LV15381B - Fe2o3/ca2fe2o5 photocatalyst system - Google Patents

Fe2o3/ca2fe2o5 photocatalyst system Download PDF

Info

Publication number
LV15381B
LV15381B LVP-17-40A LV170040A LV15381B LV 15381 B LV15381 B LV 15381B LV 170040 A LV170040 A LV 170040A LV 15381 B LV15381 B LV 15381B
Authority
LV
Latvia
Prior art keywords
photocatalyst
semiconductor
photocatalyst system
systems
ca2fe2o5
Prior art date
Application number
LVP-17-40A
Other languages
Latvian (lv)
Other versions
LV15381A (en
Inventor
Andris ŠUTKA
Tālis JUHNA
Original Assignee
Rīgas Tehniskā Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte filed Critical Rīgas Tehniskā Universitāte
Priority to LVP-17-40A priority Critical patent/LV15381B/en
Priority to PCT/IB2018/054657 priority patent/WO2019003079A1/en
Publication of LV15381A publication Critical patent/LV15381A/en
Publication of LV15381B publication Critical patent/LV15381B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Description

[001] Izgudrojums attiecas uz ūdens attīrīšanas tehnoloģiju nozari un ir paredzēts lietošanai fotokatalīzes procesos redzamajā gaismā, piemēram, ūdens attīrīšanas reaktoros.The present invention relates to the field of water purification technology and is intended for use in visible light in photocatalysis processes, for example in water purification reactors.

Zināmais tehnikas līmenis [002] Fotokatalizators ir pusvadītāja savienojums, kurš absorbē gaismu ar enerģiju, lielāku par tā aizliegtās zonas enerģiju, un gaismas absorbcijas rezultātā veidojas elektronu un caurumu pāri, kas, ja tos nerekombinē, piedalās oksidēšanās-reducēšanās reakcijās uz fotokatalizatora virsmas ar adsorbēto ūdeni un skābekli no apkārtējās vides [1]. Rezultātā veidojas brīvie radikāļi, kas ir ļoti spēcīgi oksidētāji un reaģē gandrīz ar jebkuru organisko savienojumu, to noārdot līdz CO2 un H2O.BACKGROUND OF THE INVENTION A photocatalyst is a semiconductor compound that absorbs light with energy greater than that of its forbidden zone, and as a result of light absorption produces pairs of electrons and holes which, if not recombined, participate in oxidation-reduction reactions on the adsorbed surface of the photocatalyst water and oxygen from the environment [1]. The result is the formation of free radicals, which are very strong oxidants and react with almost any organic compound to decompose to CO2 and H2O.

[003] Šobrīd komerciāli pieejamais T1O2 fotokatalizators nav aktīvs redzamajā (saules) gaismā [2], jo tā aizliegtās zonas enerģija ir 3,2 eV - elektroni un caurumi var tikt inducēti ultravioletajā (UV) gaismā.Currently, the commercially available T1O2 photocatalyst is not active in visible (sun) light [2] because its exclusion zone energy is 3.2 eV - electrons and holes can be induced in ultraviolet (UV) light.

[004] Redzamajā gaismā aktīvi fotokatalizatori vai to sistēmas, kuras būtu pietiekami stabilas, ekonomiski izdevīgi ražojamas ar industrializējamām metodēm, komerciāli nav pieejamas.[004] In the visible light, active photocatalysts or systems thereof that are sufficiently stable, economically advantageous to be produced by industrialized methods, are not commercially available.

[005] Foto katalizatoru sistēmas ir pusvadītāju savienojumu kombinācija, kas tiek veidotas ar mērķi samazināt rekombināciju [3] un/vai uzlabot gaismas absorbcijas spēju [4]. Ir zināmas dažāda veida pusvadītāju sistēmas ar atšķirīgu lādiņu pārneses mehānismu [5]. Par efektīvākajām fotokatalizatoru sistēmām tiek uzskatītas sistēmas ar Z-shēmas fotoinducēto lādiņu pārneses mehānismu, jo sistēmai ir augsts redzamās gaismas absorbcijas potenciāls un zemāka fotoinducēto lādiņu rekombinācija, kā arī augsts oksidēšanās-reducēšanās potenciāls [6]· [006] Fotokatalizatoru sistēmās ar Z-shēmas fotoinducēto lādiņu mehānismu starp pusvadītājiem pastāv omiskais kontakts, kurš nodrošina fotoinducēto elektronu, no pusvadītāja ar pozitīvāku vadāmības zonas potenciālu, rekombināciju ar fotoinducētiem elektronu caurumiem, no pusvadītāja ar negatīvāku valences zonas potenciālu. Tādējādi fotoinducētie elektroni no pusvadītāja ar negatīvāko vadītspējas potenciālu un fotoinducētie elektronu caurumi no pusvadītāja ar pozitīvāko valences zonas potenciālu paliek neskarti un piedalās red-oks reakcijās.[005] Photo catalyst systems are a combination of semiconductor compounds designed to reduce recombination [3] and / or to improve light absorption [4]. Different types of semiconductor systems with different charge transfer mechanisms are known [5]. Systems with a Z-scheme photoinduced charge transfer mechanism are considered to be the most efficient photocatalyst systems because of their high visible light absorption potential and lower photoinduced charge recombination as well as high oxidation-reduction potential [6] · [006] Z-schemes photocatalyst systems There is an intrinsic contact between the photoinduced charge mechanism between the semiconductors, which provides the photoinduced electron, from the semiconductor with a more positive conductivity zone potential, from the recombination with the photoinduced electron holes, from the semiconductor with a negative valence zone potential. Thus, the photoinduced electrons from the semiconductor with the negative conductivity potential and the photoinduced electron holes from the semiconductor with the most positive valence potential remain intact and participate in redox reactions.

[007] Ir zināmi Z-shēmas savienojumi omiskā kontakta nodrošināšanai, kas satur cēlmetālu [7] vai savā starpā sapāroti n- un p- tipa pusvadītājos [8, 9]. Trūkumi zināmajām foto katalizatoru sistēmām ar Z-shēmas fotoinducēto lādiņu pārneses mehānismu ir šādi:[007] Z-circuit compounds for providing ohmic contact containing noble metal [7] or paired n- and p-type semiconductors [8, 9] are known. The disadvantages of known photo-catalyst systems with Z-circuit photoinduced charge transfer mechanism are as follows:

(i) komplicētas sintēzes metodes; (ii) nepieciešamība izmantot dārgus reaģentus; (iii) nepieciešamība izmantot toksiskus reaģentus; (iv) sastāvā iekļauti reti sastopami (dārgi) ķīmiskie elementi; (v) ierobežota sistēmu stabilitāte.(i) complicated synthesis methods; (ii) the need to use expensive reagents; (iii) the need to use toxic reagents; (iv) contains rare (expensive) chemical elements; (v) limited stability of systems.

[008] Tuvākā zināmā p- un n- tipa šauras aizliegtās zonas fotokatalizatoru sistēma ir РегОз/СщО [9] (izvēlēta par prototipu). Šajā sistēmā izmantotais Cu?O savienojums ir nestabils [10], kā arī heterostruktūras sintēzē izmantota komplicēta solvotermālā metode [9].[008] The closest known p- and n-type narrow-band photocatalyst system is РегОз / СщО [9] (selected as a prototype). The Cu? O compound used in this system is unstable [10] as well as the complex solvothermal method used in heterostructure synthesis [9].

Izgudrojuma mērķis un būtība [009] Izgudrojuma mērķis ir izstrādāt jaunu fotokatalizatoru sistēmu ar Z-shēmas fotoinducēto lādiņu pārneses mehānismu no dabā plaši sastopamiem ķīmiskajiem elementiem un to pusvadītāju savienojumiem ar šauru aizliegto zonu, izmantojot rūpnieciski izmantojamas ūdens sintēzes metodes.OBJECTIVE AND SUMMARY OF THE INVENTION The object of the present invention is to provide a novel photocatalyst system with a Z-scheme photoinduced charge transfer mechanism from naturally occurring chemical elements and their semiconductor compounds with a narrow exclusion zone using industrially available water synthesis methods.

[010] Izgudrojuma mērķis sasniegts, veidojot РегОз/СагРегОз fotokatalizatoru sistēmu. Izgudrojuma atšķirīgās pazīmes: (i) izmantota jauna savienojumu sistēma no dabā plaši sastopamiem ķīmiskiem elementiem; (ii) iegūšanai izmantotas ūdens sintēzes metodes.[010] The object of the present invention has been achieved by the creation of a Rehgoss / Sahrberg photocatalyst system. Distinctive features of the invention: (i) a novel compound system of naturally occurring chemical elements is used; (ii) water synthesis methods used.

[011] Fotokatalizatoru savienojumu РегОз/СагРегОз sistēmai ir Z-shēmas fotoinducēto lādiņu pārneses mehānisms - piemīt augsts oksidēšanās-reducēšanās potenciāls. РегОз ir n-tipa pusvadītājs, bet СагРегОз ir p-tipa pusvadītājs, n- un p- tipa pusvadītāju sapārošana vienā sistēmā nodrošina Z-shēmas lādiņu pārneses mehānismu. Šajā gadījumā tiek saglabāts īpaši liels skaits fotoģenerēto caurumu un elektronu oksidēšanās-reducēšanās reakcijām (parasti absolūti lielākais fotoinducēto elektronu un caurumu vairākums rekombinē, izdalot enerģiju siltuma veidā) uz fotokatalizatora virsmas, kā arī šo lādiņnesēju oksidēšanāsreducēšanās potenciāls dotajā fotokatalizatoru sistēmā (Z-shēma) tiek saglabāts maksimāli augsts.The system of photocatalysts of Ragszz / Zarzegzz has a Z-scheme photo-induced charge transfer mechanism with high oxidation-reduction potential. РегОз is an n-type semiconductor, while SergРзз is a p-type semiconductor, the pairing of n- and p-type semiconductors in one system provides a mechanism for transferring the Z-circuit charge. In this case, a particularly large number of photo-generated holes and electrons for oxidation-reduction reactions (usually the absolute majority of photo-induced electrons and holes recombine by dissipating energy in the form of heat) on the surface of the photocatalyst and the oxidation reduction potential of these carriers stored at maximum high.

[012] Fotokatalizatoru savienojumu РегОз/СагРегОз sistēmai ir šādas priekšrocības: (i) pusvadītāji РегОз un СагРегОз ir ar šauru aizliegto zonu, tāpēc absorbē redzamo gaismu fotokatalītiskas reakcijas iespējamas saules gaismā, saules gaismas izmantošana ir pamats nulles enerģijas fotokatalīzes procesiem; (ii) fotokatalizatoru savienojumu РегОз/СагРегОз sistēmas sastāvā iekļauti dabā plaši sastopami ķīmiskie elementi - Fe, Ca un O; (iii) sistēmā iekļautie РегОз un СагРегОз pusvadītāju savienojumi fotokatalīzes reakcijās ir stabili; (iv) fotokatalizatoru savienojumu ЕегОз/СагРегСЬ sistēma iegūstama ar industrializējamām uz ūdeni balstītām ķīmiskajām metodēm.The system of photocatalyst compounds Rehgezz / Sagregg has the following advantages: (i) Raggaz and Raggezz semiconductors have a narrow exclusion zone, thus absorbing visible light photocatalytic reactions in possible sunlight, the use of sunlight is the basis for zero energy photocatalysis processes; (ii) the photocatalyst Rege / SAGREGOS system contains naturally occurring chemical elements - Fe, Ca and O; (iii) the RGB and RGB semiconductor compounds in the system are stable in the photocatalytic reactions; (iv) The EEG / SAG system of photocatalysts is obtainable by industrially water-based chemical methods.

[013] Fotokatalizatoru savienojumu РезОз/СагРезОз sistēma izmantojama fotokatalīzes procesos redzamajā gaismā: (i) ūdens attīrīšanā; (ii) dezinfekcijā; (iii) gaisa attīrīšanā; (iv) sterilām virsmām; (v) ūdens šķelšanai; (vi) ķīmisko savienojumu iegūšanai no apkārtējās vides CO2. Fotokatalizatoru savienojumu РезОз/СагРезОз sistēmu pārklājumi var kalpot kā antibakteriālas vai gaisu attīrošas virsmas, kas sniedz minēto efektu pie iekštelpas apgaismojuma.A photocatalyst compound system for use in visible light in photocatalytic processes: (i) water purification; (ii) disinfection; (iii) air purification; (iv) sterile surfaces; (v) water splitting; (vi) production of chemical compounds from ambient CO2. Coating systems for photocatalyst compound systems can serve as anti-bacterial or air purifying surfaces that provide this effect in indoor lighting.

[014] Fotokatalizatoru savienojumu РезОз/СагРезОз sistēmu iespējams izmantot gan pulverveida produktu iegūšanā, gan pārklājumos. Pulverveida materiālus iespējams izmantot fotokatalīzes reaktoru izgatavošanā vai jau esošu fotokatalizatoru reaktoru uzlabošanā, ļaujot kā gaismas avotu izmantot redzamo gaismu, nevis UV starojumu. Redzamās gaismas starojuma avoti patērē mazāk enerģijas un ir ievērojami lētāki.[014] The Razzez / Sagarzocz compound photocatalyst system can be used for both powdered products and coatings. Powdered materials can be used to make photocatalytic reactors or to upgrade existing photocatalyst reactors, allowing visible light instead of UV light to be used as a light source. Visible light sources consume less energy and are significantly cheaper.

[015] Fotokatalizatoru savienojumu FeiCh/CaiFeiOs sistēmu iegūšanas paņēmiens ir raksturīgs ar to, ka dzelzs saturošas amorfa rakstura nanoizmēra nogulsnes piesūcina ar Ca saturošu sāļu šķīdumu un termiski apstrādā: (i) žāvē temperatūrā līdz 100 °C pietiekama temperatūra, lai iztvaicētu ūdeni, žāvē tik ilgi, kamēr sauss; (ii) apdedzina temperatūrā līdz 1100 °C 1 stundu. Apdedzināšana par 1100 °C augstākās temperatūrās var izraisīt savienojumu reducēšanos, kāda elementa iztvaikošanu vai citu savienojumu veidošanos. Ilgāka apdedzināšana samazina īpatnējo virsmu, kas samazinās savienojumu aktivitāti.[015] A process for preparing photocatalyst compound FeiCh / CaiFeiOs systems is characterized in that the iron-containing amorphous nanoparticulate precipitate is impregnated with a Ca-containing salt solution and heat-treated: (i) dried to a temperature sufficient to 100 ° C to evaporate the water; as long as dry; (ii) calcined at 1100 ° C for 1 hour. Burning at temperatures above 1100 ° C may result in reduction of compounds, evaporation of some element or formation of other compounds. Prolonged firing reduces the specific surface area, which will reduce the activity of the compounds.

Izgudrojuma realizācijas piemēri [016] 1. piemērs: pulverveida produktu sintēzē sākotnēji vienādās tilpuma attiecībās: sajauc 0,1 M Fe(NO3)3'9H2O ūdens šķīdumu ar 0,5 M urotropīna ūdens šķīdumu, iegūstot Fe staurošas nogulsnes. Nogulsnes filtrē un mazgā ar ūdeni. Pēc mazgāšanas caur nogulšņu slāni filtrē 1 M Са(ЫОз)2 ūdens šķīdumu. Nogulsnes žāvē 60 °C temperatūrā 1 stundu un termiski apstrādā (apdedzina) 820 °C temperatūrā 20 minūtes.EXAMPLES FOR CARRYING OUT THE INVENTION Example 1: Synthesizing a powder product initially in an equal volume ratio: mix 0.1 M Fe (NO3) 3'9H2O aqueous solution with 0.5 M aqueous urotropin solution to give a Fe precipitating precipitate. The precipitate is filtered off and washed with water. After washing through the sediment layer, filter 1 M Са (ЫОз) 2 aqueous solution. The precipitate is dried at 60 ° C for 1 hour and heat-treated at 820 ° C for 20 minutes.

[017] 2. piemērs: pārklājumu sintēzē Fe saturošu nogulšņu slāni uznes uz elektrovadoša substrāta (darba elektroda) virsmas, izmantojot elektroķīmisko nogulsnēšanu no 0,02 M FeCb ūdens šķīduma izmantojot Pt stiepli kā palīgelektrodu un pieliekot ārējās ķēdes potenciālu 1,2 V. Iegūto slāni iemērc 1 M CafNChh ūdens šķīdumā 1 minūti. Pārklājumu žāvē 60 °C temperatūrā 1 stundu un termiski apstrādā (apdedzina) 820 °C temperatūrā 20 minūtes.Example 2: In the synthesis of coatings, a layer of Fe-containing precipitate is deposited on the surface of an electrically conductive substrate (working electrode) using electrochemical precipitation from a 0.02 M FeCb aqueous solution using a Pt wire as an auxiliary electrode and applying an external circuit potential of 1.2 V. soak in 1 M CafNChh aqueous solution for 1 minute. The coating is dried at 60 ° C for 1 hour and heat-treated at 820 ° C for 20 minutes.

[018] Nogulsnes gan pulverveida, gan pārklājumu izgatavošanai ir amorfa rakstura, un to atsevišķu daļiņu izmēri ir mazāki par 100 nm.[018] The pellets for both powder and coating applications are amorphous and have individual particle sizes of less than 100 nm.

Izmantotie informācijās avoti [1] Akira Fujishima, Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.Sources of Information Used [1] Akira Fujishima, Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238, 37-38 (1972).

[2] Shama Rehman, Ruh Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiCh and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560-569.[2] Shama Rehman, Ruh Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiCh and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560-569.

[3] Li Li, Paul A. Salvador and Gregory S. Rohrer, Photocatalysts with internal electric fields, Nanoscale 6 (2014) 24-42.[3] Li Li, Paul A. Salvador and Gregory S. Rohrer, Photocatalysts with Internal Electric Fields, Nanoscale 6 (2014) 24-42.

[4] Yajun Wang, Qisheng Wang, Xueying Zhan, Fengmei Wang, Muhammad Safdar and Jun He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale 5 (2013) 8326-8339.[4] Yajun Wang, Qisheng Wang, Xueying Zhan, Fengmei Wang, Muhammad Safdar and Jun He, Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalytic Properties: A Review, Nanoscale 5 (2013) 8326-8339.

[5] Roland Marschall, Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity, Adv. Funct. Mater. 24 (2014) 2421-2440.[5] Roland Marschall, Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity, Adv. Funct. Mater. 24 (2014) 2421-2440.

[6] Peng Zhou, Jiaguo Yu, Mietek Jaroniec, All-Solid-State Z-Scheme Photocatalytic Systems, Adv. Mater. 2014, 26, 4920-4935.[6] Peng Zhou, Jiaguo Yu, Mietek Jaroniec, All-Solid-State Z-Scheme Photocatalytic Systems, Adv. Mater. 2014, 26, 4920–4935.

[7] Houfen Li, Hongtao Yu, Xie Quan, Shuo Chen, Yaobin Zhang, Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WOj-metaLgCLXU (Metal = Cu, Ag, Au), ACS Appl. Mater. Interfaces 8 (2016) 2111-2119.[7] Houfen Li, Hongtao Yu, Xie Quan, Shuo Chen, Yaobin Zhang, Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WOj-metaLgCLXU (Metal = Cu , Ag, Au), ACS Appl. Mater. Interfaces 8 (2016) 2111-2119.

[8] Nagarajan Srinivasan, Etsuo Sakai, Masahiro Miyauchi, Balanced Excitation between Two Semiconductors in Bulk Heterojunction Z-Scheme System for Overall Water Splitting, ACS Catal. 6 (2016) 2197-2200.[8] Nagarajan Srinivasan, Etsuo Sakai, Masahiro Miyauchi, Balanced Excitation between Two Semiconductors in Bulk Heterojunction Z-Scheme System for Overall Water Splitting, ACS Catal. 6 (2016) 2197-2200.

[9] Ji-Chao Wang, Lin Zhang, Wen-Xue Fang, Juan Ren, Yong-Yu Li, Hong-Chang Yao, Jian-She Wang, Zhong-Jun Li, Enhanced Photoreduction CO2 Activity over Direct Z-Scheme а-РегОз/СигО Hetero structures under Visible Light Irradiation, ACS Appl. Mater. Interfaces 7 (2015) 8631-8639.[9] Ji-Chao Wang, Lin Zhang, Wen-Xue Fang, Juan Ren, Yong-Yu Li, Hong-Chang Yao, Jian-She Wang, Zhong-Jun Li, Enhanced Photoreduction CO2 Activity Over Direct Z-Scheme а- РегОз / СигО Hetero structures under Visible Light Irradiation, ACS Appl. Mater. Interfaces 7 (2015) 8631-8639.

[10] Lingling Wu, Lok-kun Tsui, Nathan Swami, Giovanni Zangari, Photoelectrochemical Stability of Electrodeposited Cu?O Films, J. Phys. Chem. С 114 (2010) 11551-11556.[10] Lingling Wu, Lok-kun Tsui, Nathan Swami, Giovanni Zangari, Photoelectrochemical Stability of Electrodeposited Cu? O Films, J. Phys. Chem. С 114 (2010) 11551–11566.

Claims (2)

1. N- un p- tipa šauras aizliegtās zonas pusvadītāju fotokatalizatoru sistēma ar Zshēmas fotoinducēto lādiņu pārneses mehānismu, kas ietver ЕегОз, kas atšķiras ar to, ka tā satur Са2ре?О5.1. An N- and p-type narrow-band restricted semiconductor photocatalyst system with a Scheme photoinduced charge transfer mechanism, comprising an EEG which is characterized in that it contains S2? 2. Fotokatalizatoru sistēmas saskaņā ar 1. pretenziju iegūšanas paņēmiens, kas raksturīgs ar to, ka dzelzi saturošas amorfa rakstura nanoizmēra nogulsnes piesūcina ar Ca saturošu sāļu šķīdumu un termiski apstrādā: žāvē temperatūrā līdz 100 °C un apdedzina temperatūrā līdz 1100 °C 1 stundu.Process for preparing a photocatalyst system according to claim 1, characterized in that the iron-containing amorphous nanoparticulate precipitate is impregnated with a Ca-containing salt solution and heat-treated at a temperature of up to 100 ° C and calcined at a temperature of up to 1100 ° C for 1 hour.
LVP-17-40A 2017-06-26 2017-06-26 Fe2o3/ca2fe2o5 photocatalyst system LV15381B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LVP-17-40A LV15381B (en) 2017-06-26 2017-06-26 Fe2o3/ca2fe2o5 photocatalyst system
PCT/IB2018/054657 WO2019003079A1 (en) 2017-06-26 2018-06-25 Fe 2o3/ca2fe2o 5 photocatalyst system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-17-40A LV15381B (en) 2017-06-26 2017-06-26 Fe2o3/ca2fe2o5 photocatalyst system

Publications (2)

Publication Number Publication Date
LV15381A LV15381A (en) 2019-01-20
LV15381B true LV15381B (en) 2019-10-20

Family

ID=59626650

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-17-40A LV15381B (en) 2017-06-26 2017-06-26 Fe2o3/ca2fe2o5 photocatalyst system

Country Status (2)

Country Link
LV (1) LV15381B (en)
WO (1) WO2019003079A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109589959B (en) * 2019-01-23 2021-09-28 西北师范大学 Preparation of alpha-ferric oxide/titanium dioxide nano composite material and application thereof in photocatalytic reduction of carbon dioxide
LV15557A (en) * 2020-06-19 2021-03-20 Rīgas Tehniskā Universitāte A method for water disinfection using cafeo
CN111871408A (en) * 2020-07-16 2020-11-03 浙江工业大学 Direct Z-Scheme heterojunction catalyst and preparation method and application thereof
CN112811476B (en) * 2020-12-31 2022-05-17 华中科技大学 Nickel-doped brownmillerite type oxygen carrier and preparation method and application thereof
CZ309898B6 (en) * 2022-06-29 2024-01-17 Vysoká škola chemicko-technologická v Praze A method of preparing the structure of a Z-schematic photocatalyst for splitting water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173463A (en) * 2011-03-14 2011-09-07 陕西科技大学 Method for preparing iron-based composite oxide Ca2Fe2O5

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173463A (en) * 2011-03-14 2011-09-07 陕西科技大学 Method for preparing iron-based composite oxide Ca2Fe2O5

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAISUKE HIRABAYASHI ET AL: "Formation of brownmillerite type calcium ferrite (Ca2Fe2O5) and catalytic properties in propylene combustion", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 110, no. 1-2, 1 August 2006 (2006-08-01), pages 155 - 160, XP019392837, ISSN: 1572-879X, DOI: 10.1007/S10562-006-0104-0 *
MISHRA MANEESHA ET AL: "[alpha]-Fe2O3as a photocatalytic material: A re", APPLIED CATALYSIS A: GENERAL, ELSEVIER, AMSTERDAM, NL, vol. 498, 28 March 2015 (2015-03-28), pages 126 - 141, XP029220089, ISSN: 0926-860X, DOI: 10.1016/J.APCATA.2015.03.023 *

Also Published As

Publication number Publication date
LV15381A (en) 2019-01-20
WO2019003079A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
Rahman et al. Chalcogenides as photocatalysts
Peleyeju et al. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater
Lingampalli et al. Recent progress in the photocatalytic reduction of carbon dioxide
Di et al. Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst
LV15381B (en) Fe2o3/ca2fe2o5 photocatalyst system
Samadi et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis
Mohamed et al. Enhanced nanocatalysts
Wang et al. Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods
Miyauchi et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation
Yu et al. Enhanced photoinduced-stability and photocatalytic activity of CdS by dual amorphous cocatalysts: synergistic effect of Ti (IV)-hole cocatalyst and Ni (II)-electron cocatalyst
He et al. BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation
Hu et al. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications
Aguilera-Ruiz et al. Efficiency of Cu2O/BiVO4 particles prepared with a new soft procedure on the degradation of dyes under visible-light irradiation
Li et al. WO3/BiVO4/BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation
KR101725059B1 (en) System for photocatalytic activation
Zhang Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron
Radha et al. Modulation in the band dispersion of Bi2WO6 nanocrsytals using the electronegativity of transition elements for enhanced visible light Photocatalysis
Chen et al. Synthesis of CuO/Co3O4 coaxial heterostructures for efficient and recycling photodegradation
Hussain et al. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications
Abdelkader et al. Preparation and characterization of novel CuBi2O4/SnO2 p–n heterojunction with enhanced photocatalytic performance under UVA light irradiation
Reis et al. Enhanced photoelectrocatalytic performance of ZnO films doped with N2 by a facile electrochemical method
Hernández-Ramírez et al. Semiconducting materials
Wang et al. Unique 1D/3D K 2 Ti 6 O 13/TiO 2 micro-nano heteroarchitectures: controlled hydrothermal crystal growth and enhanced photocatalytic performance for water purification
Anku et al. Bismuth-based nanoparticles as photocatalytic materials
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity