MD1025Z - Inhibitor of steel corrosion in water - Google Patents

Inhibitor of steel corrosion in water Download PDF

Info

Publication number
MD1025Z
MD1025Z MDS20150136A MDS20150136A MD1025Z MD 1025 Z MD1025 Z MD 1025Z MD S20150136 A MDS20150136 A MD S20150136A MD S20150136 A MDS20150136 A MD S20150136A MD 1025 Z MD1025 Z MD 1025Z
Authority
MD
Moldova
Prior art keywords
corrosion
inhibitor
water
concentration
hours
Prior art date
Application number
MDS20150136A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Василе ЛОЗАН
Владимир ПАРШУТИН
Николае ШОЛТОЯН
Наталия ЧЕРНЫШЕВА
Александр КОВАЛЬ
Original Assignee
Институт Химии Академии Наук Молдовы
Институт Прикладной Физики Академии Наук Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Химии Академии Наук Молдовы, Институт Прикладной Физики Академии Наук Молдовы filed Critical Институт Химии Академии Наук Молдовы
Priority to MDS20150136A priority Critical patent/MD1025Z/en
Publication of MD1025Y publication Critical patent/MD1025Y/en
Publication of MD1025Z publication Critical patent/MD1025Z/en

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Invenţia se referă la domeniul protecţiei anticorozive a metalelor în apă şi poate fi utilizată pentru inhibarea coroziunii în sistemele închise din conducte de oţel.Conform invenţiei, se revendică aplicarea dihidrazidei acidului succinic în calitate de inhibitor de coroziune a oţelului în apă, în concentraţie de 0,025…0,75 g/L.The invention relates to the field of anticorrosive protection of metals in water and can be used for corrosion inhibition in closed steel pipe systems. According to the invention, the application of succinic acid dihydrazide as a corrosion inhibitor of steel in water, at a concentration of 0.025 is claimed. … 0.75 g / L.

Description

Invenţia se referă la domeniul protecţiei anticorozive a metalelor în apă şi poate fi utilizată pentru inhibarea coroziunii în sistemele închise din conducte de oţel. The invention relates to the field of anti-corrosion protection of metals in water and can be used to inhibit corrosion in closed steel pipe systems.

Este cunoscut faptul că apa naturală sau cea tehnică conţine ioni de Cl- şi SO4 2- şi este un mediu destul de agresiv, în care coroziunea oţelului decurge cu o viteză relativ mare. De exemplu, apa din conductele de apă din mun. Chişinău conţine (mg/L): Ca2+ - 72,5, Mg2+ - 19,5, HCO3 - - 97,6, SO4 2- - 203,7, Cl- - 56,7, conţinutul total al sărurilor fiind de 0,457 g/L. Viteza de coroziune a oţelului „Ст. 3” la expunerea lui în astfel de apă timp de 8 ore este mare, atingând valoarea de 21,0 g/m2·24 ore. La mărirea timpului de expunere viteza de coroziune se micşorează (de exemplu până la 12 g/m2·24 ore la expunerea timp de 24 ore, 6,6 g/m2·24 ore la expunerea timp de 72 ore, 4 g/m2·24 ore la expunerea timp de 240 ore), datorită formării pe suprafaţa supusă coroziunii a unei pelicule oxido-hidroxidice din produsele coroziunii, precum şi depunerii calcitului CaCO3 (Паршутин В. В., Шолтоян Н. С., Сидельникова С. П., Володина Г. Ф. Ингибирование бороглюконатом кальция коррозии углеродистой стали Ст. 3 в воде. Коррозия в условиях естественной аэрации и принудительной конвекции. Электронная обработка материалов, 1999, nr. 5, p. 42-56). It is known that natural or technical water contains Cl- and SO4 2- ions and is a rather aggressive environment, in which steel corrosion proceeds at a relatively high speed. For example, water from water pipes in the city of Chisinau contains (mg/L): Ca2+ - 72.5, Mg2+ - 19.5, HCO3 - - 97.6, SO4 2- - 203.7, Cl- - 56.7, the total salt content being 0.457 g/L. The corrosion rate of “Ст. 3” steel when exposed to such water for 8 hours is high, reaching the value of 21.0 g/m2·24 hours. When the exposure time increases, the corrosion rate decreases (for example up to 12 g/m2·24 hours when exposed for 24 hours, 6.6 g/m2·24 hours when exposed for 72 hours, 4 g/m2·24 hours when exposed for 240 hours), due to the formation on the corroded surface of an oxide-hydroxide film from corrosion products, as well as the deposition of calcite CaCO3 (Parshutin V. V., Sholtoyan N. S., Sidelnikova S. P., Volodina G. F. Ингибирование бороглуконатом калция корозии углеробистой стали St. 3 в воде. Корозия в условия надзовной эрации и продувительной конвеции. Electronic processing of materials, 1999, no. 5, p. 42-56).

Ionii SO4 2- cauzează o coroziune totală, destul de uniformă, dar în prezenţa ionilor de Cl- (ca un agent de activare), la suprafaţa internă a ţevilor se pot forma pitinguri adânci, care în unele cazuri pot fi transversale, ceea ce poate duce la situaţii accidentale. În plus, fierul ionizat se acumulează în apă, diminuând calitatea acesteia. SO4 2- ions cause a total, fairly uniform corrosion, but in the presence of Cl- ions (as an activating agent), deep pitting can form on the internal surface of the pipes, which in some cases can be transverse, which can lead to accidental situations. In addition, ionized iron accumulates in the water, reducing its quality.

În calitate de inhibitor de coroziune este cunoscută hidrazina (H2N-NH2), acţiunea căreia se bazează pe legarea oxigenului dizolvat în apă, reducând astfel viteza de coroziune [1]: Hydrazine (H2N-NH2) is known as a corrosion inhibitor, the action of which is based on binding dissolved oxygen in water, thus reducing the corrosion rate [1]:

N2H4 + O2 → 2H2O + N2 N2H4 + O2 → 2H2O + N2

Dezavantajele acestui inhibitor constau în faptul că influenţa lui se manifestă la temperaturi relativ înalte (60…100°C) sau la adăugarea unor catalizatori determinaţi, în afară de aceasta inhibitorul este toxic, necesitând în timpul lucrului o precauţie deosebită. Aceasta complică mult exploatarea lui în sistemele închise de conducte. The disadvantages of this inhibitor are that its effect is manifested at relatively high temperatures (60…100°C) or when certain catalysts are added, and that the inhibitor is toxic, requiring special caution during use. This greatly complicates its use in closed pipeline systems.

Mai preferenţială este aplicarea derivaţilor dihidrazidei ai acizilor carboxilici în calitate de inhibitori de coroziune. More preferable is the application of dihydrazide derivatives of carboxylic acids as corrosion inhibitors.

Este cunoscut că hidrazidele, derivaţi ai acizilor carboxilici - di(hidrazida ciclohexadienică) a acizilor malonic, succinic, adipic, precum şi di(hidrazida ciclopentadienică) a acidului adipic sunt excelenţi inhibitori ai coroziunii metalelor, în special, ai cuprului. Plus la aceasta, unele din ele manifestă activitate antioxidantă, în special, în componenţa lubrifianţilor esterici sintetici [2]. It is known that hydrazides, derivatives of carboxylic acids - di(cyclohexadienoic hydrazide) of malonic, succinic, adipic acids, as well as di(cyclopentadienoic hydrazide) of adipic acid are excellent inhibitors of metal corrosion, especially of copper. In addition, some of them exhibit antioxidant activity, especially in the composition of synthetic ester lubricants [2].

Prin aplicarea metodei de polarizare electrochimică şi calculelor cuantochimice s-a investigat procesul de inhibiţie a coroziunii nichelului în soluţii molare de acid sulfuric ale unor derivaţi ai dihidrazidelor, şi anume dihidrazidele acizilor malonic, succinic şi adipic, care au evidenţiat cea mai mare eficienţă protectoare a dihidrazidei acidului adipic [3]. By applying the electrochemical polarization method and quantum chemical calculations, the process of inhibition of nickel corrosion in molar sulfuric acid solutions of some dihydrazide derivatives, namely malonic, succinic and adipic acid dihydrazides, was investigated, which highlighted the highest protective efficiency of adipic acid dihydrazide [3].

Este bine cunoscută folosirea în compoziţiile de inhibare a coroziunii a acidului succinic şi a sărurilor acestuia. De exemplu, succinatul de sodiu NaOOCCH2CH2COONa se utilizează ca inhibitor de coroziune atmosferică în formă de materiale inhibitoare (carton, impregnat cu o soluţie de sare de 5%), precum şi ca inhibitor de coroziune a oţelului în apă şi soluţii apoase pentru o concentraţie minimă de 2 mmol/L de sare [4]. Cu toate acestea, în primul caz, la o concentraţie mare de inhibitor gradul de protecţie Z nu depăşeşte 74%, iar în al doilea caz, procesul de inhibare este instabil. The use of succinic acid and its salts in corrosion inhibitor compositions is well known. For example, sodium succinate NaOOCCH2CH2COONa is used as an atmospheric corrosion inhibitor in the form of inhibitory materials (cardboard, impregnated with a 5% salt solution), as well as as an inhibitor of steel corrosion in water and aqueous solutions for a minimum concentration of 2 mmol/L of salt [4]. However, in the first case, at a high concentration of the inhibitor, the degree of protection Z does not exceed 74%, and in the second case, the inhibition process is unstable.

Este cunoscută o compoziţie de degivrare care conţine succinat de potasiu şi poliaspartat de sodiu. Compoziţia conţine 1...10% mas. sare a acidului succinic şi clorură de sodiu sau de calciu. Compoziţia mai poate conţine adăugător săruri de polimaleimidă. În calitate de săruri ale acidului succinic pot fi luate succinatul de potasiu, succinatul de magneziu şi amestecurile acestora. Rezultatul tehnic se exprimă prin reducerea acţiunii corozive a clorurii de sodiu cu mai mult de 50% în cazul inhibiţiei coroziunii oţelului şi aluminiului, precum şi a aliajelor din magneziu [5]. A deicing composition containing potassium succinate and sodium polyaspartate is known. The composition contains 1...10% by weight of succinic acid salt and sodium or calcium chloride. The composition may additionally contain polymaleimide salts. Potassium succinate, magnesium succinate and mixtures thereof can be used as succinic acid salts. The technical result is expressed by reducing the corrosive action of sodium chloride by more than 50% in the case of inhibiting the corrosion of steel and aluminum, as well as magnesium alloys [5].

Este cunoscut un alt inhibitor de coroziune pentru lichide de răcire cu temperatură joasă de congelare, care conţine, în % mas.: 3...4 acid sebaceic, 8...9 acid adipic, 6,5...7,5 hidroxid de sodiu, 3,5...4,0 acid benzoic, 30...40 apă, 0,25...0,5 benzotriazol, 1...2 bicarbonat de sodiu, în rest - etilenglicol. Rezultatul aplicării acestuia este majorarea rezistenţei la coroziune a tuturor materialelor de construcţie a sistemului de răcire al motoarelor cu ardere internă, prevenirea pericolului depunerilor minerale pe suprafaţă şi micşorarea toxicităţii agenţilor de răcire [6]. Another corrosion inhibitor for low-freezing temperature coolants is known, which contains, in wt.%: 3...4 sebacic acid, 8...9 adipic acid, 6.5...7.5 sodium hydroxide, 3.5...4.0 benzoic acid, 30...40 water, 0.25...0.5 benzotriazole, 1...2 sodium bicarbonate, the rest - ethylene glycol. The result of its application is an increase in the corrosion resistance of all construction materials of the cooling system of internal combustion engines, prevention of the danger of mineral deposits on the surface and reduction of the toxicity of coolants [6].

Este cunoscut un alt inhibitor de coroziune pentru lichide cu temperaturi joase de congelare, care cuprinde, în % mas.: 3,5...4,5 acid succinic, 7...8 acid adipic, 7,5...8,5 hidroxid de sodiu, 2,5...3,5 acid benzoic, 30...40 apă, 0,25...0,5 benzotriazol, 1,5...2,5 bicarbonat de sodiu, în rest - glicerol. Rezultatul aplicării acestuia este majorarea rezistenţei la coroziune a tuturor materialelor de construcţie a sistemului de alimentare cu căldură, precum şi prevenirea depunerilor de minerale pe suprafeţele acestor elemente şi reducerea toxicităţii agentului de încălzire [7]. Another corrosion inhibitor for liquids with low freezing temperatures is known, which contains, in wt.%: 3.5...4.5 succinic acid, 7...8 adipic acid, 7.5...8.5 sodium hydroxide, 2.5...3.5 benzoic acid, 30...40 water, 0.25...0.5 benzotriazole, 1.5...2.5 sodium bicarbonate, the rest - glycerol. The result of its application is an increase in the corrosion resistance of all construction materials of the heat supply system, as well as the prevention of mineral deposits on the surfaces of these elements and the reduction of the toxicity of the heating agent [7].

Un alt inhibitor al coroziunii cunoscut, pentru fluide de răcire cu temperatură joasă de congelare cuprinde, în % mas.: 5,5...6,5 acid sebaceic, 3...4 acid adipic, 6...7 hidroxid de sodiu, 2...3 acid benzoic, 2,5...3,5 acid succinic, 35...40 apă, 0,25...0,5 benzotriazol, 0,02...0,04 N - fenil - 2-naftilamină, în rest - etilenglicol. Ca urmare a utilizării acestui inhibitor se observă o creştere a rezistenţei la coroziune a tuturor materialelor de construcţie a sistemului de răcire, prevenirea coroziunii cu pitinguri pe suprafaţa oţelului şi fontei [8]. Another known corrosion inhibitor for low-freezing temperature cooling fluids contains, in wt.%: 5.5...6.5 sebacic acid, 3...4 adipic acid, 6...7 sodium hydroxide, 2...3 benzoic acid, 2.5...3.5 succinic acid, 35...40 water, 0.25...0.5 benzotriazole, 0.02...0.04 N - phenyl - 2-naphthylamine, the rest - ethylene glycol. As a result of the use of this inhibitor, an increase in the corrosion resistance of all materials of construction of the cooling system is observed, pitting corrosion is prevented on the surface of steel and cast iron [8].

Dezavantajele acestor inhibitori cunoscuţi constau în aceea că au compoziţii multicomponente foarte complicate şi conţin ingrediente în concentraţii mari. În acelaşi timp, aceşti inhibitori reduc toxicitatea agenţilor de răcire, dar nu o elimină. The disadvantages of these known inhibitors are that they have very complicated multi-component compositions and contain ingredients in high concentrations. At the same time, these inhibitors reduce the toxicity of the coolants, but do not eliminate them.

În calitate de cea mai apropiată soluţie serveşte aplicarea dihidrazidei acidului adipic cu formula: The closest solution is the application of adipic acid dihydrazide with the formula:

în calitate de inhibitor de coroziune a oţelului în apă în concentraţie de 0,05...1,0 g/L [9]. Este mai convenabil de a fi utilizată dihidrazida acidului adipic decât hidrazina, deoarece nu este toxică. La aplicarea dihidrazidei acidului adipic se realizează o inhibare a coroziunii mai mare decât la adăugarea hidrazinei. as a steel corrosion inhibitor in water at a concentration of 0.05...1.0 g/L [9]. It is more convenient to use adipic acid dihydrazide than hydrazine, since it is non-toxic. When applying adipic acid dihydrazide, a greater corrosion inhibition is achieved than when adding hydrazine.

Dezavantajele inhibitorului menţionat constau în gradul insuficient de protecţie a metalului corodat, acesta este mai scump decât însuşi acidul adipic şi pentru sinteza lui este necesar de a efectua o sinteză suplimentară, care este costisitoare. The disadvantages of the mentioned inhibitor consist in the insufficient degree of protection of the corroded metal, it is more expensive than adipic acid itself and for its synthesis it is necessary to carry out an additional synthesis, which is costly.

Problema pe care o rezolvă prezenta invenţie constă în mărirea rezistenţei la coroziune a sistemelor închise de conducte din oţel, prin care se pompează apă, şi obţinerea unui proces de reprimare a coroziunii mai durabil. The problem solved by the present invention is to increase the corrosion resistance of closed steel pipe systems through which water is pumped, and to obtain a more durable corrosion suppression process.

Problema se soluţionează prin faptul că se propune aplicarea dihidrazidei acidului succinic cu formula: The problem is solved by proposing the application of succinic acid dihydrazide with the formula:

în calitate de inhibitor de coroziune a oţelului în apă în concentraţie de 0,025…0,75 g/L. as a steel corrosion inhibitor in water at a concentration of 0.025…0.75 g/L.

Rezultatul tehnic al soluţiei propuse constă în reducerea semnificativă a pierderilor corozive şi majorarea termenului de exploatare a conductelor, în care în calitate de agent este apa. The technical result of the proposed solution consists in significantly reducing corrosive losses and increasing the operating life of pipes, in which water is the agent.

Exemplu de realizare a invenţiei Example of embodiment of the invention

Testările de coroziune se efectuează pe mostre de mărimea 50×25×3 mm prin imersiune completă în soluţie, la aceeaşi adâncime cu acces de aer. Rugozitatea lor iniţială se înlătură prin lustruire (şlefuire). Pierderile corozive se înregistrează gravimetric. Efectul acţiunii inhibitorului se evaluează cantitativ după viteza de coroziune k1, g/m2·24 ore şi după valoarea coeficientului de frânare γ = k/k1, unde k1, k - vitezele de coroziune a metalului cu inhibitor şi, respectiv, în absenţa acestuia. Acest raport arată de câte ori scade viteza de coroziune în urma acţiunii inhibitorului. Corrosion tests are carried out on samples measuring 50×25×3 mm by complete immersion in the solution, at the same depth with air access. Their initial roughness is removed by polishing (grinding). Corrosion losses are recorded gravimetrically. The effect of the inhibitor action is quantitatively evaluated by the corrosion rate k1, g/m2·24 hours and by the value of the braking coefficient γ = k/k1, where k1, k - the corrosion rates of the metal with inhibitor and, respectively, in its absence. This ratio shows how many times the corrosion rate decreases as a result of the inhibitor action.

Datele privind influenţa concentraţiei inhibitorului şi a timpului de expunere asupra vitezei de coroziune k1, g/m2·24 ore şi coeficientului de frânare γ sunt prezentate în tabel. Data on the influence of inhibitor concentration and exposure time on the corrosion rate k1, g/m2·24 hours and the braking coefficient γ are presented in the table.

Din aceste date este evident că cel mai mare efect se atinge la folosirea inhibitorului (dihidrazida acidului succinic) în concentraţie de 0,025...0,75 g/L. Astfel, la concentraţia inhibitorului de 0,05 g/L şi durata de testare (expunere) de 8 şi 72 ore, pierderile de coroziune se reduc de 7,1 şi, respectiv, 6,8 ori. La concentraţia inhibitorului de 0,25 g/L şi durata de testare de 8 şi 24 ore coeficientul de frânare constituie 17,7 şi, respectiv, 14,9, iar la concentraţia de 0,5 g/L şi durata de testare de 24 şi 72 ore, respectiv, viteza de coroziune scade corespunzător de 19,6 şi 20,1 ori. From these data it is obvious that the greatest effect is achieved when using the inhibitor (succinic acid dihydrazide) in a concentration of 0.025...0.75 g/L. Thus, at an inhibitor concentration of 0.05 g/L and a test duration (exposure) of 8 and 72 hours, corrosion losses are reduced by 7.1 and, respectively, 6.8 times. At an inhibitor concentration of 0.25 g/L and a test duration of 8 and 24 hours, the braking coefficient is 17.7 and, respectively, 14.9, and at a concentration of 0.5 g/L and a test duration of 24 and 72 hours, respectively, the corrosion rate decreases by 19.6 and 20.1 times.

Cantitatea de inhibitor adăugată în mediul coroziv joacă un rol important. Limita inferioară este concentraţia de 0,025 g/L, deoarece la concentraţii mai mici de inhibitor se reduc neînsemnat pierderile corozive. The amount of inhibitor added to the corrosive medium plays an important role. The lower limit is a concentration of 0.025 g/L, as at lower inhibitor concentrations the corrosion losses are insignificantly reduced.

Limita superioară a concentraţiei inhibitorului trebuie considerată concentraţia de 0,75 g/L, deoarece la mărirea concentraţiei peste 0,75 g/L, pierderile corozive se schimbă puţin, însă creşterea concentraţiei inhibitorului sporeşte cheltuielile. The upper limit of inhibitor concentration should be considered the concentration of 0.75 g/L, because when increasing the concentration above 0.75 g/L, corrosive losses change little, but increasing the inhibitor concentration increases costs.

Tabel Table

Influenţa concentraţiei dihidrazidei acidului succinic asupra parametrilor procesului de coroziune a oţelului “Ст. 3” în apă Influence of succinic acid dihydrazide concentration on the parameters of the corrosion process of “Ст. 3” steel in water

Concentraţia inhibitorului, g/L Timpul de expunere, τ, ore Viteza de coroziune, k, k1, g/m2⋅24 ore Coeficientul de frânare, γ 0,0 8 24 72 240 21,0 12,0 6,6 4,0 - - - - 0,025 8 24 72 240 4,82 3,6 1,8 1,09 4,36 3,3 3,6 3,66 0,05 8 24 72 240 2,95 1,89 0,97 0,695 7,1 6,35 6,8 5,76 0,1 8 24 72 240 1,83 0,87 0,635 0,586 11,5 13,8 10,4 6,8 0,25 8 24 72 240 1,188 0,804 0,842 0,789 17,7 14,9 7,85 5,1 0,5 8 24 72 240 1,579 0,612 0,328 0,997 13,3 19,6 20,1 4,01 0,75 8 24 72 240 1,98 0,96 0,81 1,01 16,6 12,5 8,15 3,96Inhibitor concentration, g/L Exposure time, τ, hours Corrosion rate, k, k1, g/m2⋅24 hours Braking coefficient, γ 0.0 8 24 72 240 21.0 12.0 6.6 4.0 - - - - 0.025 8 24 72 240 4.82 3.6 1.8 1.09 4.36 3.3 3.6 3.66 0.05 8 24 72 240 2.95 1.89 0.97 0.695 7.1 6.35 6.8 5.76 0.1 8 24 72 240 1.83 0.87 0.635 0.586 11.5 13.8 10.4 6.8 0.25 8 24 72 240 1.188 0.804 0.842 0.789 17.7 14.9 7.85 5.1 0.5 8 24 72 240 1.579 0.612 0.328 0.997 13.3 19.6 20.1 4.01 0.75 8 24 72 240 1.98 0.96 0.81 1.01 16.6 12.5 8.15 3.96

Astfel, este propusă aplicarea unui inhibitor de coroziune a oţelului în apă eficient, ecologic şi ieftin, care permite de a reduce pierderile corozive până la 20,1 ori. Thus, the application of an efficient, ecological and inexpensive steel corrosion inhibitor in water is proposed, which allows reducing corrosive losses up to 20.1 times.

1. Розенфельд И. Л. Ингибиторы коррозии. Москва, Химия, 1977, p. 249-252 1. Rosenfeld I. L. Corrosion inhibitors. Moscow, Chemistry, 1977, p. 249-252

2. US 3886211 A 1975.05.27 2. US 3886211 A 1975.05.27

3. Shokry H., Mabrouk E.M. Computational and electrochemical investigation for corrosion inhibition of nickel in molar sulfuric acid by dihydrazide derivatives. Part II. Arabian Journal of Chemistry, 2014 3. Shokry H., Mabrouk E.M. Computational and electrochemical investigation for corrosion inhibition of nickel in molar sulfuric acid by dihydrazide derivatives. Part II. Arabian Journal of Chemistry, 2014

4. Алцыбеева А. И., Левин С. З. Ингибиторы коррозии металлов. Ленинград, Химия, 1968, p. 152 4. Alcybeeva A. I., Levin С. З. Metal corrosion inhibitors. Leningrad, Chemistry, 1968, p. 152

5. RU 2222564 C1 2004.01.27 5. RU 2222564 C1 2004.01.27

6. RU 2302479 C1 2007.07.10 6. RU 2302479 C1 2007.07.10

7. RU 2303083 C1 2007.07.20 7. RU 2303083 C1 2007.07.20

8. RU 2393271 C1 2010.06.27 8. RU 2393271 C1 2010.06.27

9. MD 359 Y 2011.04.30 9. MD 359 Y 2011.04.30

Claims (1)

Aplicare a dihidrazidei acidului succinic în calitate de inhibitor de coroziune a oţelului în apă, în concentraţie de 0,025…0,75 g/L.Application of succinic acid dihydrazide as a steel corrosion inhibitor in water, at a concentration of 0.025…0.75 g/L.
MDS20150136A 2015-09-30 2015-09-30 Inhibitor of steel corrosion in water MD1025Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20150136A MD1025Z (en) 2015-09-30 2015-09-30 Inhibitor of steel corrosion in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20150136A MD1025Z (en) 2015-09-30 2015-09-30 Inhibitor of steel corrosion in water

Publications (2)

Publication Number Publication Date
MD1025Y MD1025Y (en) 2016-04-30
MD1025Z true MD1025Z (en) 2016-11-30

Family

ID=55911146

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20150136A MD1025Z (en) 2015-09-30 2015-09-30 Inhibitor of steel corrosion in water

Country Status (1)

Country Link
MD (1) MD1025Z (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886211A (en) * 1968-12-10 1975-05-27 Ciba Geigy Corp Carboxylic acid hydrazide derivatives
RU2110613C1 (en) * 1992-04-22 1998-05-10 Хехст АГ Corrosion protection means
RU2222564C1 (en) * 2000-01-11 2004-01-27 Апплайд Карбо-Кемикалз (Делаувеар Корпорейшн) Anti-icing compositions and methods for application thereof
MD3258F1 (en) * 2006-07-19 2007-02-28 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in the water
MD3348F1 (en) * 2006-11-30 2007-06-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in the water
RU2302479C1 (en) * 2006-03-14 2007-07-10 Институт элементоорганических соединений РАН (ИНЭОС РАН) Corrosion inhibitor for low-freezing cooling liquids
RU2303083C1 (en) * 2006-03-14 2007-07-20 Институт элементоорганических соединений РАН (ИНЭОС РАН) Corrosion inhibitor for low-freezing fluids
RU2393271C1 (en) * 2009-07-01 2010-06-27 Общество с ограниченной ответственностью "ЛЛК-Интернешнл" Inhibitor of corrosion for low-freezing cooling liquids
MD243Y (en) * 2009-12-17 2010-07-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD359Y (en) * 2010-07-23 2011-04-30 Inst De Chimie Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD441Y (en) * 2011-02-18 2011-11-30 Inst De Chimie Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD4310B1 (en) * 2013-07-17 2014-11-30 Institutul De Chimie Al Academiei De Ştiinţe A Moldovei Inhibitor of steel corrosion in water
MD4313B1 (en) * 2013-11-29 2014-12-31 Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei Inhibitor of steel corrosion in water

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886211A (en) * 1968-12-10 1975-05-27 Ciba Geigy Corp Carboxylic acid hydrazide derivatives
RU2110613C1 (en) * 1992-04-22 1998-05-10 Хехст АГ Corrosion protection means
RU2222564C1 (en) * 2000-01-11 2004-01-27 Апплайд Карбо-Кемикалз (Делаувеар Корпорейшн) Anti-icing compositions and methods for application thereof
RU2302479C1 (en) * 2006-03-14 2007-07-10 Институт элементоорганических соединений РАН (ИНЭОС РАН) Corrosion inhibitor for low-freezing cooling liquids
RU2303083C1 (en) * 2006-03-14 2007-07-20 Институт элементоорганических соединений РАН (ИНЭОС РАН) Corrosion inhibitor for low-freezing fluids
MD3258F1 (en) * 2006-07-19 2007-02-28 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in the water
MD3348F1 (en) * 2006-11-30 2007-06-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in the water
RU2393271C1 (en) * 2009-07-01 2010-06-27 Общество с ограниченной ответственностью "ЛЛК-Интернешнл" Inhibitor of corrosion for low-freezing cooling liquids
MD243Y (en) * 2009-12-17 2010-07-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD359Y (en) * 2010-07-23 2011-04-30 Inst De Chimie Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD441Y (en) * 2011-02-18 2011-11-30 Inst De Chimie Al Academiei De Stiinte A Moldovei Inhibitor of steel corrosion in water
MD4310B1 (en) * 2013-07-17 2014-11-30 Institutul De Chimie Al Academiei De Ştiinţe A Moldovei Inhibitor of steel corrosion in water
MD4313B1 (en) * 2013-11-29 2014-12-31 Institutul De Fizică Aplicată Al Academiei De Ştiinţe A Moldovei Inhibitor of steel corrosion in water

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Shokry H., Mabrouk E.M. Computational and electrochemical investigation for corrosion inhibition of nickel in molar sulfuric acid by dihydrazide derivatives. Part II. Arabian Journal of Chemistry, 2014 *
Алцыбеева А. И., Левин С. З. Ингибиторы коррозии металлов. Ленинград, Химия, 1968, p. 152 *
Розенфельд И. Л. Ингибиторы коррозии. Москва, Химия, 1977, p. 249-252 *

Also Published As

Publication number Publication date
MD1025Y (en) 2016-04-30

Similar Documents

Publication Publication Date Title
Hasan Galvanic corrosion of carbon steel–brass couple in chloride containing water and the effect of different parameters
JPS6316469B2 (en)
CA2044885A1 (en) Alkylbenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
Abdulwahab et al. Corrosion Inhibition of Multi-component Aluminium Alloy in Hydrochloric Acid Solution by Aqueuos Extracts of Bitter Leaf (Verninia Amygdalina) Powder
Loto et al. Inhibition effect of 2-amino-5-ethyl-1, 3, 4-thiadiazole on corrosion behaviour of austenitic stainless steel type 304 in dilute HCl solution
MD1025Z (en) Inhibitor of steel corrosion in water
Usman et al. A review: weight loss studies on the corrosion behavior of some metals in various media
KR100422066B1 (en) Feed Water Composition for Boiler
JPH04117481A (en) Antifreeze
Popoola et al. Inhibitive action of ferrous gluconate on aluminum alloy in saline environment
Tijing et al. Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
KR101273371B1 (en) Water treating method for open recirculating cooling system
Jaralla et al. Developing new innovative descaling and corrosion inhibiting solutions to protect steel equipment in the oil and gas industry
MD4310C1 (en) Inhibitor of steel corrosion in water
Andreev et al. Steel corrosion inhibition by benzoic acid salts in calcium hydroxide solutions
RU2357008C1 (en) Protection method of ferrous metals against corrosion in aquatic sault environment
RU2772783C1 (en) Method for inhibiting corrosion of steel in water
Nikolaeva et al. Safe corrosion inhibitor for treating cooling water on heat power engineering plants
JPS585263B2 (en) corrosion inhibitor
KR101430043B1 (en) Equipment-protective compound of a closed heat-system
MD1534Z (en) Process for corrosion protection of steel in water
MD1726Z (en) Process for corrosion protection of steel in water
Abdallah et al. Coumarin Derivatives as Corrosion Inhibitors for Zinc in HCl Solutions
MD4313C1 (en) Inhibitor of steel corrosion in water
Todorović et al. Influence of gelatin on corrosion behavior of copper in acid media

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)