LV15474B - Method for producing single cell oil from biodegredable by-products - Google Patents

Method for producing single cell oil from biodegredable by-products Download PDF

Info

Publication number
LV15474B
LV15474B LVP-18-63A LV180063A LV15474B LV 15474 B LV15474 B LV 15474B LV 180063 A LV180063 A LV 180063A LV 15474 B LV15474 B LV 15474B
Authority
LV
Latvia
Prior art keywords
extraction
oil
products
fish
supercritical
Prior art date
Application number
LVP-18-63A
Other languages
Latvian (lv)
Other versions
LV15474A (en
Inventor
Krišs SPALVIŅŠ
SPALVIŅŠ Krišs
Dagnija BLUMBERGA
BLUMBERGA Dagnija
Original Assignee
Rīgas Tehniskā Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte filed Critical Rīgas Tehniskā Universitāte
Priority to LVP-18-63A priority Critical patent/LV15474B/en
Publication of LV15474A publication Critical patent/LV15474A/en
Publication of LV15474B publication Critical patent/LV15474B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • C11B1/104Production of fats or fatty oils from raw materials by extracting using super critical gases or vapours
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/025Pretreatment by enzymes or microorganisms, living or dead
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

1. Mikroorganismu eļļas ieguves paņēmiens, kas ietver šādus secīgus soļus: (i) substrāta fermentācija ar mikroorganismu kultivēšanu bioreaktorā, (ii) filtrēšana, (iii) biomasas pirmsekstrakcijas apstrāde un (iv) ekstrakcija, kas atšķiras ar to, ka par substrātu izmanto biodegradējamus rūpnieciskus blakusproduktus un (iv) soli veic ar superkritisko CO2 ekstrakciju. 2. Paņēmiens saskaņā ar 1. pretenziju, kas atšķiras ar to, ka solī (iv) superkritisko CO2 ekstrakciju veic ar spiedienu 20-40 MPa, 31-80 °C temperatūrā, ar CO2 daudzumu 1-12 kg CO2/stundā un ekstrakcijas laiks ir no 45 minūtēm līdz 6 stundām. 3. Paņēmiens saskaņā ar 1. pretenziju, kas atšķiras ar to, ka solī (i) par substrātu izmanto biodegradējamus ražošanas blakusproduktus, kas izvēlēti no industriālā glicerīna, piena pārstrādes sūkalām, sulfītu atkritumplūsmām, melases, augļu un dārzeņu pārstrādes atlikumiem.A process for obtaining a microorganism oil, comprising the following sequential steps: (i) fermenting the substrate by culturing the microorganisms in a bioreactor, (ii) filtering, (iii) pre-extracting the biomass, and (iv) extracting, wherein the substrate is biodegradable. industrial by-products and step (iv) is performed by supercritical CO2 extraction. Process according to claim 1, characterized in that in step (iv) the supercritical CO2 extraction is carried out at a pressure of 20-40 MPa, at a temperature of 31-80 ° C, with a CO2 content of 1-12 kg CO 2 / hour and an extraction time is from 45 minutes to 6 hours. Process according to claim 1, characterized in that in step (i) biodegradable production by-products selected from industrial glycerol, whey, sulphite waste streams, molasses, fruit and vegetable processing residues are used as substrate.

Description

IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION

[001] Izgudrojums attiecināms uz zivsaimniecības nozari, konkrēti uz akvakultūru industrijā nepieciešamo barības izejvielu iegūšanas paņēmieniem. Izgudrojuma paņēmiens ir mikroorganismu eļļas, kas ir zivju eļļas analogs, izgatavošana fermentācijas procesā no biodegradējamiem ražošanas blakusproduktiem (atkritumiem). Mikroorganismu eļļu paredzēts izmantot kā izejvielu zivju barībā.The invention relates to the fishing industry, in particular to methods for obtaining feed materials for the aquaculture industry. The method of the invention is the production of microorganism oil, which is an analogue of fish oil, in the fermentation process from biodegradable production by-products (waste). Microorganism oil is intended to be used as a raw material in fish feed.

Zināmais tehnikas līmenisPrior art

[002] Tradicionālās zivju barības galvenās sastāvdaļas ir zivju eļļa un zivju milti. Zivju eļļa un zivju milti ir visbarojošākās un vieglāk sagremojamās barības izejvielas akvakultūrās audzētajām zivīm, kas ir galvenais iemesls, kāpēc vairāk nekā 70 % pasaulē saražotās zivju eļļas tiek izmantota akvakultūrās kā barība [1, 2].The main components of traditional fish feed are fish oil and fish meal. Fish oil and fishmeal are the most nutritious and easily digestible feed materials for aquaculture fish, which is the main reason why more than 70% of the world's fish oil is used as feed in aquaculture [1, 2].

[003] Mūsdienās zivju eļļu iegūst no dažādu sugu zivīm, zivju atliekām un citiem zivju pārstrādes blakusproduktiem. Šim mērķim visplašāk tiek izmantotas eļļainās zivis no Engraulis ģints (anšovi). Šo zivju nozveju ievērojami ietekmē tādi faktori kā El Nino fenomens un dažādas nozvejas kvotas, kuras vairāku valstu likumdevēji ievieš, lai izvairītos no pārzvejošanas. Kopumā globālās dabiskās nozvejas apjomi stagnē jau pēdējos 20 gadus [3]. Augošais pieprasījums pēc zivju eļļas, izmantojot to gan kā zivju barību, gan cilvēku uzturā, arī nodara ievērojamu kaitējumu videi, jo šobrīd izmantotās nozvejas metodes apdraud jau tā nepietiekami pieejamos resursus. Dabiskā nozveja ir ievērojami pasliktinājusi vairāku zivju sugu stāvokli, dažas no tām novedot tuvu izmiršanai [4, 5]. Neapmierināms pieprasījums, neparedzami nozvejas apjomi un zivju populāciju nestabilitāte ne tikai padara dabisko nozveju par nepievilcīgu avotu izejvielu iegūšanai, bet arī raisa nopietnas bažas par pārmērīgas nozvejas ietekmi uz bioloģisko daudzveidību ekspluatētajos biotopos [6, 7]. Šo iemeslu dēļ no dabiskās nozvejas iegūtā eļļa nespēj apmierināt augošo akvakultūras pieprasījumu pēc zivju eļļas un tāpēc ir nepieciešams atrast jaunus eļļas avotus, kurus varētu izmantot zivju barībā.Nowadays, fish oil is obtained from various species of fish, fish residues and other by-products of fish processing. Oily fish of the genus Engraulis (anchovies) are most widely used for this purpose. These catches are significantly influenced by factors such as the El Nino phenomenon and the various catch quotas that legislators are introducing in order to avoid overfishing. Overall, global natural catches have been stagnant for the last 20 years [3]. The growing demand for fish oil, both for fish feed and for human consumption, is also causing significant damage to the environment, as current fishing methods threaten the already scarce resources available. Natural catches have significantly worsened the condition of several fish species, some of which are leading to extinction [4, 5]. Unsatisfied demand, unpredictable catches and instability in fish populations not only make natural catches an unattractive source of raw materials, but also raise serious concerns about the impact of overfishing on biodiversity in exploited habitats [6, 7]. For these reasons, oil from natural catches is unable to meet the growing demand for fish oil from aquaculture and it is therefore necessary to find new sources of oil that can be used in fish feed.

[004] Lai šo problēmu risinātu aizvien plašāk akvakultūrās zivju eļļu aizstāj ar augu izcelsmes eļļām. No augu valsts iegūto eļļu izmantošana nebrīvē audzēto zivju uzturā uzrāda pieņemamas dzīvmasas pieauguma un barības konversijas attiecības. Tomēr augu valsts barības izmantošana samazina omega-3 taukskābju cervonskābes (DHA) un eikozapentaēnskābes (EPA) koncentrācijas zivju audos.To address this problem, fish oil is increasingly being replaced by vegetable oils in aquaculture. The use of vegetable oils in the diet of captive fish shows acceptable ratios of live weight gain and feed conversion. However, the use of plant-based feed reduces the levels of omega-3 fatty acids cervonic acid (DHA) and eicosapentaenoic acid (EPA) in fish tissues.

Uzturā lietojot šādi audzētas zivis, cilvēku organisms vairs neuzņem DHA un EPA pietiekošā daudzumā. Šīm taukskābēm ir ārkārtīgi būtiska loma cilvēku organismā, un regulāra šo taukskābju lietošana uzturā uzlabo šūnu membrānas, smadzeņu funkcijas, nervu impulsu darbību, skābekļa pārvietošanu uz asins plazmu, hemoglobīna sintēzi, šūnu dalīšanās procesus, kā arī veicina smadzeņu attīstību jaundzimušajos un kopumā tiek uzskatīta par vitāli nepieciešamām, jo cilvēka organisms šīs taukskābes sintezēt nespēj [4, 8, 9]. Vēl viens negatīvs efekts augu valsts barības izmantošanai zivju uzturā ir omega-6 taukskābju koncentrācijas palielināšanās audzēto zivju audos, kas izjauc omega-3 uz omega-6 attiecību [4]. Omega-3 uz omega-6 attiecības izmainīšana (palielināta omega-6 taukskābju koncentrācija) ir viens no galvenajiem cēloņiem dažādām kardiovaskulārajām, neirodeģeneratīvajām, iekaisuma un onkoloģiskajām saslimšanām [10, 11]. Līdz ar to, augu valsts eļļu izmantošana nebrīvē audzēto zivju uzturā var radīt negatīvu ietekmi uz cilvēku veselību, ja ilgstoši uzturā tiek lietotas šādi audzētas zivis, tāpēc ir nepieciešams rast alternatīvus barības vielu avotus, kurus varētu izmantot akvakultūrās neradot risku cilvēku veselībai.When fish farmed in this way are eaten, the human body no longer absorbs enough DHA and EPA. These fatty acids play an extremely important role in the human body, and regular consumption of these fatty acids improves cell membranes, brain function, nerve impulses, oxygen transfer to blood plasma, hemoglobin synthesis, cell division processes, and promotes brain development in newborns and is generally considered vitally necessary because the human body is unable to synthesize these fatty acids [4, 8, 9]. Another negative effect of using plant-based feed in fish is an increase in the concentration of omega-6 fatty acids in the tissues of farmed fish, which breaks down the ratio of omega-3 to omega-6 [4]. Changing the ratio of omega-3 to omega-6 (increased omega-6 fatty acid concentration) is one of the main causes of various cardiovascular, neurodegenerative, inflammatory and oncological diseases [10, 11]. Consequently, the use of vegetable oils in the diet of captive fish can have a negative impact on human health if such fish are consumed for a long time, so it is necessary to find alternative sources of nutrients that could be used in aquaculture without risk to human health.

[005] Izgudrojumam tuvākais paņēmiens ir mikroorganismu eļļas iegūšana kultivējot eļļainos mikroorganismus, izmantojot augu izcelsmes cukurus [4]. Šīs paņēmiens pieņemts par prototipu. Prototipa paņēmiens ietver šādus secīgus soļus, eļļaino mikroorganismu kultivēšanu, filtrēšanu, pirmsekstrakcijas apstrādi un eļļas ekstrakciju. Prototipa paņēmienā tiek izmantotas neefektīvas ekstrakcijas metodes un dārgas izejvielas (augu izcelsmes cukuri), līdz ar to šim paņēmienam ir virkne trūkumu: dārgas izejvielas [4]; izejvielu ieguve konkurē pār ierobežotajām aramzemju platībām [2, 4, 12, 13]; ekstrakcijas metodēs nereti tiek izmantoti videi kaitīgi šķīdinātāji tādi kā hloroforms, metanols, heksāns, isopropanols u.c. [4]; ekstrakcijas laikā gala produktā (eļļā) var nonākt dzīvnieku veselībai nevēlamas vielas (mikotoksīni, smagie metāli u.c.) [4, 26].The closest method to the invention is the production of microorganism oil by culturing oily microorganisms using vegetable sugars [4]. This technique is accepted as a prototype. The prototype technique includes the following sequential steps, culturing oily microorganisms, filtering, pre-extraction treatment, and oil extraction. The prototype method uses inefficient extraction methods and expensive raw materials (vegetable sugars), so this method has a number of disadvantages: expensive raw materials [4]; raw material extraction competes over limited arable land areas [2, 4, 12, 13]; Extraction methods often use environmentally harmful solvents such as chloroform, methanol, hexane, isopropanol, etc. [4]; During extraction, substances that are undesirable to animal health (mycotoxins, heavy metals, etc.) may enter the final product (oil) [4, 26].

[006] Kopumā, mikroorganismus var izmantot, lai apmierinātu augsto pieprasījumu pēc zivju barībā izmantojamas eļļas. Sintezētās mikroorganismu eļļas nesamazina augstvērtīgo taukskābju līmeni zivju audos un neizjauc omega-3 uz omega-6 attiecību, kā tas ir, ja izmanto augu izcelsmes eļļas zivju uzturā [10, 11]. Tomēr, ja par barību mikroorganismiem izmanto lauksaimniecības platībās audzētas augu izcelsmes izejvielas, tad kultivēšana ir dārga. Aramzemju platības globālā līmenī ir ierobežotas [12, 13], līdz ar to augu ar augstu cukuru saturu audzēšana priekš mikroorganismiem tieši konkurē ar platībām, kuras var izmantot cilvēku un dzīvnieku uzturā izmantoto kultūru audzēšanai. Kultivēšana izmantojot šādas izejvielas var apmaksāties tikai tad, ja iegūtā eļļa tiek tirgota ar augstu pievienoto vērtību (medikamentos, zīdaiņu pārtikā u.c.). Šādi iegūta eļļa izmantošanai akvakultūrās kā zivju barība nav rentabla, tāpēc ir nepieciešams mikroorganismus kultivēt izmantojot lētākas izejvielas (citu nozaru ražošanas blakusproduktus) un eļļas ekstrakcijas metodes pielāgot izmantotajiem atkritumproduktiem.In general, microorganisms can be used to meet the high demand for fish feed oil. Synthesized microbial oils do not reduce the level of high-quality fatty acids in fish tissues and do not disrupt the ratio of omega-3 to omega-6, as is the case when using vegetable oils in fish diet [10, 11]. However, if agricultural raw materials grown on agricultural land are used as feed for microorganisms, cultivation is expensive. Arable land areas are limited at the global level [12, 13], so the cultivation of high-sugar plants for microorganisms is in direct competition with the areas that can be used to grow crops for human and animal consumption. Cultivation using such raw materials can only be worthwhile if the oil obtained is marketed with high added value (medicines, baby food, etc.). The oil thus obtained for use in aquaculture as fish feed is not cost-effective, so it is necessary to cultivate microorganisms using cheaper raw materials (by-products of other industries) and to adapt oil extraction methods to the waste products used.

Izgudrojuma mērķis un būtībaPurpose and essence of the invention

[007] Izgudrojuma mērķis ir izstrādāt ražošanas paņēmienu mikroorganismu eļļas iegūšanai no biodegradējamiem ražošanas blakusproduktiem.The object of the invention is to develop a production method for obtaining a microorganism oil from biodegradable production by-products.

[008] Izgudrojuma mērķis ir sasniegts prototipa paņēmienā (mikroorganismu eļļas ražošana izmantojot augu izcelsmes cukurus) augu izcelsmes cukurus aizstājot ar biodegradējamiem ražošanas atkritumiem un izmantojot superkritisko CO2 ekstrakciju.The object of the invention is achieved by a prototype method (production of microorganism oil using vegetable sugars) by replacing vegetable sugars with biodegradable industrial waste and by using supercritical CO2 extraction.

[009] Veicot mikrobioloģisko fermentāciju oglekļa avots sastāda ap 60 % no kopējām produkta ražošanas izmaksām [4], līdz ar to izmantojot biodegradējamus ražošanas blakusproduktus ir iespējams ievērojami samazināt ražošanas izmaksas. Biodegradējamo atkritumproduktu izmantošana eļļas ražošanā arī ļauj samazināt negatīvo ietekmi uz vidi, jo mikrobioloģiskā atkritumproduktu fermentēšana ievērojami samazina bioloģiskā skābekļa patēriņa (BSP) un ķīmiskā skābekļa patēriņa (KSP) vērtības attiecīgajos atkritumproduktos. Pēc fermentācijas šo atkritumproduktu atlikumi ir daudz mazāk kaitīgi apkārtējai videi, kā, ja tie nokļūtu vidē iepriekš neapstrādāti [4].[009] In microbiological fermentation, the carbon source accounts for about 60% of the total production costs of the product [4], thus the use of biodegradable production by-products can significantly reduce production costs. The use of biodegradable waste products in oil production also reduces the negative impact on the environment, as microbiological fermentation of waste products significantly reduces the values of biological oxygen demand (BOD) and chemical oxygen demand (BOD) in the waste products concerned. After fermentation, residues of these waste products are much less harmful to the environment than if they were released untreated into the environment [4].

[010] Superkritiskās CO2 ekstrakcijas metode ir zaļās ekstrakcijas metode, jo tajā netiek izmantoti spēcīgi ķīmiskie šķīdinātāji kā hloroforms, metanols, isopropanols, heksāns uc. Šķīdinātājus plaši izmanto izmanto tradicionālās zivju eļļas iegūšanā līdz ar to šķīdinātāju ekstrakcijai ir negatīva ietekme uz vidi. Savukārt, superkritiskās CO2 ekstrakcijas metodē par šķīdinātāju tiek izmantota CO2 gāze, kas augsta spiediena un paaugstinātas vai mērenas temperatūras apstākļos nodrošina polāro savienojumu atdalīšanu no nepolārajiem, tādā veidā biomasā esošā eļļa tiek ekstrahēta pilnībā attīrīta no jebkādiem piemaisījumiem, jo mikroorganismu eļļas ir nepolāri savienojumi [14-18]. Iegūtā eļļa ir tīra no ūdens, smagajiem metāliem un citiem organiskajiem un neorganiskajiem savienojumiem. Tādēļ, ka ekstrakciju ir iespējams veikt mērenās temperatūrās procesa laikā nenotiek aktīva eļļu oksidēšanās, līdz ar to iegūtā mikroorganismu eļļa ir augstas kvalitātes [14, 15, 19, 20].The supercritical CO2 extraction method is a green extraction method because it does not use strong chemical solvents such as chloroform, methanol, isopropanol, hexane, etc. Solvents are widely used in the production of traditional fish oil, so solvent extraction has a negative impact on the environment. In turn, the supercritical CO2 extraction method uses CO2 gas as a solvent, which ensures the separation of polar compounds from non-polar ones under high pressure and elevated or moderate temperatures, thus the oil in biomass is extracted completely cleaned of any impurities, because microorganism oils are non-polar compounds [14 -18]. The resulting oil is pure from water, heavy metals and other organic and inorganic compounds. Because it is possible to perform the extraction at moderate temperatures during the process, no active oxidation of the oils takes place, thus the obtained microorganism oil is of high quality [14, 15, 19, 20].

Izgudrojuma detalizēts izklāstsDETAILED DESCRIPTION OF THE INVENTION

[011] Izgudrojuma paņēmiens mikroorganismu eļļas iegūšanai ietver šādus secīgus soļus: (i) substrāta fermentācija ar mikroorganismu kultivēšanu bioreaktorā, (ii) filtrēšana, (iii) biomasas pirmsekstrakcijas apstrāde un (iv) superkritiskā CO2 ekstrakcija.The method of the invention for obtaining a microorganism oil comprises the following sequential steps: (i) fermentation of the substrate by culturing the microorganisms in a bioreactor, (ii) filtration, (iii) pre-extraction treatment of biomass, and (iv) supercritical CO2 extraction.

[012] Pirmais solis (i) ir substrāta fermentācija, jeb kultivēšana. Kultivēšanas process iedalās divos posmos: 1) biomasas palielināšana; 2) tauku akumulēšana. Pirmajā posmā kultivēšanas barotne ir bagāta ar barības vielām (ar oglekli un slāpekli bagāti savienojumi, mikroelementi), kuras veicina šūnu vairošanos; pēc tam, kultivēšanas otrajā posmā, barotnē tiek radīti mikroorganismiem nelabvēlīgi apstākļi, t.i. slāpekli saturošo savienojumu koncentrācijas samazināšana, kas rada abiotisko stresu, kas, savukārt, veicina tauku akumulēšanos mikroorganismu šūnās [4]. Abos posmos mikroorganismu attīstībai un tauku akumulēšanai ir nepieciešams oglekļa avots barotnē. Par oglekļa avotiem izgudrojuma paņēmienā izmanto biodegradējamus rūpnieciskus blakusproduktus, kas izvēlēti no industriālā glicerīna, piena pārstrādes sūkalām, sulfītu atkritumiem, melases, augļu un dārzeņu pārstrādes atlikumiem, bet kultivēšanai iespējams izmantot arī daudzus citus blakusproduktus.The first step (i) is the fermentation or culturing of the substrate. The cultivation process is divided into two stages: 1) biomass increase; 2) fat accumulation. In the first stage, the culture medium is rich in nutrients (carbon and nitrogen-rich compounds, trace elements) that promote cell proliferation; then, in the second stage of cultivation, unfavorable conditions for microorganisms are created in the medium, i. reduction of the concentration of nitrogenous compounds, which causes abiotic stress, which in turn promotes the accumulation of fat in the cells of microorganisms [4]. In both stages, the development of microorganisms and the accumulation of fat require a carbon source in the medium. The invention uses biodegradable industrial by-products selected from industrial glycerol, whey, sulphite waste, molasses, fruit and vegetable processing residues as carbon sources, but many other by-products can also be used for cultivation.

[013] Otrais solis (ii) ir šūnu masas atdalīšana no šķidrās barotnes, ko veic ar filtrēšanu: cietās daļiņas (mikroorganismu biomasa) atdala no šķidrās frakcijas (barotne) [4]. Flokulācija, izmantojot pārtikas klases līdzekļus, var uzlabot kopējo filtrēšanas efektivitāti.The second step (ii) is the separation of the cell mass from the liquid medium by filtration: the solids (microorganism biomass) are separated from the liquid fraction (medium) [4]. Flocculation using food grade products can improve the overall filtration efficiency.

[014] Trešais solis (iii) ir biomasas pirmsekstrakcijas apstrāde, kur no filtrācijas soļa iegūto biomasu skalo ar ūdeni, lai no biomasas atdalītu lielākas cietās daļiņas, kuras neizdevās atdalīt filtrēšanas solī, kā arī apstrādāt, lai sagrautu mikroorganismu šūnu sieniņas un tāda veidā uzlabotu ekstrakcijas procesa efektivitāti [4].The third step (iii) is the pre-extraction treatment of the biomass, where the biomass from the filtration step is washed with water to remove larger solids from the biomass that failed to be removed in the filtration step, as well as to treat the cell walls of the microorganisms and thus improve efficiency of the extraction process [4].

[015] Ceturtais solis (iv) ir eļļas ekstrakcija, kur no filtrācijā iegūtās un pēc tam skalotās biomasas atdala eļļu. Eļļas ekstrakcijai izmanto superkritisko CO2 ekstrakciju šādu parametru diapazonā: spiediens 20-40 MPa, temperatūra 31-80 °C, CO2 daudzums 1-12 kg СОг/stundā un ekstrakcijas laiks ir no 45 minūtēm līdz 6 stundām [15-20].The fourth step (iv) is the extraction of the oil, where the oil is separated from the biomass obtained by filtration and then washed. Supercritical CO2 extraction in the range of the following parameters is used for oil extraction: pressure 20-40 MPa, temperature 31-80 ° C, CO2 amount 1-12 kg СОг / hour and extraction time is from 45 minutes to 6 hours [15-20].

[016] Mikroorganismu eļļa ir lipīdi, kurus iegūst no eļļainajiem mikroorganismiem. Mikroorganismu eļļa ir taukus saturošs vielu maisījumus, kuros molekulas galvenokārt sastāv no alifātiskājiem ogļūdeņražiem, kas šķīst nepolāros organiskajos savienojumos, bet slikti šķīst ūdenī. Lipīdi ir tauki, eļļas, vaski, vaska esteri, sterīni, terpenoīdi, izoprenoīdi, karotinoīdi, polihidroksialkanoāti, nukleīnskābes, taukskābes, tauku spirti, tauku aldehīdi, taukskābju esteri, fosfolipīdi, glikolipīdi, sfingolipīdi un acilglicerīni. Šī izgudrojuma ietvaros būtiskākie lipīdi ir piesātinātās taukskābes, mononepiesātinātās taukskābes un polinepiesātinātās taukskābes.[016] Microorganism oil is lipids derived from oily microorganisms. Microorganism oil is a mixture of fatty substances in which the molecules consist mainly of aliphatic hydrocarbons, which are soluble in non-polar organic compounds but poorly soluble in water. Lipids are fats, oils, waxes, wax esters, sterols, terpenoids, isoprenoids, carotenoids, polyhydroxyalkanoates, nucleic acids, fatty acids, fatty alcohols, fatty aldehydes, fatty acid esters, phospholipids, glycolipids, sphingolipids, sphingolipids, sphingolipids. The most important lipids in the present invention are saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids.

[017] Mikroorganismu eļļu ir iespējams iegūt no baktērijām, cianobaktērijām, sēnēm (raugi, mikroskopiskās micēlijsēnes), arhejiem un mikroskopiskajām aļģēm. Mikroorganismi var būt gan dabīgi, gan ģenētiski modificēti, lai uzlabotu to lipīdu akumulācijas spēju. Par eļļainajiem mikroorganismiem var uzskatīt visus mikroorganismus, kas savās šūnās spēj akumulēt vismaz 15 % tauku no kopējās šūnu biomasas sausnes. Kā eļļainos mikroorganismus eļļas ieguvē var izmantot mikroorganismus no ģintīm Achlya, Acinetobacter, Apiotrichum, Aspergillus, Brachiomonas, Candida, Chaetomium, Chlorella, Cladosphora, Cladosporium, Cladosposridium, Claviceps, Crypthecodinium, Cryptococcus, Cunninghamella, Deparyomyces, Dunaliella, Emiricella, Fusarium, Galactomyces, Geotrichum, Glomus, Gordonia, Hansenula, Hantzschia, Humicola, Yarrowia, Leucosporidium, Lipomyces, Malbranchea, Mortierella, Mucor, Mycobacterium, Nannochloropsis, Nanochloris, Neochloris, Nitzschia, Nocardia, Pachysolen, Parietochloris, Pythium, Protoheca, Pseudozyma, Rhizopus, Rhodococcus, Rhodosporidium, Rhodotorula, Scenedesmus, Schizochytrium, Sirodotia Sporidiobolus, Sporobolomyces, Streptomyces, Traustrochytrium, Tremella, Trichosporon, Ulkenia, Umbelopsis, Waltomyces, Zygorhychus uc. [4, 21].[017] Microorganism oil can be obtained from bacteria, cyanobacteria, fungi (yeasts, microscopic mycelium), archaea and microscopic algae. Microorganisms can be both naturally and genetically modified to improve their lipid accumulation capacity. Oily micro-organisms are all micro-organisms that are able to accumulate in their cells at least 15% fat from the total dry matter of the cell biomass. As oily microorganisms, microorganisms from the genera Achlya, Acinetobacter, Apiotrichum, Aspergillus, Brachiomonas, Candida, Chaetomium, Chlorella, Cladosphora, Cladosporium, Cladosposridium, Claviceps, Crypthecodinium, Chamenococcus, Chamenococcus, Chamenococcus, Geotrichum, Glomus, Gordonia, Hansenula, Hantzschia, Humicola, Yarrowia, Leucosporidium, Lipomyces, Malbranchea, Mortierella, Mucor, Mycobacterium, Nannochloropsis, Nanochloris, Neochloris, Nitzschia, Nocardia, Pachysolen, Pietochlor, Parietochlor Rhodosporidium, Rhodotorula, Scenedesmus, Schizochytrium, Sirodotia Sporidiobolus, Sporobolomyces, Streptomyces, Traustrochytrium, Tremella, Trichosporon, Ulkenia, Umbelopsis, Waltomyces, Zygorhychus, etc. [4, 21].

[018] Biodegradējamie ražošanas blakusprodukti ir jebkuri lauksaimniecības vai industriālie atkritumi, kuri bioloģiski noārdās mikroorganismu fermentācijas rezultātā. Par biodegradējamiem ražošanas blakusproduktiem mikroorganismu eļļas ražošanā iespējams izmantot: cukurbiešu, cukurniedru un sojas melases un citus cukura ražošanas blakusproduktus; piena pārstrādes atlikumus (sūkalas, suliņas u.c.); augļus, dārzeņus un to pārstrādes atlikumus; graudaugu, sojas un kokvilnas pārstrādes atlikumus (klijas, stiebri, salmi, graudi, pupiņas u.c.) un to hidrolizētus; cietes ražošanas blakusproduktus un to hidrolizētus; putnkopības atlikumus; dzērienu ražošanas blakusproduktus (alus darītavu blakusprodukti (drabiņas, iesals u.c.), augļu un dārzeņu izspiedās u.c. atlikumi); vēžveidīgo pārstrādes atlikumi; zivju pārstrādes notekūdeņi; glutamīnskābes ražošanas notekūdeņi un atlikumi; Capsicum oleosveķu ražošanas atkritumi (Capsicum pulveris u.c.); lopkautuvju atkritumi (ragi, nagi, spalvas, asinis, mati u.c.); papīru un papīra ražošanas blakusproduktus (sulfīta atkritumplūsmas, lignīnu saturoši atlikumi u.c.); lateksa gumijas ražošanas notekūdeņi un citu atlikumi; metāns, metanols, etiķskābe, skudrskābē, dūmgāzes u.c. oglekli saturoši savienojumi un to industriālie atlikumi ar piejaukumiem; glicerīns; nparafīni u.c. naftas pārstrādes blakusprodukti; biogāzes stacijas atlikumi; municipālie notekūdeņi u.c. [22, 23]. Šī izgudrojuma ietvaros potenciāli praktiskākie biodegradējamie ražošanas blakusprodukti ir glicerīns, piena pārstrādes atlikumi, sulfīta atkritumplūsmas, cukura ražošanas blakusprodukti un augļu un dārzeņu pārstrādes atlikumi.[018] Biodegradable production by-products are any agricultural or industrial waste that is biodegradable as a result of the fermentation of microorganisms. The following can be used as biodegradable production by-products in the production of microorganism oil: sugar beet, sugar cane and soybean molasses and other sugar production by-products; milk processing residues (whey, juices, etc.); fruits, vegetables and their processing residues; cereal, soya and cotton processing residues (bran, stalks, straw, grains, beans, etc.) and their hydrolyses; by-products of starch manufacture and their hydrolysed products; poultry residues; by-products of beverage production (brewery by-products (crumbs, malt, etc.), fruit and vegetable pomace, etc.); crustacean processing residues; fish processing effluents; wastes and residues from glutamic acid production; Wastes from Capsicum oleoresin production (Capsicum powder, etc.); slaughterhouse waste (horns, hooves, feathers, blood, hair, etc.); paper and paper by-products (sulphite waste streams, lignin-containing residues, etc.); wastes and other residues from the manufacture of latex rubber; methane, methanol, acetic acid, formic acid, flue gases, etc. carbon-containing compounds and their industrial residues with impurities; glycerin; nparaffins, etc. petroleum by-products; biogas plant residues; municipal wastewater, etc. [22, 23]. Potentially the most practical biodegradable production by-products within the scope of this invention are glycerol, milk processing residues, sulfite waste streams, sugar production by-products and fruit and vegetable processing residues.

[019] Mikroorganismu kultivēšana ir process, kura laikā tiek veicināta vai atļauta eļļaino mikroorganismu augšana un attīstība. Mikroorganismi kultivēšanas laikā fermentā barotnē esošās barības vielas un akumulē šūnas iekšienē vai barotnē taukus, kurus ir iespējams ekstrahēt vai savākt. Šī izgudrojuma ietvaros mikroorganismi tiek kultivēti aerobiskos apstākļos, kas nozīmē to, ka kultivēšanas laikā mikroorganismi izmanto skābekli kā elektronu akceptoru enerģijas ražošanas procesos Parasti kultivēšanas laikā aerobiskā kultivēšana tiek nodrošināta aktīvi aerējot barotni to maisot vai atsevišķi pievadot skābekli vai gāzu maisījumu kura sastāvā ir skābeklis. Kultivēšanas process var tikt veikts izmantojot jebkuru piemērotu mikroorganismu kultivēšanas paņēmienu, tajā skaitā partiju (angļu vai. batch), papildināto partiju (angļu vai. fed batch) un nepārtraukto (angļu vai. continuous) kultivēšanu. Kultivēšana ar mērķi iegūt mikroorganismu eļļu var notikt gan sterilos, gan nesterilos apstākļos. Sterili apstākļi mikroorganismu kultivēšanas kontekstā ir tādi apstākļi, kuros kultivēšanas trauki, iekārtas, barotne un citi rīki, kas nonāks kontaktā ar mikroorganismiem kultivēšanas laikā, ir pirms tam nosterilizēti, lai nodrošinātu, ka kultivēšanas laikā barotnē neattīstītos kādas citas nevēlamas mikroorganismu kultūras [24].[019] Cultivation of microorganisms is a process during which the growth and development of oily microorganisms is promoted or allowed. During cultivation, the microorganisms contain the nutrients in the enzyme medium and accumulate fat inside the cell or in the medium, which can be extracted or collected. In the context of the present invention, the microorganisms are cultured under aerobic conditions, which means that the microorganisms use oxygen as an electron acceptor in energy production processes during cultivation. Generally, during cultivation, aerobic cultivation is provided by actively aerating the medium by stirring or adding oxygen or a gas mixture. The culturing process can be performed using any suitable culture method for the microorganisms, including batch (fed or batch), fed batch and continuous (English or. Continuous) cultivation. Cultivation for the production of microbial oil can take place under both sterile and non-sterile conditions. Sterile conditions in the context of cultivation of micro-organisms are conditions in which culture vessels, equipment, medium and other tools that come into contact with the micro-organism during cultivation are previously sterilized to ensure that no other undesirable cultures of micro-organisms develop in the medium during cultivation [24].

[020] Pēc kultivēšanas tiek veikta šūnu masas atdalīšana no šķidrās barotnes, ko ir iespējams veikt ar preses, vakuuma, centrifugēšanas, skrūvpreses vai ar citām filtrēšanas metodēm, kurās cietās daļiņas (mikroorganismu biomasa) tiek atdalītas no šķidrās frakcijas (barotne). Flokulācija, izmantojot pārtikas klases līdzekļus, var uzlabot kopējo filtrēšanas efektivitāti.After culturing, the cell mass is separated from the liquid medium, which can be done by press, vacuum, centrifugation, screw press or other filtration methods, in which solid particles (microorganism biomass) are separated from the liquid fraction (medium). Flocculation using food grade products can improve the overall filtration efficiency.

[021] Pirms eļļas ekstrakcijas iegūto mikroorganismu biomasu var skalot ar ūdeni un apstrādāt ar ultraskaņu, mikroviļņiem, mehāniski saberzt (lodīšu dzirnaviņas u.c. saberšanas metodes), sasaldēt/atsaldēt vai liofilizēt, kā arī veikt citas pirmsekstrakcijas apstrādes, lai sagrautu mikroorganismu šūnu sieniņas un tāda veidā uzlabotu ekstrakcijas procesa efektivitāti.[021] The biomass of microorganisms obtained before oil extraction can be rinsed with water and sonicated, microwave, mechanically ground (ball mills, etc.), frozen / thawed or lyophilized, as well as other pre-extraction treatments to destroy the cell walls of the microorganisms and skin. improve the efficiency of the extraction process.

[022] Ekstrakcija, jeb eļļas iegūšana ir process, kura laikā no iegūtās mikroorganismu biomasas tiek ekstrahēta eļļa. Parasti eļļu iegūst mehāniski (izmantojot preses filtrus, skrūvpreses, lodīšu dzirnaviņas u.c. mehāniskās metodes), ķīmiski (izmantojot šķīdinātājus un citas vielas, kurās šķīst lipīdi) vai termomehāniski (kombinējot mehāniskās metodes ar temperatūras izmainīšanu).[022] Extraction or oil extraction is a process during which oil is extracted from the obtained microorganism biomass. The oil is usually obtained mechanically (using press filters, screw presses, ball mills, etc. mechanical methods), chemically (using solvents and other lipid-soluble substances) or thermomechanically (combining mechanical methods with temperature change).

[023] Šī izgudrojuma ietvaros plaši izmantotās ekstrakcijas metodes tiek aizvietotas ar superkritisko CO2 ekstrakciju, kura līdz šim nav izmantota mikroorganismu eļļas ekstrahēšanā no mikroorganismu biomasas. Superkritiskā šķidrumu ekstrakcija ir process, kurā viena sastāvdaļa (ekstraktants) tiek atdalīta no otras (matriks), izmantojot superkritisko šķidrumu, kā ekstrahējošo šķīdinātāju. Šī izgudrojuma ietvaros par superkritisko šķidrumu tiek izmantots oglekļa dioksīds (CO2), kurš tiek reciklēts procesa laikā, līdz ar to CO2 zudumi ir minimāli. Lai nodrošinātu CO2 superkritisko stāvokli ekstrakcijas traukā ir jānodrošina kritiskā temperatūra vismaz 31 °C un kritiskais spiediens vismaz 7,4 MPa [25]. Literatūrā minētie un laboratorijā praktiski pielietotie ekstrakcijas apstākļi optimālai eļļas iegūšanai ir sekojoši: spiediena diapazons no 20 līdz 40 MPa, temperatūras diapazons no 31 līdz 80 °C, CO2 daudzums no 1 līdz 12 kg СОг/stundā un ekstrakcijas laiks ir no 45 minūtēm līdz 6 stundām [14-20]. Superkritisko šķidruma ekstrakciju var veikt vienā ekstrakcijas šūnā vai arī vairākās izmantojot frakcionēšanu. Frakcionēšanas laikā katrā šūnā tiek noturēti atšķirīgi spiediena un temperatūras apstākļi, kas ļauj atsevišķus eļļas frakcijas ekstrahēt efektīvāk kā citas [15].[023] The extraction methods widely used in the present invention are replaced by supercritical CO2 extraction, which has not been used so far in the extraction of microorganism oil from microorganism biomass. Supercritical fluid extraction is a process in which one component (extractant) is separated from another (matrix) using a supercritical fluid as the extraction solvent. The present invention uses carbon dioxide (CO2) as a supercritical fluid, which is recycled during the process, so that CO2 losses are minimal. A critical temperature of at least 31 ° C and a critical pressure of at least 7,4 MPa must be maintained in the extraction vessel to ensure a supercritical state of CO2 [25]. The extraction conditions mentioned in the literature and used in the laboratory for optimal oil production are as follows: pressure range from 20 to 40 MPa, temperature range from 31 to 80 ° C, CO2 amount from 1 to 12 kg СОг / hour and extraction time from 45 minutes to 6 hours [14-20]. Supercritical fluid extraction can be performed in a single extraction cell or in multiple extraction fractions. During fractionation, different pressure and temperature conditions are maintained in each cell, which allows some oil fractions to be extracted more efficiently than others [15].

Izgudrojuma realizācijas piemēriExamples of implementation of the invention

1. piemērs: mikroorganismu eļļas iegūšanas paņēmiens no industriālā glicerīna [024] Izmantotais mikroorganisms: Yarrowia lipolytica (savvaļas tips).Example 1: Method for obtaining microorganism oil from industrial glycerol Microorganism used: Yarrowia lipolytica (wild type).

Barotne: 2 pg/L biotīns; 400 pg/L kalcija pantotenāts; 2 pg/L folijskābe; 400 pg/L niacīns; 200 pg/L p-aminobenzoskābe; 400 pg/L piridoksīna hidrohlorīds; 200 pg/L riboflavins; 400 pg/L tiamīna hidrohlorīds; 2 mg/L inositols; 500 pg/L borskābe; 40 pg/L vara sulfāts; 100 pg/L kālija jodīds; 200 pg/L dzelzs hlorīds; 400 pg/L mangāna sulfāts; 200 pg/L nātrija molibdāts; 400 pg/L cinka sulfāts; 1 g/L kālija fosfāts; 0,5 g/L magnija sulfāts; 0,1 g/L nātrija hlorīds; 0,1 g/L kalcija hlorīds; 50 g/L glicerīns no biodīzeļa ražošanas; 0,26 g/L karbamīds; destilēts ūdens.Medium: 2 pg / L biotin; 400 pg / L calcium pantothenate; 2 pg / L folic acid; 400 pg / L niacin; 200 pg / L p-aminobenzoic acid; 400 pg / L pyridoxine hydrochloride; 200 pg / L riboflavin; 400 pg / L thiamine hydrochloride; 2 mg / L inositol; 500 pg / L boric acid; 40 pg / L copper sulphate; 100 pg / L potassium iodide; 200 pg / L ferric chloride; 400 pg / L manganese sulphate; 200 pg / L sodium molybdate; 400 pg / L zinc sulphate; 1 g / L potassium phosphate; 0.5 g / L magnesium sulphate; 0.1 g / L sodium chloride; 0.1 g / L calcium chloride; 50 g / L glycerol from biodiesel production; 0.26 g / L urea; distilled water.

(i) Kultivēšanas apstākļi: ЗГС temperatūra; 250 rpm maisīšanas ātrums; partiju kultivēšana; pH 5,5 (regulēts ar 1M NaOH); 120 stundas kultivēšanas ilgums; aerācija no maisīšanas.(i) Cultivation conditions: ЗГС temperature; 250 rpm mixing speed; batch cultivation; pH 5.5 (adjusted with 1M NaOH); 120 hours of cultivation duration; aeration from mixing.

(ii) Filtrācija: preses filtrēšana caur 0,5 pm celulozes filtru.(ii) Filtration: filtration of the press through a 0.5 μm cellulose filter.

(iii) Pirmsekstrakcijas apstrāde: izžāvēšana 38 °C temperatūrā un mehāniska saberšana izmantojot lodīšu dzirnaviņas.(iii) Pre-extraction treatment: drying at 38 ° C and mechanical grinding using a ball mill.

Iegūtais biomasas daudzums (grami uz litru barotnes): 11,27±0,11 g/L (biomasu noteica gravimetriski).Amount of biomass obtained (grams per liter of medium): 11.27 ± 0.11 g / L (biomass was determined gravimetrically).

(iv) Superkritiskās CO2 ekstrakcijas apstākļi: 25 MPa spiediens; 39,85 °C temperatūra; 12 kg СОг/stundā CO2 daudzums; 3 stundas apstrādes laiks.(iv) Supercritical CO2 extraction conditions: 25 MPa pressure; Temperature 39.85 ° C; 12 kg СОг / hour amount of CO2; 3 hours processing time.

[025] Iegūtais eļļas daudzums: 2,10 g/L (18,67 % no biomasas).Amount of oil obtained: 2.10 g / L (18.67% of biomass).

2. piemērs: mikroorganismu eļļas iegūšanas paņēmiens no piena pārstrādes sūkalāmExample 2: Method for obtaining microbial oil from whey

[026] Izmantotais mikroorganisms: Umbelopsis isabellina (savvaļas tips).[026] Microorganism used: Umbelopsis isabellina (wild type).

Barotne: 10 g/L rauga ekstrakts; 10 g/L peptons; 8 g/L nātrija hlorīds; 0,12 g/L karbamīds; autoklavētas (2 bar spiediens, 121 °C temperatūra, 20 minūtes apstrādes laiks) biezpiena sūkalas ūdens vietā.Medium: 10 g / L yeast extract; 10 g / L peptone; 8 g / L sodium chloride; 0.12 g / L urea; autoclaved (2 bar pressure, 121 ° C temperature, 20 minutes treatment time) curd whey instead of water.

(i) Kultivēšanas apstākļi: 28 °C temperatūra; 150 rpm maisīšanas ātrums; partiju kultivēšana; pH 6 (regulēts ar 1M NaOH); 120 stundas kultivēšanas ilgums; aerācija no maisīšanas.(i) Cultivation conditions: 28 ° C; 150 rpm mixing speed; batch cultivation; pH 6 (adjusted with 1M NaOH); 120 hours of cultivation duration; aeration from mixing.

(ii) Filtrācija: vakuuma filtrēšana caur 0,45 pm celulozes filtru.(ii) Filtration: vacuum filtration through a 0.45 μm cellulose filter.

(iii) Pirmsekstrakcijas apstrāde: skalošana ar krāna ūdeni, izžāvēšana 38 °C temperatūrā un šūnu sieniņu sagraušana izmantojot ultraskaņas vannu.(iii) Pre-extraction treatment: rinsing with tap water, drying at 38 ° C and destruction of the cell walls using an ultrasonic bath.

Iegūtais biomasas daudzums (grami uz litru barotnes): 9,14±0,08 g/L (biomasu noteica gravimetriski).Amount of biomass obtained (grams per liter of medium): 9.14 ± 0.08 g / L (biomass was determined gravimetrically).

(iv) Superkritiskās CO2 ekstrakcijas apstākļi: 40 MPa spiediens; 80 °C temperatūra; 8 kg CO2/stundā CO2 daudzums; 45 minūtes apstrādes laiks.(iv) Supercritical CO2 extraction conditions: 40 MPa pressure; 80 ° C temperature; 8 kg CO2 / hour amount of CO2; 45 minutes processing time.

Iegūtais eļļas daudzums: 1,40±0,02 g/L (15,27 % no biomasas).Oil content obtained: 1.40 ± 0.02 g / L (15.27% of biomass).

3. piemērs: mikroorganismu eļļas iegūšanas paņēmiens no sulfītu atkritumplūsmas [027] Izmantotais mikroorganisms: Umbelopsis isabellina (savvaļas tips).Example 3: Method for obtaining microorganism oil from a sulphite waste stream [027] Microorganism used: Umbelopsis isabellina (wild type).

Barotne: sulfītu atkritumplūsma (iegūta laboratorijā no koksnes) un destilēts ūdens attiecībā 1:1.Medium: sulphite waste stream (obtained from wood in the laboratory) and distilled water in a ratio of 1: 1.

(i) Kultivēšanas apstākļi: 30 °C temperatūra; 800 rpm maisīšanas ātrums; partiju kultivēšana; pH 6 (regulēts ar 1M NaOH); 120 stundas kultivēšanas ilgums; aerāciju saglabāja ap 0,6 L minūtes’1.(i) Cultivation conditions: 30 ° C; 800 rpm mixing speed; batch cultivation; pH 6 (adjusted with 1M NaOH); 120 hours of cultivation duration; aeration was maintained at about 0.6 L minutes' 1 .

(ii) Filtrācija: preses filtrēšana caur 0,5 pm celulozes filtru.(ii) Filtration: filtration of the press through a 0.5 μm cellulose filter.

(iii) Pirmsekstrakcijas apstrāde: izžāvēšana 38 °C temperatūrā un mehāniska saberšana izmantojot lodīšu dzirnaviņas.(iii) Pre-extraction treatment: drying at 38 ° C and mechanical grinding using a ball mill.

Iegūtais biomasas daudzums (grami uz litru barotnes): 4,78±0,12 g/L (biomasu noteica gravimetriski).Amount of biomass obtained (grams per liter of medium): 4.78 ± 0.12 g / L (biomass was determined gravimetrically).

(iv) Superkritiskās CO2 ekstrakcijas apstākļi: 32 MPa spiediens; 47 °C temperatūra; 4 kg СОг/stundā CO2 daudzums; 4 stundas apstrādes laiks.(iv) Supercritical CO2 extraction conditions: 32 MPa pressure; 47 ° C temperature; 4 kg СОг / hour amount of CO2; 4 hours processing time.

Iegūtais eļļas daudzums: 0,80±0,04 g/L (16,76 % no biomasas).Amount of oil obtained: 0.80 ± 0.04 g / L (16.76% of biomass).

4. piemērs: mikroorganismu eļļas iegūšanas paņēmiens no melases pārstrādes atlikumiem, augļu un dārzeņu pārstrādes atlikumiemExample 4: Method for obtaining micro-organism oil from molasses processing residues, fruit and vegetable processing residues

[028] Izmantotais mikroorganisms: Rhodococcus opacus (savvaļas tips)[028] Microorganism used: Rhodococcus opacus (wild type)

Barotne: 10 g/L rauga ekstrakts; 10 g/L peptons; 8 g/L nātrija hlorīds; 0,2 g/L karbamīds; 70 g/L cukurniedru melase; autoklavētie (2 bar spiediens, 121 °C temperatūra, 20 minūtes apstrādes laiks) atkritumprodukti: 10 g/L kartupeļu cietes atlikumi (šķiedras), 50 g/L ābolu izspiedās.Medium: 10 g / L yeast extract; 10 g / L peptone; 8 g / L sodium chloride; 0.2 g / L urea; 70 g / L sugar cane molasses; autoclaved (2 bar pressure, 121 ° C temperature, 20 minutes treatment time) waste products: 10 g / L potato starch residues (fibers), 50 g / L apple squeezed.

(i) Kultivēšanas apstākļi: 30 °C temperatūra; 120 rpm maisīšanas ātrums; partiju kultivēšana; pH 7 (regulēts ar 1M NaOH); 72 stundas kultivēšanas ilgums; aerācija no maisīšanas.(i) Cultivation conditions: 30 ° C; 120 rpm mixing speed; batch cultivation; pH 7 (adjusted with 1M NaOH); 72 hours cultivation duration; aeration from mixing.

(ii) Filtrācija: centrifugēšana (6000 rpm, 15 minūtes).(ii) Filtration: centrifugation (6000 rpm, 15 minutes).

(iii) Pirmsekstrakcijas apstrāde: skalošana ar krāna ūdeni, izžāvēšana 38 °C temperatūrā un šūnu sieniņu sagraušana izmantojot ultraskaņas vannu.(iii) Pre-extraction treatment: rinsing with tap water, drying at 38 ° C and destruction of the cell walls using an ultrasonic bath.

Iegūtais biomasas daudzums (grami uz litru barotnes): 2,02±0,03 g/L (biomasu noteica gravimetriski).Amount of biomass obtained (grams per liter of medium): 2,02 ± 0,03 g / L (biomass was determined gravimetrically).

(iv) Superkritiskās CO2 ekstrakcijas apstākļi (SFT-150): 20 MPa spiediens; 35 °C temperatūra; 1 kg СОг/stundā CO2 daudzums; 6 stundas apstrādes laiks.(iv) Supercritical CO2 extraction conditions (SFT-150): 20 MPa pressure; 35 ° C temperature; 1 kg СОг / hour amount of CO2; 6 hours processing time.

Iegūtais eļļas daudzums: 0,66±0,02 g/L (32,54 % no biomasas).Oil content obtained: 0,66 ± 0,02 g / L (32,54% of biomass).

Izmantotie literatūras avotiReferences

1. Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94-107.1. Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015; 449: 94-107.

2. Tacon, A. G. J., & Metian, M. (2016). Feed Matters: Satisfying the Feed Demand of Aquaculture, 8249. https://doi.org/10.1080/23308249.2014.9872092. Tacon, A. G. J., & Metian, M. (2016). Feed Matters: Satisfying the Feed Demand of Aquaculture, 8249. https://doi.org/10.1080/23308249.2014.987209

3. FAO. FishStatJ: a tool for fishery statistics analysis, Release 3.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production:3. FAO. FishStatJ: a tool for fishery statistics analysis, Release 3.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production:

Quantities 1950-2014; Aquaculture values 1984-2014. Rome: FAO Fisheries Department, Fishery Information, Data and Statistics Unit (2016).Quantities 1950-2014; Aquaculture values 1984-2014. Rome: FAO Fisheries Department, Fishery Information, Data and Statistics Unit (2016).

4. Finco MA, Daniel DO, Mamani L, Vinicius G, et al. (2016). Critical Reviews in Biotechnology Technological trends and market perspectives for production of microbial oils rich in omega-3, 8551 (August). https://doi.Org/10.1080/07388551.2016.12132214. Finco MA, Daniel DO, Mamani L, Vinicius G, et al. (2016). Critical Reviews in Biotechnology Technological trends and market perspectives for the production of microbial oils rich in omega-3, 8551 (August). https://doi.Org/10.1080/07388551.2016.1213221

5. Martins DA, Custodio L, Barreira L, ct al. Alternative sources of n 3 long chain polyunsaturated fatty acids in marine microalgae. Mar Drugs. 2013;11:2259-2281.5. Martins DA, Custodio L, Barreira L, ct al. Alternative sources of n 3 long chain polyunsaturated fatty acids in marine microalgae. Mar Drugs. 2013; 11: 2259-2281.

6. Kitessa SM, Abeywardena M, Wijesundera C, et al. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the healthbenefitting long-chain omega-3 oils. Nutrients. 2014;6:2035-2058.6. Kitessa SM, Abeywardena M, Wijesundera C, et al. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the healthbenefitting long-chain omega-3 oils. Nutrients. 2014; 6: 2035-2058.

7. Bibus DM. Long-chain omega-3 from low-trophic level fish provides value to farmed seafood. Lipid Technol. 2015;27:55-58.7. Bibus DM. Long-chain omega-3 from low-trophic level fish provides value to farmed seafood. Lipid Technol. 2015; 27: 55-58.

8. Jayasinghe P, Hawboldt K. Biofuels from fish processing plant effluents waste characterization and oil extraction and quality. Sustainable Energy Technologies and Assessments 2013; 4:36-44.8. Jayasinghe P, Hawboldt K. Biofuels from fish processing plant effluents waste characterization and oil extraction and quality. Sustainable Energy Technologies and Assessments 2013; 4: 36-44.

9. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008;1237:35-43.9. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008; 1237: 35-43.

10. Dunbar BS, Bosire RV, Deckelbaum RJ. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Mol Cell Endocrinol. 2014;398:6977.10. Dunbar BS, Bosire RV, Deckelbaum RJ. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Mol Cell Endocrinol. 2014; 398: 6977.

11. Patterson E, Wall R, Fitzgerald GF, et al. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012;2012:539426.11. Patterson E, Wall R, Fitzgerald GF, et al. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012; 2012: 539426.

12. FAOSTAT Land Use module. Food and Agriculture Organization. 2016.12. FAOSTAT Land Use module. Food and Agriculture Organization. 2016.

13. Arable Land Area. The Helgi Library. 2014.13. Arable Land Area. The Helgi Library. 2014.

14. Ivanovs K, Blumberga D. Extraction offish oil using green extraction methods: a short review. Energy Procedia 2017; 128: 477-483.14. Ivanovs K, Blumberga D. Extraction offish oil using green extraction methods: a short review. Energy Procedia 2017; 128: 477-483.

15. Rubio-Rodriguez N, De Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. Journal of Food Engineering 2012;109:238-248.15. Rubio-Rodriguez N, De Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. Journal of Food Engineering 2012; 109: 238-248.

16. Adeoti IA, Hawboldt K. A review of lipid extraction from fish processing byproduct for use as a biofuel. Biomass and Bioenergy 2014;63:330-340.16. Adeoti IA, Hawboldt K. A review of lipid extraction from fish processing byproduct for use as a biofuel. Biomass and Bioenergy 2014; 63: 330-340.

17. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM. Application of supercritical CO2 in lipid extraction - A review. Journal of Food Engineering 2009;95:240-253.17. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM. Application of supercritical CO2 in lipid extraction - A review. Journal of Food Engineering 2009; 95: 240-253.

18. Gedi MA, Bakar J, Maroid AA. Optimization of supercritical carbon dioxide (CO2) extraction of sardine (Sardinella lemuru Bleeker) oil using response surface methodology (RSM). Grasas Aceites 2015;66(2):074.18. Gedi MA, Bakar J, Maroid AA. Optimization of supercritical carbon dioxide (CO2) extraction of sardine (Sardinella lemuru Bleeker) oil using response surface methodology (RSM). Grasas Aceites 2015; 66 (2): 074.

19. Sarker MZI, Selamat J, Habib Md ASA, Ferdosh S, Akanda MJH, Jaffri JM. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus). Int. J. Mol. Sci. 2012;13:11312-11322.19. Sarker MZI, Selamat J, Habib Md ASA, Ferdosh S, Akanda MJH, Jaffri JM. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus). Int. J. Mol. Sci. 2012; 13: 11312-11322.

20. Rubio-Rodriguez N, De Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids 2008;47:215-226.20. Rubio-Rodriguez N, De Diego SM, Beltran S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids 2008; 47: 215-226.

21. Huang C, Chen X, Xiong L, Chen X, Ma L, Chen Y. 2013. Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances 31:129-139.21. Huang C, Chen X, Xiong L, Chen X, Ma L, Chen Y. 2013. Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances 31: 129-139.

22. Spalvins K, Ivanovs K, Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 16 (S2), 1493-1508, 2018.22. Spalvins K, Ivanovs K, Blumberga D. Single cell protein production from waste biomass: a review of various agricultural by-products. Agronomy Research 16 (S2), 1493-1508, 2018.

23. Spalvins K, Zihare L, Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. 2018; Energy Procedia (in press).23. Spalvins K, Zihare L, Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. 2018; Energy Procedia (in press).

24. A. Dobrowolski, P. Mitula, W. Rymowicz, and A. M. Mironczuk. 2016. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour. Technol. 207:237-243.24. A. Dobrowolski, P. Mitula, W. Rymowicz, and A. M. Mironczuk. 2016. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour. Technol. 207: 237-243.

25. Tanaka Y, Takeshi O. 2004. Extraction of Phospholipids from salmon roe with supercritical carbon dioxide and an entrainer. Journal of Oleo Science. Japan Oil Chemists Society. 53 (9): 417-424.25. Tanaka Y, Takeshi O. 2004. Extraction of Phospholipids from salmon roe with supercritical carbon dioxide and an entrainer. Journal of Oleo Science. Japan Oil Chemists Society. 53 (9): 417-424.

Alriksson B, Hornberg A, Gudnason AE, Knobloch S, Arnason J, Johannsson R. Fish feed from wood. Cellulose Chemestry and Technology 2014; 48 (9-10), 843-848.Alriksson B, Hornberg A, Gudnason AE, Knobloch S, Arnason J, Johannsson R. Fish feed from wood. Cellulose Chemestry and Technology 2014; 48 (9-10), 843-848.

Claims (3)

PRETENZIJAS 1. Mikroorganismu eļļas ieguves paņēmiens, kas ietver šādus secīgus soļus: (i) substrāta fermentācija ar mikroorganismu kultivēšanu bioreaktorā, (ii) filtrēšana, (iii) biomasas pirmsekstrakcijas apstrāde un (iv) ekstrakcija, kas atšķiras ar to, ka par substrātu izmanto biodegradējamus rūpnieciskus blakusproduktus un (iv) soli veic ar superkritisko CO2 ekstrakciju.A process for obtaining a microorganism oil comprising the sequential steps of: (i) fermenting the substrate by culturing the microorganisms in a bioreactor, (ii) filtering, (iii) pre-extracting the biomass, and (iv) extracting, wherein the substrate is biodegradable. industrial by-products and step (iv) is performed by supercritical CO2 extraction. 2. Paņēmiens saskaņā ar 1. pretenziju, kas atšķiras ar to, ka solī (iv) superkritisko CO2 ekstrakciju veic ar spiedienu 20-40 MPa, 31-80 °C temperatūrā, ar CO2 daudzumu 1-12 kg CO2/stundā un ekstrakcijas laiks ir no 45 minūtēm līdz 6 stundām.Process according to claim 1, characterized in that in step (iv) the supercritical CO2 extraction is carried out at a pressure of 20-40 MPa, at a temperature of 31-80 ° C, with a CO2 content of 1-12 kg CO 2 / hour and an extraction time is from 45 minutes to 6 hours. 3. Paņēmiens saskaņā ar 1. pretenziju, kas atšķiras ar to, ka solī (i) par substrātu izmanto biodegradējamus ražošanas blakusproduktus, kas izvēlēti no industriālā glicerīna, piena pārstrādes sūkalām, sulfītu atkritumplūsmām, melases, augļu un dārzeņu pārstrādes atlikumiem.Process according to claim 1, characterized in that in step (i) biodegradable production by-products selected from industrial glycerol, whey, sulphite waste streams, molasses, fruit and vegetable processing residues are used as substrate.
LVP-18-63A 2018-06-29 2018-06-29 Method for producing single cell oil from biodegredable by-products LV15474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-18-63A LV15474B (en) 2018-06-29 2018-06-29 Method for producing single cell oil from biodegredable by-products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-18-63A LV15474B (en) 2018-06-29 2018-06-29 Method for producing single cell oil from biodegredable by-products

Publications (2)

Publication Number Publication Date
LV15474A LV15474A (en) 2020-01-20
LV15474B true LV15474B (en) 2020-07-20

Family

ID=63667975

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-18-63A LV15474B (en) 2018-06-29 2018-06-29 Method for producing single cell oil from biodegredable by-products

Country Status (1)

Country Link
LV (1) LV15474B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166230A (en) * 1996-05-15 2000-12-26 Gist-Brocades B.V. Sterol extraction with polar solvent to give low sterol, high triglyceride, microbial oil
US8148559B1 (en) * 2007-08-31 2012-04-03 Clemson University Research Foundation Supercritical fluid explosion process to aid fractionation of lipids from biomass
US20130046106A1 (en) * 2011-02-11 2013-02-21 E I Du Pont De Nemours And Company Purification of triglyceride oil from microbial sources using short path distillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166230A (en) * 1996-05-15 2000-12-26 Gist-Brocades B.V. Sterol extraction with polar solvent to give low sterol, high triglyceride, microbial oil
US8148559B1 (en) * 2007-08-31 2012-04-03 Clemson University Research Foundation Supercritical fluid explosion process to aid fractionation of lipids from biomass
US20130046106A1 (en) * 2011-02-11 2013-02-21 E I Du Pont De Nemours And Company Purification of triglyceride oil from microbial sources using short path distillation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANTOINE P TRZCINSKI ET AL: "A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products", BIORESOURCE TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 116, 24 March 2012 (2012-03-24), pages 295 - 301, XP028510941, ISSN: 0960-8524, [retrieved on 20120330], DOI: 10.1016/J.BIORTECH.2012.03.078 *
APOSTOLIS A. KOUTINAS ET AL: "Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers", CHEMICAL SOCIETY REVIEWS, vol. 43, no. 8, 3 January 2014 (2014-01-03), pages 2587, XP055180408, ISSN: 0306-0012, DOI: 10.1039/c3cs60293a *
BHARATHIRAJA B ET AL: "Microbial oil - A plausible alternate resource for food and fuel application", BIORESOURCE TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 233, 6 March 2017 (2017-03-06), pages 423 - 432, XP029957921, ISSN: 0960-8524, DOI: 10.1016/J.BIORTECH.2017.03.006 *
ROBERTO E. ARMENTA ET AL: "Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY (JAOCS), vol. 90, no. 2, 11 October 2012 (2012-10-11), DE, pages 167 - 182, XP055422807, ISSN: 0003-021X, DOI: 10.1007/s11746-012-2154-3 *
UPRETY BIJAYA K ET AL: "Current Prospects on Production of Microbial Lipid and Other Value-Added Products Using Crude Glycerol Obtained from Biodiesel Industries", BIOENERGY RESEARCH, SPRINGER US, BOSTON, vol. 10, no. 4, 13 July 2017 (2017-07-13), pages 1117 - 1137, XP036352673, ISSN: 1939-1234, [retrieved on 20170713], DOI: 10.1007/S12155-017-9857-0 *

Also Published As

Publication number Publication date
LV15474A (en) 2020-01-20

Similar Documents

Publication Publication Date Title
US11746363B2 (en) Methods of recovering oil from microorganisms
CN109153964B (en) Filamentous fungus biological mats, methods of producing and using the same
JP4247442B2 (en) Heterotropic method for producing a microbial product containing a high concentration of omega-3 highly unsaturated fatty acid
US9994804B2 (en) Animal meal that includes fungal biomass
CA2076018C (en) Docosahexaenoic acid, methods for its production and compounds containing the same
NO330115B1 (en) Use of a polar lipid extract with DHA phospholipids to prepare an aquaculture feed
CN103827289A (en) Methods of mutagenesis of schizochytrium sp and variant strains produced thereof
Kumar et al. Cultivation of microalgae on food waste: Recent advances and way forward
Chen et al. Microalgal polyunsaturated fatty acids: Hotspots and production techniques
Nishshanka et al. Marine microalgae as sustainable feedstock for multi-product biorefineries
CN109310108A (en) The feed ingredient of microbial cell comprising cracking
Zhang et al. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition
Wierzchowska et al. Use of non-conventional yeast Yarrowia lipolytica in treatment or upgradation of hydrophobic industry wastes
Tham et al. Insights of microalgae-based aquaculture feed: A review on circular bioeconomy and perspectives
CA2655755C (en) Zygomycetes for fish feed
LV15474B (en) Method for producing single cell oil from biodegredable by-products
Parchami et al. Versatility of filamentous fungi in novel processes
Hosseininezhad et al. Single-Cell Protein–A Group of Alternative Proteins
Taremie et al. A statistical approach for the production of lipid, biomass, and phenolic from a newly isolated Pichia kudriavzevii strain from Caspian Sea fish
Guo et al. Sustainable conversion of food waste into high-value products through microalgae-based biorefinery
Hosseininezhad et al. 3 Single-Cell Protein–A Group
LV15626B (en) Method for producing single cell protein with low malondialdehyde concentrations from waste cooking oils
JP2023534775A (en) Edible marine microalgal biomass enriched with organic selenium
Eiríksdóttir Cultivation of PUFAs producing Sicyoidochytrium minutum strain using by-products from agriculture
BR102015018119A2 (en) PROCESS OF BIOMASS RICH PRODUCTION IN PIGS FOR USE IN ANIMAL NUTRITION AND / OR FISH EMPLOYING AGRICULTURAL WASTE AMILACE