LV15681B - Test system for detection of presence of sars-cov virus - Google Patents
Test system for detection of presence of sars-cov virus Download PDFInfo
- Publication number
- LV15681B LV15681B LVP-21-20A LVP2021000020A LV15681B LV 15681 B LV15681 B LV 15681B LV P2021000020 A LVP2021000020 A LV P2021000020A LV 15681 B LV15681 B LV 15681B
- Authority
- LV
- Latvia
- Prior art keywords
- sars
- cov
- antibody
- antigen
- detection
- Prior art date
Links
Landscapes
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Izgudrojums attiecas uz antivielu, kas ir specifiska SARS-CoV antigēnam, kā arī uz sānu plūsmas testa sloksni SARS-CoVvīrusu klātbūtnes noteikšanai bioloģiskajā paraugā. Piedāvātā antiviela ir specifiska antigēnam, kurš satur rekombinanto vīrusa SARS-CoV smailes proteīna RBD domēnu (SEQ ID No: 1) ar N-termināla polihistidīna tagu (SEQ ID No: 2). Testa sloksne vīrusa SARS-CoV klātbūtnes noteikšanai satur detektora molekulas, kur detektora molekulas satur minēto antivielu, turklāt antiviela ir konjugēta ar koloidālo zeltu. Piedāvātā testa sistēma un diagnostikas komplekts ir piemēroti ātrai un kvalitatīvai SARS-CoV antigēnu in vitro noteikšanai bioloģiskajā paraugā, it sevišķi siekalās.The invention relates to an antibody specific for the SARS-CoV antigen, as well as to a lateral flow test strip for detecting the presence of SARS-CoV viruses in a biological sample. The proposed antibody is specific for an antigen containing the RBD domain of the spike protein of the recombinant virus SARS-CoV (SEQ ID No: 1) with an N-terminal polyhistidine tag (SEQ ID No: 2). The test strip for detecting the presence of the SARS-CoV virus contains detector molecules, wherein the detector molecules contain said antibody, and the antibody is conjugated to colloidal gold. The proposed test system and diagnostic kit are suitable for rapid and qualitative in vitro detection of SARS-CoV antigens in a biological sample, especially in saliva.
Description
IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION
Tehnikas jomaTechnical field
[001] Izgudrojums attiecas uz molekulārās bioloģijas jomu, konkrēti, uz sānu plūsmas imūnhromatogrāfijas testu SARS-CoV vīrusu, tai skaitā SARS-CoV-2 RNS vīrusa noteikšanai bioloģiskajā paraugā.[001] The invention relates to the field of molecular biology, specifically, to a lateral flow immunochromatographic test for the detection of SARS-CoV viruses, including SARS-CoV-2 RNA virus, in a biological sample.
Zināmais tehnikas līmenisThe known state of the art
[002] Sakarā ar SARS-CoV-2 pandēmiju un tās milzīgajiem sabiedrības veselības izaicinājumiem visā pasaulē, ir ļoti nepieciešams ātri un viegli veikt diagnostikas testus. Šobrīd strauji attīstās aprūpes punktu tehnoloģijas un seroloģiskie imunoloģiskie testi. Antigēna testi, kas nosaka vīrusu olbaltumvielu klātbūtni bioloģiskajā paraugā, piemēram, siekalās vai deguna dobuma/rīkles uztriepēs, ir viena no alternatīvām. Antigēna testi parasti ir lēti, tie dod rezultātu dažu minūšu laikā un, tāpat kā ģenētiskie testi, atklāj infekcijas esamību. Ātrie antigēna noteikšanas (ĀAN) testi kvalitatīvai SARS-CoV-2 antigēna noteikšanai nosaka vīrusa antigēnu ar ierīcē esošo imobilizēto pārklāto SARS-CoV-2 antivielu. ĀAN testa rezultātus var interpretēt bez specializētiem instrumentiem, un rezultāti parasti ir pieejami 30 minūšu laikā. Ātros testus var izmantot kā primāro skrīningu. ĀAN testi nehospitalizētiem pacientiem arī noteikti atvieglotu laboratoriju noslodzi, kamēr reversās transkripcijas-polimerāzes ķēdes reakcijas (RT-PĶR) testi ir nepietiekamā daudzumā. Lidostās vai citās valsts robežas šķērsošanas vietās ātrās diagnostikas pārbaudes var veicināt kvalitatīvu pārbaudi, ļaujot ārkārtas situācijā šķērsot robežu un, atjaunojot starpvalstu loģistiku. Citiem diagnostikas testiem, piemēram, kas balstās uz PĶR, ir nepieciešams daudz vairāk laika (stundu) nekā antigēna testiem (minūtes), turklāt RT-PĶR testu veikšanai ir nepieciešams papildu aprīkojums un zināšanas. Turklāt daudzās valstīs ir radies RT-PĶR reaģentu trūkums. Antivielu tests nevar noteikt infekcijas sākuma stadiju, veicinot papildu viltus negatīvu rezultātu iegūšanu. Uz antigēniem balstītu testu gadījumā procedūru būs daudz vieglāk atkārtot pat neapmācītam personālam, un asimptomātiskiem pacientiem var savlaicīgi atklāt nelielu daudzumu vīrusa. Kopumā ātra antigēna noteikšana var kļūt par svarīgu līdzekli agrīnai SARS-CoV-2 diagnostikai, it īpaši situācijās, kad molekulārajām metodēm ir ierobežota pieejamība.[002] Due to the SARS-CoV-2 pandemic and its enormous public health challenges worldwide, there is a great need for rapid and easy diagnostic tests. Currently, point-of-care technologies and serological immunological tests are developing rapidly. Antigen tests that detect the presence of viral proteins in a biological sample such as saliva or nasopharyngeal swabs are one alternative. Antigen tests are generally inexpensive, give results within minutes, and, like genetic tests, detect the presence of infection. Rapid Antigen Detection (RAD) tests for qualitative detection of SARS-CoV-2 antigen detect viral antigen with the immobilized coated SARS-CoV-2 antibody in the device. AAN test results can be interpreted without specialized instruments, and results are usually available within 30 minutes. Rapid tests can be used as primary screening. AAN tests for non-hospitalized patients would also certainly ease laboratory workloads, while reverse transcription-polymerase chain reaction (RT-PCR) tests are in short supply. At airports or other national border crossings, rapid diagnostic tests can facilitate quality screening, allowing emergency border crossings and restoring cross-border logistics. Other diagnostic tests, such as those based on PCR, require much more time (hours) than antigen tests (minutes), and RT-PCR tests require additional equipment and expertise. In addition, there has been a shortage of RT-PCR reagents in many countries. The antibody test cannot detect the early stage of the infection, contributing to additional false negative results. In the case of antigen-based tests, the procedure will be much easier to repeat even by untrained personnel, and small amounts of virus can be detected early in asymptomatic patients. Overall, rapid antigen detection may become an important tool for early diagnosis of SARS-CoV-2, especially in situations where molecular methods are limited in availability.
[003] Ar siekalām apstiprinātai ātrai antigēna noteikšanai ir vairākas priekšrocības salīdzinot ar komerciāli pieejamiem uz NPS balstītiem ĀAN un uz siekalām balstītiem PĶR testiem: viegli lietojama koncepcija (salīdzinot ar PĶR); īss testa periods (salīdzinot ar PĶR); tas ir pacientiem draudzīgs (salīdzinot ar NPS); nav nepieciešams labi apmācīts personāls (salīdzinot ar NPS testiem).[003] Saliva-confirmed rapid antigen detection has several advantages over commercially available NPS-based AAN and saliva-based PCR tests: easy-to-use concept (compared to PCR); short test period (compared to PCR); it is patient-friendly (compared to NPS); does not require well-trained personnel (compared to NPS tests).
[004] Pašlaik tirgū ir pieejami daudzi ĀAN testi, desmitiem to ir izstrādes procesā, bet daudzi joprojām gaida klīnisko pārbaudi un oficiālu apstiprinājumu. Esošais testu saraksts cita starpā ietver BD Veritor™, Sofia® 2 SARS antigēna FĪA testu, ESPLINE SARS-CoV2 sānu plūsmas antigēna testu, BinaxNOW™ COVID-19 Ag karti u.c. Atklāšanas robežas, par kurām ziņots attiecībā uz ĀAN testiem, salīdzinot ar RT-PĶR ir ļoti mainīgas. Parasti antigēna testi SARS-CoV-2 ir mazāk jutīgi nekā vīrusu testi, kas nosaka nukleīnskābi, izmantojot RT-PĶR. Kā viens galējais piemērs tika norādīts, ka ĀAN Biocredit Covid-19 Ag detektēšanas komplekts ir 105 reizes mazāk jutīgs nekā RT-PĶR, un ĀAN testā tika atklāts no 11,1 % līdz 45,7 % no RT-PĶR pozitīviem paraugiem no COVID-19 pacientiem [2]. No otras puses, fluorescējošā imūnhromatogrāfiskā SARS-CoV-2 antigēna testa vispārējā jutība un specifiskums (Bioeasy Biotechnology Co., Shenzhen, Ķīna) bija 93,9 % [4]·[004] There are currently many AAN tests available on the market, with dozens in development, but many still awaiting clinical testing and formal approval. The current list of tests includes BD Veritor™, Sofia® 2 SARS Antigen FIA Test, ESPLINE SARS-CoV2 Lateral Flow Antigen Test, BinaxNOW™ COVID-19 Ag Card, among others. The detection limits reported for AAN assays compared to RT-PCR are highly variable. In general, antigen tests for SARS-CoV-2 are less sensitive than viral tests that detect nucleic acid using RT-PCR. As one extreme example, the AAN Biocredit Covid-19 Ag Detection Kit was reported to be 105-fold less sensitive than RT-PCR, with the AAN assay detecting between 11.1% and 45.7% of RT-PCR positive samples from COVID- in 19 patients [2]. On the other hand, the overall sensitivity and specificity of the fluorescent immunochromatographic SARS-CoV-2 antigen test (Bioeasy Biotechnology Co., Shenzhen, China) was 93.9% [4]·
[005] Vairumā gadījumu ĀAN testiem tiek izmantoti COVID-19 pacientu deguna uztriepju paraugi. Pašlaik dažu valstu kompetentās iestādes, piemēram, ASV Pārtikas un zāļu pārvalde, ir atļāvušas veikt antigēna testus nazofaringeālu vai deguna uztriepju tamponu paraugiem, kas ievietoti tieši testa ekstrakcijas buferī vai reaģentā [1].[005] Nasal swab samples from COVID-19 patients are used in most cases for AAN tests. Currently, competent authorities in some countries, such as the US Food and Drug Administration, have authorized antigen testing of nasopharyngeal or nasal swab samples placed directly in the test extraction buffer or reagent [1].
[006] Pašlaik pieejamajiem komerciālajiem ātro antigēnu testiem ir nopietni ierobežojumi: tiem nepieciešams papildus labi apmācīts personāls; procedūra pacientiem nav patīkama; to jutīgums nav pietiekami atbilstošs, lai veicinātu pacientu skrīningu.[006] Currently available commercial rapid antigen tests have serious limitations: they require additional well-trained personnel; the procedure is not pleasant for patients; their sensitivities are not adequate to facilitate patient screening.
[007] Piemēram, SARS-CoV-2 RT-PĶR noteikšanas ātrums pacientiem ar COVID-19 bronhoalveolārā skalojamā šķidrumā sasniedz 93 %, krēpās (atvasinātas no siekalām) 72 %, bet deguna un rīkles uztriepēs 63 %, kamēr rīkles uztriepēs tas ir tikai 32 % un izkārnījumos 29 % [5]. Tajā pašā laikā svarīgi aspekti, kas jāņem vērā, ir paraugu ņemšanas vienkāršība un paša parauga viendabīgums, bet citi avoti, piemēram, siekalas, tiek uzskatīti par alternatīviem paraugiem COVID-19 testēšanai [3; 6].[007] For example, RT-PCR detection rates for SARS-CoV-2 in patients with COVID-19 in bronchoalveolar lavage fluid reach 93%, in sputum (derived from saliva) 72%, and in nasopharyngeal swabs 63%, while in throat swabs it is only 32% and in feces 29% [5]. At the same time, important aspects to consider are the ease of sampling and the homogeneity of the sample itself, while other sources, such as saliva, are considered as alternative samples for COVID-19 testing [3; 6].
[008] Ir zināma rekombinantā smailes RBD proteīna izveide [7], kur proteīnu ekspresiju veic E.Coli sistēmā, kā arī ir zināma rekombinantā smailes RBD proteīna izveide Pichiapastoris raugos [8].[008] The creation of recombinant spike RBD protein is known [7], where protein expression is carried out in the E.Coli system, and the creation of recombinant spike RBD protein in Pichiapastoris yeast is also known [8].
[0009] Ir zināms S-RBD proteīna zelta imūnhromatogrāfijas tests, kas balstās uz rekombinanta S-RBD proteīna antivielas detektēšanas spēju [9], kas ietver testa sloksni ar detektora molekulām, t.i., S-RBD proteīna un koloidāla zelta kompleksu, NC membrānu, kas aprīkota ar kvalitātes kontroles līniju un detektēšanas līniju, absorbenta spilventiņu un parauga spilventiņu. Kā arī ir zināms zelta imūnhromatogrāfijas tests, kas nosaka Covid-19 N antigēna un S proteīna antigēna klātbūtni analizējamā paraugā [10].[0009] A gold immunochromatographic assay for S-RBD protein is known, based on the detection ability of recombinant S-RBD protein antibody [9], which includes a test strip with detector molecules, i.e. a complex of S-RBD protein and colloidal gold, NC membrane, equipped with quality control line and detection line, absorbent pad and sample pad. There is also a known gold immunochromatography test that determines the presence of the Covid-19 N antigen and S protein antigen in the analyzed sample [10].
[010] Daudzu iepriekš zināmo risinājumu trūkums kopumā ir to nepietiekami augstā metodes jutība it sevišķi apstākļos, kad testēšanu veic neapmācīta persona [11]. Tas savukārt ierobežo testu izmantošanu bez apmācītā personāla līdzdalības.[010] The disadvantage of many previously known solutions in general is their insufficiently high sensitivity of the method, especially in conditions when testing is performed by an untrained person [11]. This in turn limits the use of tests without the participation of trained personnel.
Izgudrojuma mērķis un būtībaPurpose and essence of the invention
[011] Izgudrojuma mērķis ir novērst esošā tehnikas līmeņa risinājumu trūkumus un nodrošināt testa komplektu koronavīrusa, tai skaitā SARS-CoV-2 RNS polinukleotīdu noteikšanai bioloģiskajā paraugā, it īpaši siekalu paraugā, ar augstu precizitāti.[011] The purpose of the invention is to eliminate the shortcomings of the existing state-of-the-art solutions and to provide a test kit for the detection of coronavirus, including SARS-CoV-2 RNA polynucleotides, in a biological sample, especially in a saliva sample, with high accuracy.
[012] Izvirzītais mērķis tiek sasniegts, nodrošinot antivielu, kas ir specifiska antigēnam, kurš satur rekombinanto vīrusa SARS-CoV smailes proteīna RBD domēnu (SEQ ID No: 1) ar Ntermināla polihistidīna tagu (SEQ ID No: 2).[012] The aim is achieved by providing an antibody specific for an antigen containing the RBD domain of the recombinant SARS-CoV spike protein (SEQ ID No: 1) with an N-terminal polyhistidine tag (SEQ ID No: 2).
[013] Tiek piedāvāta arī testa sloksne vīrusa SARS-CoV klātbūtnes noteikšanai, kas satur detektora molekulas, kur detektora molekulas satur antivielu, kas ir specifiska antigēnam, kurš satur vīrusa SARS-CoV smailes proteīna RBD domēnu (SEQ ID No: 1) ar N-termināla polihistidīna tagu (SEQ ID No: 2), turklāt antiviela ir konjugēta ar koloidālo zeltu.[013] Also provided is a test strip for detecting the presence of the SARS-CoV virus containing detector molecules, wherein the detector molecules contain an antibody specific for an antigen containing the RBD domain of the spike protein of the SARS-CoV virus (SEQ ID No: 1) with N -terminal polyhistidine tag (SEQ ID No: 2), and the antibody is conjugated with colloidal gold.
īss zīmējumu aprakstsbrief description of the drawings
[014] 1. zīmējumā redzami proteīni, kas ir analizēti ar imunoblota metodi, kur 1 - SARSCoV-2 (2019-nCoV) smailes S1+S2 ECD-His rekombinantais proteīns 134 kDa (Nordic BioSite, cat.# 158-40589-V08B1); 2 - SARS-CoV-2 smailes RBD His-tag (no 333. līdz 526. atlikumam) proteīns 22,7 kDa;[014] Figure 1 shows the proteins analyzed by immunoblot method, where 1 - SARSCoV-2 (2019-nCoV) peak S1+S2 ECD-His recombinant protein 134 kDa (Nordic BioSite, cat.# 158-40589-V08B1 ); 2 - SARS-CoV-2 peak RBD His-tag (from residues 333 to 526) protein 22.7 kDa;
2.zīm. - Antigēnu bāzes ātrās noteikšanas testa novērtēšana SARS-CoV-2 diagnostikai siekalu paraugos.Fig. 2 - Evaluation of an antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in saliva samples.
Izgudrojuma detalizēts aprakstsDetailed description of the invention
[015] Izgudrojums ļauj ar pietiekami lielu precizitāti dažādos bioloģiskos materiālos, tai skaitā siekalu paraugos, atklāt SARS-CoV vīrusu klātbūtni, kas izraisa smagu akūtu elpošanas sindromu (SARS).[015] The invention allows detecting the presence of SARS-CoV viruses, which cause severe acute respiratory syndrome (SARS), in various biological materials, including saliva samples, with a sufficiently high accuracy.
[016] Saskaņā ar izgudrojumu tiek piedāvāta antiviela, kas var tikt izmantota sānu plūsmas imūnhromatogrāfījas testu ražošanā. Testos tiek izmantota specifiska antigēnu un antivielu mijiedarbība. Analītu(-us), kas satur vīrusu vai vīrusus, pievieno parauga spilventiņam un pēc tam tas ar kapilāru iedarbību plūst gar testa joslu. Testa sloksne satur detektora molekulas, kur detektora molekulas satur pirmo specifisko antivielu, kas konjugēta ar koloidālo zeltu (t.i., koloidālajām zelta nanodaļiņām). Kad SARS-CoV vīruss sastopas ar detektora molekulām, pirmā specifiskā antiviela, kas konjugēta ar koloidālo zeltu, atpazīst vīrusa antigēnus, kur vīrusu antigēni satur specifiskus vīrusa virsmas proteīnus (t.i., SARSCoV smailes proteīnu RBD domēnu). Pirmās specifiskās antivielas saistās ar vīrusa specifiskā vīrusa smailes proteīna (t.i., SARS-CoV smailes proteīnu RBD domēnu) pirmo reģionu, veidojot pirmo kompleksu, kas satur antivielu-antigēnu kompleksu. Antivieluantigēnu komplekss virzās tālāk uz testa līniju, kas satur uz testa līnijas esošo otro pārklāto specifisko antivielu, kur otrā specifiskā antiviela atpazīst specifiskos vīrusa virsmas proteīnus (t.i., SARS-CoV smailes proteīnu RBD domēnu). Otrā specifiskā antiviela saistās ar specifisko vīrusa virsmas proteīnu otro reģionu (t.i., SARS-CoV-2 smailes proteīnu RBD domēnu). Vīruss saistās ar otro specifisko antivielu, kas pārklāta uz testa līnijas. Otrās specifiskās antivielas saistīšanās ar vīrusu veido otro kompleksu, kas satur antivieluantigēnu slāņu kompleksu. Viena vai vairāku antivielu-antigēnu slāņu kompleksu veidošanās rezultātā veidojas sarkanas krāsas līnija, kas var būt redzama vai vizuāli novērojama detektoru molekulu koloidālā zelta dēļ, jo koloidālā zelta nanodaļiņām ir sarkana krāsa.[016] The invention provides an antibody that can be used in the production of lateral flow immunochromatographic assays. The tests use a specific interaction between antigens and antibodies. The analyte(s) containing the virus or viruses is added to the sample pad and then flows by capillary action along the test strip. The test strip contains detector molecules, wherein the detector molecules contain a first specific antibody conjugated to colloidal gold (i.e., colloidal gold nanoparticles). When the SARS-CoV virus encounters the detector molecules, the first specific antibody conjugated to the colloidal gold recognizes the viral antigens, where the viral antigens contain specific viral surface proteins (i.e., the RBD domain of the SARSCoV spike protein). The first specific antibodies bind to the first region of the virus-specific viral spike protein (i.e., the RBD domain of the SARS-CoV spike protein) to form a first complex comprising an antibody-antigen complex. The antibody-antigen complex moves further to the test line containing a second coated specific antibody present on the test line, where the second specific antibody recognizes specific viral surface proteins (i.e., the RBD domain of the SARS-CoV spike protein). The second specific antibody binds to the second region of the specific viral surface proteins (i.e. the RBD domain of the SARS-CoV-2 spike protein). The virus binds to the second specific antibody coated on the test line. Binding of the second specific antibody to the virus forms a second complex containing a complex of antibody-antigen layers. The formation of one or more antibody-antigen layer complexes results in a red line that can be seen or visually observed due to the colloidal gold of the detector molecules, as colloidal gold nanoparticles have a red color.
[017] Rekombinantā smailes RBD proteīna producēšana Pichia pastoris. PĶR fragments, kas kodē SARS-CoV vīrusa smailes proteīna RBD sekvenci (333. līdz 526. atlikums) ar Ntermināla polihistidīna tagu, tika klonēts pPICZa vektorā (Invitrogen) aiz α faktora sekrēcijas signāla ekspresijai kā šķīstošais izdalītais proteīns raugā Pichia pastoris (Komagataella phaffii celms Χ-33). Pozitīvi atlasītos transformantus 24 °C temperatūrā ar aerāciju 72 stundas kultivēja BMGY barotnē, kas satur 400 pg/ml zeocīna. Šūnu nogulsnes atdalīja ar centrifugēšanu un supematantu ar tajā izšķīdušo mērķproteīnu uznesa uz metāla[017] Production of recombinant spike RBD protein in Pichia pastoris. A PCR fragment encoding the RBD sequence (residues 333 to 526) of the SARS-CoV viral spike protein with an N-terminal polyhistidine tag was cloned into the pPICZa vector (Invitrogen) behind the α-factor secretion signal for expression as a soluble secreted protein in the yeast Pichia pastoris (Komagataella phaffii strain Χ-33). Positively selected transformants were cultured in BMGY medium containing 400 pg/ml zeocin at 24 °C with aeration for 72 h. The cell pellet was separated by centrifugation and the supernatant with the target protein dissolved in it was plated on metal
Ni-NTA afinās hromatogrāfijas kolonnas. Rekombinantais mērķproteīns tika eluēts ar 0300 mM imidazola gradientu, tālāk tas tika koncentrēts izmantojot 10 kDa Amicon filtra attīrīšanas sistēmu un galīgi attīrīts uz Superdex 200 gēlfiltrācijas kolonnas. Proteīna paraugi tika sasaldēti un glabāti -80 °C temperatūrā līdz tika tālāk izmantoti.Ni-NTA affinity chromatography columns. The recombinant target protein was eluted with a 0300 mM imidazole gradient, further concentrated using a 10 kDa Amicon filter purification system and finally purified on a Superdex 200 gel filtration column. Protein samples were frozen and stored at −80 °C until further use.
[018] Anti-smailes-RBD pAbs producēšana. 6-8 nedēļu vecas BALB/c peļu mātītes tika subkutāni imunizētas ar 20 pg smailes-RBD proteīnu PBS buferšķīdumā (200 μΐ), kas 0. un 14. dienā bija sajaukts ar Freinda pilno adjuvantu (Sigma), bet 28. dienā ar Freinda nepilno adjuvantu (Sigma). Četrpadsmit dienas pēc pēdējās imunizācijas pelēm tika savāktas asinis no astes vēnas (20 μΐ) mēģenēs, kas satur heparīnu, un seruma paraugus tālāk pārbauda ar imunoblota metodi izmantojot iegūtās antivielas un specifiskos mērķa antigēnus (1. zīm.). [019] Dažos izgudrojuma izpausmes variantos sānu plūsmas testa sloksne var būt specifiska SARS-CoV vīrusu noteikšanai. Dažos variantos sānu plūsmas testa sloksne var būt 100 % specifiska koronavīrusu noteikšanai. Katra detektora molekula var saturēt pirmo antigēnam specifisko antivielu, kas konjugēta ar nosakāmu daļiņu. Dažos variantos nosakāmā daļiņa var saturēt zelta nanodaliņu. Dažos variantos zelta nanodaļiņu izmērs var būt 100 nm vai mazāks, 40 nm vai mazāks, vai 20 nm vai mazāks. Dažos variantos pirmā antigēna specifiskā antiviela var būt specifiska vīrusa antigēnam, kas satur vīrusa smailes proteīnu. Dažos variantos katra saistošā molekula var saturēt otro antigēnam specifisko antivielu, kas ir pārklāta uz testa līnijas. Dažos variantos otrā antigēna specifiskā antiviela var būt specifiska smailes proteīnam. Dažos variantos otrā antigēna specifiskā antiviela var būt anti-RBD antiviela.[018] Production of anti-spike-RBD pAbs. 6-8-week-old female BALB/c mice were immunized subcutaneously with 20 pg spike-RBD protein in PBS buffer (200 μΐ) mixed with Freund's complete adjuvant (Sigma) on days 0 and 14, and on day 28 with Freund's incomplete adjuvant (Sigma). Fourteen days after the last immunization, mice were collected from the tail vein (20 μΐ) in tubes containing heparin, and serum samples were further tested by immunoblotting using the obtained antibodies and specific target antigens (Fig. 1). [019] In some embodiments of the invention, the lateral flow test strip may be specific for the detection of SARS-CoV viruses. In some embodiments, the lateral flow test strip may be 100% specific for the detection of coronaviruses. Each detector molecule may comprise a first antigen-specific antibody conjugated to a detectable particle. In some embodiments, the detectable particle may comprise a gold nanoparticle. In some embodiments, the size of the gold nanoparticles may be 100 nm or less, 40 nm or less, or 20 nm or less. In some embodiments, the first antigen-specific antibody may be specific for a viral antigen comprising a viral spike protein. In some embodiments, each binding molecule may comprise a second antigen-specific antibody coated on the test line. In some embodiments, the second antigen-specific antibody may be specific for a spike protein. In some embodiments, the second antigen-specific antibody can be an anti-RBD antibody.
[020] Klīniskajiem paraugiem pēc 35 minūtēm visi sānu plūsmas testa sloksnes testa rezultāti ir pozitīvi, neatkarīgi no tā, vai klīniskajā paraugā ir vai nav SARS-CoV vīrusi. Saskaņā ar izgudrojumu izgatavotā sānu plūsmas testa sloksne nodrošina testa rezultātus ar aptuveni 90 % vai lielāku precizitāti. Dažos šī izgudrojuma variantos sānu plūsmas testa sloksne var noteikt visus SARS-CoV vīrusus, ieskaitot SARS-CoV 1 un 2. [021] Diagnostikas komplekts papildus var saturēt paraugu savākšanas ierīci bioloģiskā šķidruma parauga vai bioloģiskā šķidruma paraugu savākšanai. Bioloģiskā šķidruma paraugs var būt siekalas vai nazofaringeāls / orofaringeāls šķidrums. Var tikt izmantoti arī citu bioloģisko šķidrumu paraugi.[020] For clinical specimens, all lateral flow test strip test results are positive after 35 minutes, regardless of the presence or absence of SARS-CoV viruses in the clinical specimen. A lateral flow test strip made in accordance with the invention provides test results with an accuracy of approximately 90% or greater. In some embodiments of the present invention, the lateral flow test strip can detect all SARS-CoV viruses, including SARS-CoV 1 and 2. [021] The diagnostic kit can further contain a sample collection device for collecting a biological fluid sample or biological fluid samples. The biological fluid sample can be saliva or nasopharyngeal/oropharyngeal fluid. Samples of other biological fluids may also be used.
[022] 2.zīmējumā ar bultiņām ir parādīta marķieru lokācija. P+: pozitīvā kontrole (S1+S2 rekombinantais antigēns); N. Controls: negatīvās kontroles (veselu personu siekalu paraugi); 1-10: COVID pacientu siekalu paraugi; n: nav testēts (siekalu paraugs tika ņemts pirms diagnozes); +*: siekalu paraugs tika ņemts piecas dienas pēc pozitīva COVID testa (visi pārējie paraugi tika ņemti 1-2 dienas pēc pozitīva COVID testa).[022] In drawing 2, the location of markers is shown with arrows. P+: positive control (S1+S2 recombinant antigen); N. Controls: negative controls (saliva samples from healthy individuals); 1-10: Saliva samples from COVID patients; n: not tested (saliva sample taken before diagnosis); +*: The saliva sample was taken five days after a positive COVID test (all other samples were taken 1-2 days after a positive COVID test).
[023] Antivielas saskaņā ar izgudrojumu iegūšana ietver vīrusa SARS-CoV smailes proteīna RBD domēna (SEQ ID No: 1) nodrošināšanu; N-termināla polihistidīna taga (SEQ ID No: 2) nodrošināšanu; iepriekš minēto vīrusa SARS-CoV smailes proteīna RBD domēna un Ntermināla polihistidīna taga klonēšanu pPICZa vektorā aiz α faktora sekrēcijas signāla ekspresijai; iepriekšējā solī iegūtā pPICZa vektora ievietošanu Pichia pastoris raugā (Komagataella phaffii celms Χ-33) un rekombinantā smailes RBD proteīna iegūšanu. Pozitīvi atlasītos transformantus kultivē BMGY barotnē. Šūnu nogulsnes tiek atdalītas, lai iegūtu šķīstošo proteīnu. Mērķproteīnu attīra ar metāla afīno hromatogrāfiju un gēlfiltrāciju. 6-8 nedēļu vecas BALB/c peles tiek subkutāni imunizētas ar 20 pg mērķproteīna PBS buferšķīdumā. Pelēm asinis tiek savāktas no astes vēnas (20 μΐ) mēģenēs, kas satur heparīnu. Seruma paraugus pārbauda attiecībā uz antivielu specifiskumu izmantojot mērķproteīna antigēnus. Rezultātā iegūst poliklonālās peļu antivielas.[023] Obtaining antibodies according to the invention includes providing the RBD domain (SEQ ID No: 1) of the spike protein of the virus SARS-CoV; providing an N-terminal polyhistidine tag (SEQ ID No: 2); cloning of the aforementioned RBD domain and N-terminal polyhistidine tag of the spike protein of the SARS-CoV virus into the pPICZa vector behind the α-factor secretion signal for expression; inserting the pPICZa vector obtained in the previous step into Pichia pastoris yeast (Komagataella phaffii strain Χ-33) and obtaining the recombinant spike RBD protein. Positively selected transformants are cultured in BMGY medium. The cell pellet is separated to obtain the soluble protein. The target protein is purified by metal affinity chromatography and gel filtration. 6-8 week old BALB/c mice are immunized subcutaneously with 20 pg of target protein in PBS buffer. In mice, blood is collected from the tail vein (20 μΐ) into tubes containing heparin. Serum samples are tested for antibody specificity using target protein antigens. The result is polyclonal murine antibodies.
[024] Testēja gan anti-4-epitopu poliklonālās trušu, gan anti-RBD poliklonālās peļu antivielas, izmantojot ELISA un Vestem blota metodes, lai novērtētu to potenciālo veiktspēju ātrās diagnostikas testa izstrādē. Tika izmantoti komerciāli pieejamie SARSCoV-2 antigēni, inaktivētie SARS-CoV-2 vīrusa paraugi, kā arī siekalu paraugi un nazofaringeālās/orofaringeālās uztriepes no COVID-19 pozitīviem pacientiem. Klīnisko paraugu izmantošanā tika ievērota Helsinku deklarācija. Pētījuma protokolu apstiprināja Rīgas Stradiņa universitātes Pētījumu ētikas komiteja (Nr. 6-1/08/7). Salīdzināšanai un papildināšanai tika izmantotas dažādas komerciāli pieejamās poliklonālās un monoklonālās SARS-CoV-2 antivielas. Rezultāti parādīja, ka poliklonālās peļu antivielas bija pārākas par trušu antivielām, tāpēc tika nolemts tās izmantot turpmākajā darbā. Veikta uz RT-PĶR balstītas SARS-CoV-2 vīrusa noteikšanas metodes aprobācija, mākslīgo plazmīdu konstruēšana un vīrusu slodzes testa izstrāde, izmantojot E gēna plazmīdu un inaktivētus SARS-CoV-2 vīrusa paraugus. Tests sastāvēja no PĶR praimera-zondes komplektiem, kas detektēja divus vīrusa gēnus: no RNS atkarīgo RNS polimerāzi (RdRP gēns, IP4 fragments) un apvalka (E) gēna fragmentu, kurus ieteica Pasaules Veselības organizācija. Šim testam tika izstrādāts iekšējais plazmīdu standarts/pozitīvā kontrole, molekulāri klonējot SARSCoV-2 vīrusa E gēnu. Izmantojot plazmīdu standarta kontroli, tika pierādīts, ka testam ir augsta diagnostiskā jutība (arī siekalu paraugos) ar kalibrēšanas diapazonu 10 līdz 1000000 vīrusa kopijas.[024] Both anti-4-epitope polyclonal rabbit and anti-RBD polyclonal mouse antibodies were tested using ELISA and Western blot methods to evaluate their potential performance in the development of a rapid diagnostic test. Commercially available SARSCoV-2 antigens, inactivated SARS-CoV-2 virus samples, as well as saliva samples and nasopharyngeal/oropharyngeal swabs from COVID-19 positive patients were used. The use of clinical samples followed the Declaration of Helsinki. The research protocol was approved by the Research Ethics Committee of Riga Stradins University (No. 6-1/08/7). Various commercially available polyclonal and monoclonal SARS-CoV-2 antibodies were used for comparison and complementation. The results showed that the mouse polyclonal antibodies were superior to the rabbit antibodies, so it was decided to use them in the future work. Approbation of RT-PCR-based SARS-CoV-2 virus detection method, construction of artificial plasmids and development of viral load test using E gene plasmid and inactivated SARS-CoV-2 virus samples were carried out. The test consisted of PCR primer-probe sets that detected two viral genes: RNA-dependent RNA polymerase (RdRP gene, IP4 fragment) and a fragment of the envelope (E) gene recommended by the World Health Organization. An internal plasmid standard/positive control was developed for this assay by molecular cloning of the SARSCoV-2 virus E gene. Using a plasmid standard control, the test was shown to have a high diagnostic sensitivity (also in saliva samples) with a calibration range of 10 to 1,000,000 virus copies.
Sekvenču saraksts <210> 1 <211> 194 < 212> PRT < 213> Mākslīga Sekvence <220>Sequence List <210> 1 <211> 194 <212> PRT <213> Artificial Sequence <220>
< 223> SARS-CoV-2 vīrusa smailes proteīna RBD sekvence < 400> 1< 223> RBD sequence of SARS-CoV-2 viral spike protein < 400> 1
Thr Asn Leu Cys Pro Phe Gly Glu Vai Phe Asn Ala Thr Arg Phe Ala 15 1015Thr Asn Leu Cys Pro Phe Gly Glu Or Phe Asn Ala Thr Arg Phe Ala 15 1015
Ser Vai Tyr Ala Trp Asn Arg Lys Arg Ile Ser Asn Cys Vai Ala Asp 20 2530Ser Or Tyr Ala Trp Asn Arg Lys Arg Ile Ser Asn Cys Or Ala Asp 20 2530
Tyr Ser Vai Leu Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr 35 4045Tyr Ser Or Leu Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr 35 4045
Gly Vai Ser Pro Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Vai Tyr 50 5560Gly Or Ser Pro Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Or Tyr 50 5560
Ala Asp Ser Phe Vai Ile Arg Gly Asp Glu Vai Arg Gln Ile Ala ProAla Asp Ser Phe Or Ile Arg Gly Asp Glu Or Arg Gln Ile Ala Pro
70 758070 7580
Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp 85 9095Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp 85 9095
Phe Thr Gly Cys Vai Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys 100 105110Phe Thr Gly Cys Or Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys 100 105110
Vai Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser AsnOr Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn
115 120125115 120125
Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly 130 135140Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly 130 135140
Ser Thr Pro Cys Asn Gly Vai Glu Gly Phe Asn Cys Tyr Phe Pro LeuSer Thr Pro Cys Asn Gly Or Glu Gly Phe Asn Cys Tyr Phe Pro Leu
145 150 155160145 150 155160
Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Vai Gly Tyr Gln Pro TyrGln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Or Gly Tyr Gln Pro Tyr
165 170175165 170175
Arg Vai Vai Vai Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr VaiArg Or Or Or Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Or
180 185190180 185190
Cys Gly <210>2 < 211>6 < 212> PRT < 213> Mākslīga Sekvence <220>Cys Gly <210>2 < 211>6 < 212> PRT < 213> Artificial Sequence <220>
< 223> Glicilglicīn-polihistidīna tags < 400> 2< 223> Glycyl glycine-polyhistidine tag < 400> 2
Gly Gly His His His His His His 1 5Gly Gly His His His His His His 1 5
Informācijas avotiSources of information
1. Food and Drug Administration. Interim Guidance for Rapid Antigen Testing for SARSCoV-2. Updated Sept. 4, 2020.1. Food and Drug Administration. Interim Guidance for Rapid Antigen Testing for SARSCoV-2. Updated Sept. 4, 2020.
2. Mak GC, Cheng PK, Lau SS, et al. Evaluation of rapid antigen tēst for detection of SARSCoV-2 virus. J Clin Virol. 2020;129:104500. doi:10.1016/j.jcv.2020.1045002. Mak GC, Cheng PK, Lau SS, et al. Evaluation of rapid antigen test for detection of SARSCoV-2 virus. J Clin Virol. 2020;129:104500. doi:10.1016/j.jcv.2020.104500
3. McCormick-Baw, C. et al. Saliva as an altemate specimen source for detection of SARSCoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. J. Clin. Microbiol. 58, eOl 109-20 (2020).3. McCormick-Baw, C. et al. Saliva as an altemate specimen source for detection of SARSCoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. J. Clin. Microbiol. 58, eOl 109-20 (2020).
4. Porte L, Legarraga P., Vollrath V. et al. Evaluation of a novel antigen-based rapid detection tēst for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases. 2020; 99, 328-333.4. Porte L, Legarraga P., Vollrath V. et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases. 2020; 99, 328-333.
5. Wang, W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323, 1843-1844 (2020).5. Wang, W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323, 1843-1844 (2020).
6. Williams, E., Bond, K., Zhang, B., Putland, M. & Williamson, D. A. Saliva as a noninvasive specimen for detection of SARS-CoV-2. J. Clin. Microbiol. 58, e00776-20 (2020). 7. CN112079907A6. Williams, E., Bond, K., Zhang, B., Putland, M. & Williamson, D. A. Saliva as a noninvasive specimen for detection of SARS-CoV-2. J. Clin. Microbiol. 58, e00776-20 (2020). 7. CN112079907A
8. Argentinian AntiCovid Consortium., Arbeitman, C.R., Auge, G. et al. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian celis. Sci Rep 10, 21779 (2020).8. Argentinian AntiCovid Consortium., Arbeitman, C.R., Auge, G. et al. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian liver. Sci Rep 10, 21779 (2020).
9. CN111337689A.9. CN111337689A.
10. CN111999492A.10. CN111999492A.
11. Preliminary report from the Joint PHE Porton Down and University of Oxford SARSCoV-2 tēst development and validation celi: rapid evaluation of lateral flow virai antigen detection devices (LFDs) for mass community testing. 8 Nov 2020. https://www.ox.ac.uk/sites/files/oxford/media_wysiwyg/UK%20evaluation_PHE%20Porto n%20Down%20%20University%20of%200xford_final.pdf (skatīts 29.03.2021).11. Preliminary report from the Joint PHE Porton Down and University of Oxford SARSCoV-2 test development and validation celi: rapid evaluation of lateral flow viral antigen detection devices (LFDs) for mass community testing. 8 Nov 2020. https://www.ox.ac.uk/sites/files/oxford/media_wysiwyg/UK%20evaluation_PHE%20Porto n%20Down%20%20University%20of%200xford_final.pdf (accessed 29.03.2021).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-21-20A LV15681B (en) | 2021-03-31 | 2021-03-31 | Test system for detection of presence of sars-cov virus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-21-20A LV15681B (en) | 2021-03-31 | 2021-03-31 | Test system for detection of presence of sars-cov virus |
Publications (2)
Publication Number | Publication Date |
---|---|
LV15681A LV15681A (en) | 2022-10-20 |
LV15681B true LV15681B (en) | 2023-02-20 |
Family
ID=83603450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-21-20A LV15681B (en) | 2021-03-31 | 2021-03-31 | Test system for detection of presence of sars-cov virus |
Country Status (1)
Country | Link |
---|---|
LV (1) | LV15681B (en) |
-
2021
- 2021-03-31 LV LVP-21-20A patent/LV15681B/en unknown
Also Published As
Publication number | Publication date |
---|---|
LV15681A (en) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5033127B2 (en) | Methods and compositions for detecting herpes simplex virus type 2 | |
KR102019008B1 (en) | A method for detecting mers coronavirus using mers coronavirus nucleocapsid fusion protein | |
CN111426840A (en) | Novel coronavirus detection test strip and preparation method and application thereof | |
JP2018173418A (en) | Mycoplasma pneumoniae immunological detection method and kit | |
Tawfeek et al. | Comparative analysis of the diagnostic performance of crude sheep hydatid cyst fluid, purified antigen B and its subunit (12 Kda), assessed by ELISA, in the diagnosis of human cystic echinococcosis | |
CN107407679B (en) | Immunological detection method and kit for mycoplasma pneumoniae | |
CN111999492A (en) | Colloidal gold immunochromatography detection card for combined detection of COVID-19N antigen and S protein antibody | |
KR101794403B1 (en) | Method and kit for diagnosing Sjogren syndrome based on antigen-specific antibody detection | |
CN112300252B (en) | Prediction of 2019-nCoV coronavirus nucleocapsid protein epitope polypeptide and application of polypeptide in detection | |
Wang et al. | Recent advances in immunoassay technologies for the detection of human coronavirus infections | |
CN111378034B (en) | Anti-plasmodium falciparum HRP-II antibody | |
CN109061191B (en) | Application of S100P protein as marker in diagnosis of active tuberculosis | |
CN114720691B (en) | Kit for detecting biomarkers and preparation method and application thereof | |
Cho et al. | Expression of the capsid protein of Chikungunya virus in a baculovirus for serodiagnosis of Chikungunya disease | |
CN114560929B (en) | Monoclonal antibody aiming at coronavirus NP protein and application thereof | |
WO2021221082A1 (en) | SARS-CoV-2-DERIVED NUCLEOCAPSID FRAGMENT, AND METHOD AND KIT FOR DETECTING ANTI-SARS-CoV-2-ANTIBODY USING SAME | |
LV15681B (en) | Test system for detection of presence of sars-cov virus | |
KR101032956B1 (en) | Rapid diagnostic kit of hemorrhagic fever with renal syndrome detecting specific IgM and IgG using nucleocapsid protein derived from Soochong virus | |
CN111333726B (en) | Anti-plasmodium falciparum HRP-II antibody | |
KR20210144562A (en) | A Composition and a Kit for Detecting Acute Respiratory Distress Syndrome of COVID-19 | |
JP2014162772A (en) | HUMAN IgG ANTIBODY AGAINST CITRULLINATED PROTEIN AND USE THEREOF | |
Durda et al. | An enzyme-linked immunosorbent assay for the measurement of human IgA antibody responses to Epstein-Barr virus membrane antigen | |
WO2021240425A1 (en) | A method for rapid detection of antibodies against sars-cov-2 using recombinant nucleospike fusion protein | |
WO2023167317A1 (en) | ANTI-SARS-CoV-2 ANTIBODY AGAINST SARS-CoV-2 ANTIGEN IN BODY FLUID, INCLUDING MUTANT; METHOD FOR DETECTING SARS-CoV-2 USING ANTIBODY; AND KIT CONTAINING ANTIBODY | |
CN111378035B (en) | Anti-plasmodium falciparum HRP-II recombinant antibody |