of the half-bridge supports of each voltage converter (1, 2) are connected to the switching pulse generators in such a way that the repetition period Tc of the pulses of the first voltage converter (1) corresponds to the condition: Tc> = 2T0, where T0 is the period of the own oscillations, established by the resonant coil and the resonant capacitor, and the period of repetition of the pulses of the voltage converter (2) to correspond to the condition: 2T0> = Tc> = T0.
Description
Invenţia se referă la domeniul electrotehnicii, şi anume la sistemele de alimentare electrică prin utilizarea bateriilor solare şi este destinată pentru funcţionarea şi încercarea reglării extremale a consumului energetic în regim de putere maximă a bateriilor solare. The invention relates to the field of electrical engineering, namely to electrical power supply systems using solar batteries and is intended for the operation and testing of extreme regulation of energy consumption in maximum power mode of solar batteries.
Se cunoaşte un imitator al bateriei solare, care conţine un element neliniar cu caracteristică volt-amperică sau de sarcină apropiată de caracteristica bateriei solare în formă de un tranzistor, care este inclus între sursa de alimentare şi sarcină [1, p.141]. A solar battery imitator is known, which contains a nonlinear element with a volt-ampere or load characteristic close to the solar battery characteristic in the form of a transistor, which is included between the power source and the load [1, p.141].
Dezavantajul acestui dispozitiv constă în randamentul scăzut, ceea ce limitează utilizarea lui la puteri ridicate, de sute şi mai mulţi waţi. The disadvantage of this device is its low efficiency, which limits its use to high powers, hundreds of watts or more.
Cea mai apropiată soluţie este imitatorul în formă de un bloc de alimentare cu curent continuu cu un rezistor de limitare a curentului la ieşire [2]. The closest solution is the imitator in the form of a DC power supply with a current-limiting resistor at the output [2].
Dezavantajul acestei soluţii este randamentul scăzut. Mai mult de aceasta, ca şi oricare bloc de alimentare cu un contur de stabilizare a tensiunii de ieşire, un aşa tip de imitator poate genera procese tranzitorii nedorite la schimbarea sarcinii, fapt care face dificil controlul lucrului reglatorului extremal şi al sistemului integru de alimentare electrică. Deficienţele indicate mai sus complică construcţia şi limitează domeniul de utilizare la puteri ridicate. The disadvantage of this solution is low efficiency. Moreover, like any power supply with an output voltage stabilization circuit, such a type of imitator can generate unwanted transient processes when changing the load, which makes it difficult to control the operation of the extreme regulator and the integrated power supply system. The shortcomings indicated above complicate the design and limit the scope of use at high powers.
Problema pe care o rezolvă invenţia este majorarea randamentului, simplificarea construcţiei şi lărgirea domeniului de utilizare. The problem that the invention solves is increasing efficiency, simplifying construction and broadening the field of use.
Dispozitivul, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că este executat în formă de bloc de alimentare, care include două convertizoare de tensiune cu cvasirezonanţă cu curenţii de scurt circuit similari, primul dintre acestea fiind executat cu caracteristica de sarcină apropiată de cea dreptunghiulară, iar cel de-al doilea - cu caracteristica de sarcină apropiată de o linie înclinată, ieşirile convertizoarelor de tensiune sunt conectate consecutiv. Fiecare convertizor de tensiune cu cvasirezonanţă conţine un generator de impulsuri de comutare, ieşirile căruia sunt unite cu bazele tranzistoarelor suportului semipunte, colectorul primului tranzistor al căruia este conectat la două bobine de rezonanţă, unite consecutiv, ieşirea cărora este conectată la o bornă a sursei de alimentare, la a doua bornă a căreia este conectat emitorul tranzistorului al doilea al suportului semipunte; un condensator de rezonanţă, o bornă a căruia este conectată la borna medie a suportului semipunte, iar a doua, prin bobina primară a transformatorului de ieşire cu sarcină - la borna comună a bobinelor de rezonanţă. Tranzistoarele suporturilor semipunte ale fiecărui convertizor de tensiune sunt conectate la generatoarele de impulsuri de comutare în aşa mod, încât perioada de repetare Tc a impulsurilor primului convertizor de tensiune să corespundă condiţiei: The device, according to the invention, eliminates the above-mentioned disadvantages by being made in the form of a power supply block, which includes two quasi-resonant voltage converters with similar short-circuit currents, the first of which is made with a load characteristic close to the rectangular one, and the second - with a load characteristic close to an inclined line, the outputs of the voltage converters are connected consecutively. Each quasi-resonant voltage converter contains a switching pulse generator, the outputs of which are connected to the bases of the transistors of the half-bridge support, the collector of the first transistor of which is connected to two resonant coils, connected consecutively, the output of which is connected to one terminal of the power supply, to the second terminal of which the emitter of the second transistor of the half-bridge support is connected; a resonant capacitor, one terminal of which is connected to the middle terminal of the half-bridge support, and the second, through the primary winding of the output transformer with load - to the common terminal of the resonant coils. The transistors of the half-bridge supports of each voltage converter are connected to the switching pulse generators in such a way that the repetition period Tc of the pulses of the first voltage converter corresponds to the condition:
Tc ≥ 2T0 , Tc ≥ 2T0 ,
unde T0 este perioada oscilaţiilor proprii, stabilite de bobina de rezonanţă şi condensatorul de rezonanţă, iar perioada de repetare a impulsurilor convertizorului al doilea de tensiune să corespundă condiţiei: where T0 is the period of the natural oscillations, established by the resonant coil and the resonant capacitor, and the pulse repetition period of the second voltage converter corresponds to the condition:
2T0 ≥ Tc ≥ T0 . 2T0 ≥ Tc ≥ T0 .
Rezultatul invenţiei constă în majorarea randamentului, simplificarea construcţiei şi lărgirea domeniului de utilizare. The result of the invention consists in increasing efficiency, simplifying construction and broadening the field of use.
Invenţia se explică prin desenele din fig. 1-5 care reprezintă: The invention is explained by the drawings in Fig. 1-5 which represent:
- fig. 1, schema dispozitivului propus; - Fig. 1, diagram of the proposed device;
- fig. 2, caracteristicile de sarcină ale imitatorului bateriei solare (5), ale bateriei solare (6), ale primului convertizor (7) şi celui de-al doilea (8); - Fig. 2, the load characteristics of the solar battery simulator (5), the solar battery (6), the first converter (7) and the second (8);
- fig. 3, schema principială a convertizorului de tensiune; - Fig. 3, schematic diagram of the voltage converter;
- fig. 4, epurele curentului tranzistorului primului convertizor de tensiune pentru regimurile caracteristice; - Fig. 4, the current trace of the transistor of the first voltage converter for the characteristic regimes;
- fig. 5, epurele curentului tranzistoarelor celui de-al doilea convertizor de tensiune pentru regimurile caracteristice. - Fig. 5, the current diagram of the transistors of the second voltage converter for the characteristic regimes.
Dispozitivul este executat în formă de bloc de alimentare, care include convertizoarele 1 şi 2 de tensiune, ieşirile cărora sunt conectate consecutiv între ele şi la sarcina comună 3. The device is made in the form of a power supply block, which includes voltage converters 1 and 2, the outputs of which are connected consecutively to each other and to the common load 3.
Fiecare convertizor de tensiune (fig. 3) conţine un suport semipunte de tranzistoare 9, 10. Emitorul tranzistorului 10 este conectat la ieşirea minus a sursei de alimentare 11, iar colectorul tranzistorului 9, prin bobinele de rezonanţă unite consecutiv 12, 13, este conectat la ieşirile plus ale sursei de alimentare. Condensatorul de rezonanţă 14 este conectat la ieşirea medie a suportului, iar cu cea de-a doua bornă, prin bobina primară a transformatorului de ieşire 15, este conectat cu sarcina la ieşire comună a bobinelor de rezonanţă. Intrările tranzistoarelor, la rândul lor, sunt conectate la generatorul de comandă 16 a impulsurilor de comutare. Each voltage converter (Fig. 3) contains a half-bridge support of transistors 9, 10. The emitter of the transistor 10 is connected to the minus output of the power supply 11, and the collector of the transistor 9, through the consecutively connected resonant coils 12, 13, is connected to the plus outputs of the power supply. The resonant capacitor 14 is connected to the average output of the support, and with the second terminal, through the primary coil of the output transformer 15, it is connected to the load at the common output of the resonant coils. The inputs of the transistors, in turn, are connected to the control generator 16 of the switching pulses.
Dispozitivul funcţionează în modul următor. The device operates in the following mode.
La ieşirea convertizoarelor 1, 2 se formează tensiunile respective U1, U2 (curbele 7 şi 8 respectiv din fig. 2), valorile cărora se determină prin curentul I al sarcinii variabile 3 şi prin valoarea tensiunii sursei de alimentare 4. Deoarece ieşirile convertizoarelor sunt unite consecutiv, tensiunea U a sarcinii 3 reprezintă suma tensiunilor de ieşire a convertizoarelor la un curent comun, cu caracteristica de sarcină comună 5 din fig. 2. Această caracteristică este apropiată după formă de caracteristica tipică a bateriei solare (curba 6 din fig. 2). Conform [1, p. 140], nu este necesară corespunderea totală a caracteristicilor, este suficientă o coincidenţă principală. At the output of converters 1, 2, the respective voltages U1, U2 are formed (curves 7 and 8, respectively, in Fig. 2), the values of which are determined by the current I of the variable load 3 and by the value of the voltage of the power supply 4. Since the outputs of the converters are connected consecutively, the voltage U of the load 3 represents the sum of the output voltages of the converters at a common current, with the common load characteristic 5 in Fig. 2. This characteristic is close in shape to the typical characteristic of the solar battery (curve 6 in Fig. 2). According to [1, p. 140], complete correspondence of the characteristics is not necessary, a main coincidence is sufficient.
Primul convertizor de tensiune funcţionează în modul următor. The first voltage converter operates in the following way.
Pe declanşatoarele tranzistoarelor 9, 10 se aplică impulsurile de comutare cu durata T0 / 2 şi perioada de comutare Tc ≥ 2T0 . Switching pulses with duration T0 / 2 and switching period Tc ≥ 2T0 are applied to the triggers of transistors 9, 10.
Presupunem că convertizorul este subîncărcat, ceea ce corespunde funcţionării pe sectorul vertical al caracteristicii 7 din fig. 2. La deschiderea, de exemplu, a tranzistorului 10, impulsul sinusoidal de curent i10(t) din fig. 4a trece prin acest tranzistor, condensatorul de rezonanţă 14, transformatorul de ieşire 15, bobina de rezonanţă 13 şi sursa de alimentare 11. În mod similar, la deschiderea tranzistorului 9 un aşa impuls de curent trece prin acest tranzistor, condensatorul de rezonanţă 14, transformatorul de ieşire 15 şi bobina de rezonanţă 12. La majorarea sarcinii creşte şi amplitudinea impulsurilor de curent şi respectiv curentul sarcinii. La atingerea valorii maximale a curentului de sarcină - sectorul orizontal al caracteristicii 7 din fig. 2, apare un impuls al curentului invers (negativ) din fig. 4 b). Acest impuls al curentului invers trece prin dioda antiparalelă a tranzistorului închis din contul energiei excedentare acumulate în bobinele de rezonanţă 12, 13 şi condensatorul de rezonanţă 14. Acest regim corespunde punctului de putere maximală. We assume that the converter is underloaded, which corresponds to the operation on the vertical sector of the characteristic 7 in Fig. 2. When, for example, the transistor 10 is opened, the sinusoidal current pulse i10(t) in Fig. 4a passes through this transistor, the resonant capacitor 14, the output transformer 15, the resonant coil 13 and the power supply 11. Similarly, when the transistor 9 is opened, such a current pulse passes through this transistor, the resonant capacitor 14, the output transformer 15 and the resonant coil 12. As the load increases, the amplitude of the current pulses and, accordingly, the load current also increase. When the maximum value of the load current is reached - the horizontal sector of the characteristic 7 in Fig. 2, a reverse (negative) current pulse appears in Fig. 4 b). This reverse current pulse passes through the antiparallel diode of the closed transistor due to the excess energy accumulated in the resonance coils 12, 13 and the resonance capacitor 14. This regime corresponds to the maximum power point.
La majorarea ulterioară a sarcinii (regim de suprasarcină) curentul de sarcină practic nu creşte până la regimul de scurt circuit. În cazul dat creşte amplitudinea impulsului curentului invers, iar amplitudinea impulsului de curent (de acum cel direct) se micşorează în fig. 4 c), dar se păstrează anvergura generală a amplitudinii, ceea ce fizic determină sectorul orizontal al curbei 7 din fig.2. În aşa mod se formează caracteristica dreptunghiulară a primului convertizor. With a further increase in the load (overload mode) the load current practically does not increase until the short-circuit mode. In this case, the amplitude of the reverse current pulse increases, and the amplitude of the current pulse (now the direct one) decreases in Fig. 4 c), but the general amplitude range is preserved, which physically determines the horizontal sector of curve 7 in Fig. 2. In this way, the rectangular characteristic of the first converter is formed.
Al doilea convertizor de tensiune funcţionează în regim subîncărcat în mod similar. Însă la suprasarcină amplitudinea curentului direct i9 creşte, ca şi amplitudinea impulsului curentului invers i10 până la regimul de scurt circuit (fig. 5), deoarece într-un timp egal cu durata impulsurilor curenţilor direct şi invers i9, i10 ambele tranzistoare se închid. Prin urmare, creşte şi curentul sarcinii, adică rezultă caracteristica de sarcină a convertizorului (curba 8 în fig. 2). Cu cât mai aproape este valoarea perioadei de comutare Tc de valoarea T0, cu atât caracteristica de sarcină 8 a suprasarcinii este mai liniară, cu unghiul de înclinare mai mare. The second voltage converter operates in the underload mode in a similar way. However, in the overload mode, the amplitude of the direct current i9 increases, as does the amplitude of the reverse current pulse i10 up to the short-circuit mode (Fig. 5), since in a time equal to the duration of the direct and reverse current pulses i9, i10 both transistors close. Consequently, the load current also increases, i.e. the load characteristic of the converter results (curve 8 in Fig. 2). The closer the value of the switching period Tc is to the value T0, the more linear the overload load characteristic 8 is, with a larger slope angle.
Ambele convertizoare au un randament majorat din cauza comutării tranzistoarelor la curenţii zero în tot diapazonul de variaţie a sarcinii. Both converters have increased efficiency due to transistor switching at zero currents throughout the load variation range.
Caracteristica sumară 5 din fig. 2 are un segment strict orizontal şi un segment înclinat. Regiunea de conexiune a acestor segmente determină punctul de putere maximală. The summary characteristic 5 in Fig. 2 has a strictly horizontal segment and an inclined segment. The connection region of these segments determines the maximum power point.
Pentru confirmarea formei caracteristicilor de sarcină a convertizoarelor sunt prezentate rezultatele modelării computerizate în sistemul de modelare ORCAD 9.1. To confirm the shape of the converters' load characteristics, the results of computer modeling in the ORCAD 9.1 modeling system are presented.
Exemplu de realizare a invenţiei Example of embodiment of the invention
Parametrii primului convertizor: tranzistoarele 9, 10 de tip IRGPC40F, condensatorul de rezonanţă 14 cu capacitatea de 0,5 µF, inductivitatea bobinelor de rezonanţă 12, 13 de 17 µH, perioada oscilaţiilor proprii T0 = 18,4 µs, perioada de comutare Tc = 40 µs. Tensiunea sursei de alimentare 11 este egală cu 250 V. Pentru simplificarea modelării s-a utilizat sarcina redresoare fără transformator 15. Epurele curentului tranzistorului 10 ale rezistenţei sarcinii de 10, 5, 0,5 Ω corespund epurelor a), b), c) din fig. 4. Amplitudinea curentului este egală cu 42 A. Caracteristica de sarcină, trasată după datele de calcul, corespunde caracteristicii 7 din fig. 2. Parameters of the first converter: transistors 9, 10 of type IRGPC40F, resonance capacitor 14 with a capacity of 0.5 µF, inductance of resonance coils 12, 13 of 17 µH, period of natural oscillations T0 = 18.4 µs, switching period Tc = 40 µs. The voltage of the power supply 11 is equal to 250 V. To simplify the modeling, the transformerless rectifier load 15 was used. The current traces of the transistor 10 of the load resistance of 10, 5, 0.5 Ω correspond to traces a), b), c) in Fig. 4. The current amplitude is equal to 42 A. The load characteristic, plotted according to the calculation data, corresponds to characteristic 7 in Fig. 2.
Parametrii convertizorului al doilea: tranzistoarele 9, 10 de tip IRGPC40F, condensatorul de rezonanţă 14 de capacitatea 0,28 µF, inductivitatea bobinelor de rezonanţă 12, 13 de câte 30,3 µH, perioada oscilaţiilor proprii T0 = 17,8 µs, perioada de comutare Tc = 18 µs. Tensiunea sursei de alimentare 11 este egală cu 100 V. Pentru simplificarea modelării s-a utilizat sarcina de redresare fără transformator 15. Epurele curenţilor tranzistoarelor 9, 10 pentru rezistenţa sarcinii de 3 Ω corespund epurelor din fig. 5. Caracteristica de sarcină, trasată după datele calculate, corespunde caracteristicii 8 din fig. 2. Parameters of the second converter: transistors 9, 10 of type IRGPC40F, resonance capacitor 14 with a capacity of 0.28 µF, inductance of resonance coils 12, 13 of 30.3 µH each, period of natural oscillations T0 = 17.8 µs, switching period Tc = 18 µs. The voltage of the power supply 11 is equal to 100 V. To simplify the modeling, the transformerless rectifier load 15 was used. The current traces of transistors 9, 10 for a load resistance of 3 Ω correspond to the traces in Fig. 5. The load characteristic, plotted according to the calculated data, corresponds to characteristic 8 in Fig. 2.
Invenţia prezintă următoarele avantaje: The invention has the following advantages:
- se utilizează blocul de alimentare în formă de convertizoare de tensiune cu un randament ridicat; - the power supply unit in the form of high-efficiency voltage converters is used;
- convertizorul de tensiune cu cvasirezonanţă este un dispozitiv parametric, posedă caracteristici de sarcină normale de formă necesară, fără folosirea de contururi de stabilizare. - the quasi-resonant voltage converter is a parametric device, it possesses normal load characteristics of the required shape, without the use of stabilization contours.
1. Четти П. Проектирование ключевых источников питания. Пер. с англ., Москва, Энергоиздат, 1990, 240 с 1. Chetti P. Projection of key power sources. Per. с англ., Москва, Енергоиздат, 1990, 240 с
2. Mukerjee A.K., Dasgupta Nivedita. DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renewable Energy: An International Journal; Apr. 2007, Vol. 32, Issue 4, p. 587-592 (regăsit în internet la 2009.11.10, www.sciencedirect.com/science/journal/09601481/) 2. Mukerjee A.K., Dasgupta Nivedita. DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renewable Energy: An International Journal; April 2007, Vol. 32, Issue 4, p. 587-592 (retrieved from the Internet on 2009.11.10, www.sciencedirect.com/science/journal/09601481/)
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090017A MD136Z (en) | 2009-02-06 | 2009-02-06 | Solar battery simulator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090017A MD136Z (en) | 2009-02-06 | 2009-02-06 | Solar battery simulator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD136Y true MD136Y (en) | 2010-01-29 |
| MD136Z MD136Z (en) | 2010-08-31 |
Family
ID=43568898
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20090017A MD136Z (en) | 2009-02-06 | 2009-02-06 | Solar battery simulator |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD136Z (en) |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MD958G2 (en) * | 1997-01-27 | 1999-02-28 | Iurie Budzuleac | Process for external control of the two-stoke resonance transistor voltage converter |
| MD959G2 (en) * | 1997-03-21 | 1999-01-31 | Iurie Budzuleac | Process for external control of the two-stoke resonance transistor voltage converter |
| MD3850C2 (en) * | 2007-04-12 | 2009-12-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Quasi-resonant direct-current voltage transducer |
| MD3853C2 (en) * | 2007-05-10 | 2009-12-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Resonance voltage transducer |
| MD3851C2 (en) * | 2007-07-25 | 2009-12-31 | Институт Электронной Инженерии И Промышленных Технологий Академии Наук Молдовы | Quasi-resonant voltage transducer |
-
2009
- 2009-02-06 MD MDS20090017A patent/MD136Z/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| MD136Z (en) | 2010-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Modeling and design of series voltage compensator for reduction of DC-link capacitance in grid-tie solar inverter | |
| Lee et al. | Improved single-phase split-source inverter with hybrid quasi-sinusoidal and constant PWM | |
| Philip et al. | Control and implementation of a standalone solar photovoltaic hybrid system | |
| ES2690675T3 (en) | Operation of a three-level converter | |
| CN104303385B (en) | battery energy storage and power system | |
| Haider et al. | Design and construction of single phase pure sine wave inverter for photovoltaic application | |
| CN102075107B (en) | Main circuit of three-phase four-wire DC/AC convertor and control method thereof | |
| CN102629836B (en) | Novel two-stage alternating-current photovoltaic module | |
| Kurdkandi et al. | Novel family of flying inductor-based single-stage buck–boost inverters | |
| Ponnusamy et al. | A hybrid switched capacitor multi-level inverter with high voltage gain and self-voltage balancing ability | |
| WO2016105272A1 (en) | Balancing circuit and inverter comprising the same | |
| Banaei et al. | Power quality improvement based on novel power electronic transformer | |
| Hussein et al. | Design of a grid-tie photovoltaic system with a controlled total harmonic distortion and tri maximum power point tracking | |
| CN202750021U (en) | Converter for converting alternating current into direct current | |
| Noguchi | A new three-level current-source PWM inverter and its application for grid connected power conditioner | |
| MD136Y (en) | Solar battery simulator | |
| RU2372706C1 (en) | Device for connection of controlled voltage rectifier to source of ac voltage | |
| Tschanz et al. | A multi-functional converter for a reduced cost, solar powered, water pump | |
| Chen et al. | Battery current-sharing power decoupling method for realizing a single-stage hybrid PV system | |
| Oommen et al. | Development of a Single-Phase Inverter for Application in a Hybrid Solar UPS | |
| RU2521613C1 (en) | Device for connecting controlled voltage inverter to direct current voltage source | |
| Bhalja et al. | Microgrid with five-level diode clamped inverter based hybrid generation system | |
| Chen et al. | Bi-directional grid-tied inverter with predictive current control | |
| Dhara et al. | One Cycle Controlled 3-Phase Inverter | |
| Rao et al. | A fault tolerant dual inverter configuration for islanded mode photovoltaic generation system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| KA4A | Patent for invention lapsed due to non-payment of fees (with right of restoration) |