MA32521B1 - Mnpo4 cathodic material put, thin nh2o bar - Google Patents

Mnpo4 cathodic material put, thin nh2o bar

Info

Publication number
MA32521B1
MA32521B1 MA32468A MA32468A MA32521B1 MA 32521 B1 MA32521 B1 MA 32521B1 MA 32468 A MA32468 A MA 32468A MA 32468 A MA32468 A MA 32468A MA 32521 B1 MA32521 B1 MA 32521B1
Authority
MA
Morocco
Prior art keywords
mnpo4
thin
nh2o
bar
ray diffraction
Prior art date
Application number
MA32468A
Other languages
Arabic (ar)
French (fr)
Inventor
Guessous Aicha
Bououd Sahar
Elhourch Abderrahim
Elkacemi Kacem
Original Assignee
Univ Mohammed V Agdal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Mohammed V Agdal filed Critical Univ Mohammed V Agdal
Priority to MA32468A priority Critical patent/MA32521B1/en
Priority to PCT/MA2010/000023 priority patent/WO2011081508A2/en
Publication of MA32521B1 publication Critical patent/MA32521B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

يتم الترسب الكهرلي للغشاء الرقيق من نوع mnpo4، h2o انطلاقا من محلول مائي يحتوي على 0,2m من سولفات المنغنيز؛5m من حامض الفوسفوريك. يتم انجاز ترسبه الكهرلي من خلال الأكسدة الغالفانية الثابتة.يجري تفاعل الترسب الكهرلي في مرحلتين: الأكسدة الكهروكيميائية ل mn(ii) إلى mn (iii) متبوعة بعملية ترسيب في بيئة فسفورية (m5).تتم دراسة تأثير متغيرات التوليف على تحضير فيلم رقيق من نوع mnpo4، h2o ،.البنية البلورية للترسبات المدروسة من خلال حيود أشعة إكس x تم ربطها بشكل سليم بالبنية ذات الشكل المنشوري المائل mnpo4، h2o .الدراسة المورفولوجية تم انجازها بالمجهر الإلكتروني الماسح وكشفت عن سطح مسامّي. تم حساب حجم البلورات الدقيقة بواسطة معادلة "شيرير" scherrer.الكلمات المفتاحة: mnpo4، h2o ؛مواد نانوية-متناهية الصغر؛ طبقات رقيقة؛ أنودية؛ حيود أشعة x ؛ المجهر الإلكتروني الماسح؛ مطياف الأشعة تحت الحمراء.The electrolytic deposition of the thin film is of the type mnpo4, h2o from an aqueous solution containing 0,2m of manganese sulfate; 5 m of phosphoric acid. The electrolytic reaction is carried out in two phases: the electrochemical oxidation of mn (ii) to mn (iii) followed by a deposition in a phosphorous environment (m5). The crystalline structure of the sediments studied by x-ray diffraction has been properly correlated with the diagonal prism-shaped structure mnpo4, h2o. The size of the fine crystals was calculated by the scherrer equation; mnpo4, h2o; nanomaterials; thin layers; anodic; x-ray diffraction; scanning electron microscopy;

MA32468A 2009-12-31 2009-12-31 Mnpo4 cathodic material put, thin nh2o bar MA32521B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA32468A MA32521B1 (en) 2009-12-31 2009-12-31 Mnpo4 cathodic material put, thin nh2o bar
PCT/MA2010/000023 WO2011081508A2 (en) 2009-12-31 2010-12-24 Production of thin-film mnpo4, nh2o cathodic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MA32468A MA32521B1 (en) 2009-12-31 2009-12-31 Mnpo4 cathodic material put, thin nh2o bar

Publications (1)

Publication Number Publication Date
MA32521B1 true MA32521B1 (en) 2011-08-01

Family

ID=44246946

Family Applications (1)

Application Number Title Priority Date Filing Date
MA32468A MA32521B1 (en) 2009-12-31 2009-12-31 Mnpo4 cathodic material put, thin nh2o bar

Country Status (2)

Country Link
MA (1) MA32521B1 (en)
WO (1) WO2011081508A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701535A (en) * 2013-12-05 2015-06-10 天津赫维科技有限公司 Preparation method of lithium manganese phosphate material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1023021B (en) * 1956-12-15 1958-01-23 Albert Ag Chem Werke Process for the production of manganese (ó¾) phosphate
EP2032504B1 (en) * 2006-12-22 2012-08-01 Umicore SYNTHESIS OF ELECTROACTIVE CRYSTALLINE NANOMETRIC LiMnPO4 POWDER
FR2913680B1 (en) * 2007-03-14 2009-07-03 Commissariat Energie Atomique SYNTHESIS OF LIMPO4 COMPOUND AND USE AS ELECTRODE MATERIAL IN LITHIUM ACCUMULATOR
EP2015382A1 (en) 2007-07-13 2009-01-14 High Power Lithium S.A. Carbon coated lithium manganese phosphate cathode material

Also Published As

Publication number Publication date
WO2011081508A3 (en) 2011-10-27
WO2011081508A2 (en) 2011-07-07
WO2011081508A4 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
Zhang et al. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array
Chua et al. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction
Liang et al. Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting
Wang et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X
Ratha et al. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method
Eng et al. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method
Yan et al. MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor
Kekedy-Nagy et al. Electroless production of fertilizer (struvite) and hydrogen from synthetic agricultural wastewaters
CN102009968B (en) Preparation method of nano-flaky FePO4.2H2O
US11661659B2 (en) Process for the facile electrosynthesis of graphene from CO2
EP2555307A8 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
MY161119A (en) Steel sheet for container and method of manufacturing the same
TW200642963A (en) Surface modified nanoparticle and method of preparing same
WO2011133906A3 (en) Electrochemical synthesis of aryl-alkyl surfactant precursor
De Yoreo A holistic view of nucleation and self-assembly
Bertero et al. Stainless steel-like FeCrNi nanostructures via electrodeposition into AAO templates using a mixed-solvent Cr (III)-based electrolyte
Song et al. One-step synthesis of heterostructural MoS2-(FeNi) 9S8 on Ni–Fe foam synergistically boosting for efficient fresh/seawater electrolysis
Liang et al. Synthesis and characterization of SnO with controlled flowerlike microstructures
Seo et al. Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@ shell nanorods utilizing WO3∙ 0.33 H2O phase
Xie et al. Shape-controlled synthesis of zinc phosphate nanostructures by an aqueous solution route at room temperature
MA32521B1 (en) Mnpo4 cathodic material put, thin nh2o bar
Rajagopal et al. Electrochemical fabrication of dendritic silver–copper bimetallic nanomaterials in protic ionic liquid for electrocarboxylation
Chinnakutti et al. Modulating the Combinatorial Target Power of MgSnN2 via RF Magnetron Sputtering for Enhanced Optoelectronic Performance: Mechanistic Insights from DFT Studies
Hoshino et al. One-step template-free electrosynthesis of cobalt nanowires from aqueous [Co (NH3) 6] Cl3 solution
Reddy et al. Simple preparation of V2O5 nanostructures and their characterization