MA35944B1 - Brayton cycle with environmental refrigeration close to the critical isotherm - Google Patents

Brayton cycle with environmental refrigeration close to the critical isotherm

Info

Publication number
MA35944B1
MA35944B1 MA37373A MA37373A MA35944B1 MA 35944 B1 MA35944 B1 MA 35944B1 MA 37373 A MA37373 A MA 37373A MA 37373 A MA37373 A MA 37373A MA 35944 B1 MA35944 B1 MA 35944B1
Authority
MA
Morocco
Prior art keywords
critical
isobar
close
pressure
brayton cycle
Prior art date
Application number
MA37373A
Other languages
French (fr)
Inventor
Peñalosa José María Martínez-Val
Antón Javier Muñoz
Matas Rafael Rubén Mengual
Cámara Rubén Abbas
Millán Alberto Ramos
Del Fresno Manuel Valdés
Velasco Alberto Abanades
Carrete Mireira Piera
Pita María José Montes
De Antonio Antonio Rovira
Original Assignee
Univ Politécnica De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Politécnica De Madrid filed Critical Univ Politécnica De Madrid
Publication of MA35944B1 publication Critical patent/MA35944B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • F02C1/105Closed cycles construction; details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hybrid Cells (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Particle Accelerators (AREA)

Abstract

Cycle régénérateur fermé, dont la température minimale du fluide de travail est à son tour proche de la température critique, mais supérieure à celle-ci, et proche de la température ambiante utilisée pour réfrigérer un foyer froid; on sélectionne la valeur de l'isobare supérieur pour qu'il coïncide avec l'isobare dit suprême, qui présente la valeur maximale moyenne de chaleur spécifique à pression constante, dans la zone péri-critique, au-dessus de l'isotherme critique, et délimitée en pression entre un cinquième et cinq fois la pression critique, en fixant l'isobare inférieur pour fournir le maximum d'un facteur dans lequel le numérateur est le travail spécifique, et le dénominateur la somme des valeurs absolues de la variation d'enthalpie spécifique de chaque étape du cycle.Regenerative cycle closed, whose minimum temperature of the working fluid is in turn close to but above the critical temperature, and close to the ambient temperature used to cool a cold hearth; the value of the upper isobar is selected to coincide with the so-called supreme isobar, which has the mean maximum value of specific heat at constant pressure, in the peri-critical zone, above the critical isotherm, and delimited in pressure between one fifth and five times the critical pressure, fixing the lower isobar to provide the maximum of a factor in which the numerator is the specific work, and the denominator the sum of the absolute values of the variation of specific enthalpy of each stage of the cycle.

MA37373A 2012-03-30 2014-09-24 Brayton cycle with environmental refrigeration close to the critical isotherm MA35944B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200343A ES2427648B2 (en) 2012-03-30 2012-03-30 Brayton cycle with environmental refrigeration close to critical isotherm
PCT/ES2013/000071 WO2013144391A1 (en) 2012-03-30 2013-03-15 Brayton cycle with ambient cooling close to the critical isotherm

Publications (1)

Publication Number Publication Date
MA35944B1 true MA35944B1 (en) 2014-12-01

Family

ID=49258281

Family Applications (1)

Application Number Title Priority Date Filing Date
MA37373A MA35944B1 (en) 2012-03-30 2014-09-24 Brayton cycle with environmental refrigeration close to the critical isotherm

Country Status (4)

Country Link
CL (1) CL2014002636A1 (en)
ES (1) ES2427648B2 (en)
MA (1) MA35944B1 (en)
WO (1) WO2013144391A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2652522B2 (en) * 2017-10-30 2019-01-16 Univ Madrid Politecnica THERMODYNAMIC CYCLING PROCESS WITHOUT FLUID CONDENSATION AND WITH REGULATED LIMITATIONS ON ITS POINTS OF MINIMUM AND MAXIMUM ENTHALPIA AND DEVICE FOR ITS REALIZATION
ES2657072A1 (en) * 2017-12-05 2018-03-01 Universidad Politécnica de Madrid THERMODYNAMIC CYCLIC PROCESS WITH TURBINE AND COMPRESSOR OF GAS, WITH CONTRIBUTION OF HEAT BY EXTERNAL SOURCE, AND DEVICE FOR ITS REALIZATION (Machine-translation by Google Translate, not legally binding)
ES2713123B2 (en) * 2019-02-19 2019-11-06 Univ Madrid Politecnica THERMAL SYSTEM WITH COMPRESSOR AND GAS EXPANSION TURBINE IN CLOSED CIRCUIT, WITH HEAT CONTRIBUTION FROM OUTDOOR SOURCE, AND INTERNAL RECOVERY OF HEAT AND MECHANICAL ENERGY, FOR GENERATION OF ELECTRICITY AND PROCEDURE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143114A (en) * 1975-06-04 1976-12-09 Hitachi Ltd Shaft sealing device of turbo machines
US6666027B1 (en) * 2002-07-15 2003-12-23 General Electric Company Turbine power generation systems and methods using off-gas fuels
JP4179496B2 (en) * 2002-10-08 2008-11-12 川崎重工業株式会社 Atmospheric pressure combustion turbine system
DE102009038322A1 (en) * 2009-08-21 2011-02-24 Krones Ag Method and apparatus for converting thermal energy from biomass to mechanical work

Also Published As

Publication number Publication date
ES2427648B2 (en) 2014-04-01
WO2013144391A1 (en) 2013-10-03
CL2014002636A1 (en) 2015-01-30
ES2427648A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
Anand et al. Exergy analysis and experimental study of a vapor compression refrigeration cycle: a technical note
MA35944B1 (en) Brayton cycle with environmental refrigeration close to the critical isotherm
Ahmadi et al. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle
Galloni et al. Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid
Hepbasli et al. A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings
Jiang et al. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers
Wouagfack et al. Finite-time thermodynamics optimization of absorption refrigeration systems: A review
Yildiz Thermoeconomic analysis of diffusion absorption refrigeration systems
Miyazaki et al. Analytical model of a combined adsorption cooling and mechanical vapor compression refrigeration system
Ding et al. Finite time exergoeconomic performance for six endoreversible heat engine cycles: Unified description
Higgo et al. Characterization of a compact organic Rankine cycle prototype for low-grade transient solar energy conversion
Wang et al. Thermodynamic investigation of a centrifugal reverse Brayton cycle for refrigeration in air conditioning filed
Bi et al. Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump
Lin et al. The optimal performance of an irreversible absorption refrigerator
Mago Exergetic evaluation of an organic Rankine cycle using medium-grade waste heat
Zhan et al. Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle
Wu et al. The performance of mixture refrigerant R134a/R152a in a novel gas engine-driven heat pump system
Bi et al. Comparative performance analysis for endoreversible simple air heat pump cycles considering ecological, exergetic efficiency and heating load objectives
Benramdane et al. Contribution to improving the performance coefficient of a solar absorption refrigeration system
Shevchuk Variant Energy Saving in a Compressor Installation
CY1121387T1 (en) CONDENSER
Antar et al. Thermoeconomic considerations in the optimum allocation of heat transfer inventory for refrigeration and heat pump systems
Mazumdar et al. Dynamic performance analysis of a compressor driven metal hydride cooling system
Vanslambrouck et al. Waste heat recovery via Organic Rankine Cycle: Results of a ERA-SME technology transfer project
MA38952A1 (en) Magnetic refrigerator based on heat transfer by nano-fluids