LV14819B - Method and device for monitoring regional anaesthesia and invasive pain therapy - Google Patents

Method and device for monitoring regional anaesthesia and invasive pain therapy Download PDF

Info

Publication number
LV14819B
LV14819B LVP-13-173A LV130173A LV14819B LV 14819 B LV14819 B LV 14819B LV 130173 A LV130173 A LV 130173A LV 14819 B LV14819 B LV 14819B
Authority
LV
Latvia
Prior art keywords
signal
monitoring
amplitude
anesthesia
rgb
Prior art date
Application number
LVP-13-173A
Other languages
Latvian (lv)
Other versions
LV14819A (en
Inventor
Uldis RUBĪNS
Jānis SPĪGULIS
Aleksejs MIŠČUKS
Original Assignee
Latvijas Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Universitāte filed Critical Latvijas Universitāte
Priority to LVP-13-173A priority Critical patent/LV14819B/en
Publication of LV14819A publication Critical patent/LV14819A/en
Publication of LV14819B publication Critical patent/LV14819B/en

Links

Description

IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION

Tehnikas jomaTechnical field

Izgudrojums paredzēts izmantošanai anestezioloģijā, konkrēti reģionālās anestēzijas (RA) efektivitātes monitoringā un sāpju terapijas (ST) monitoringā.The invention is intended for use in anesthesiology, in particular for monitoring the effectiveness of regional anesthesia (RA) and for monitoring pain therapy (ST).

Tehnikas līmenisState of the art

Pēc definīcijas sāpes ir apzināta sajūtu uztvere un viena no cilvēka smadzeņu aktivitātes raksturīgajām pazīmēm, tās ir komplekss daudzu līmeņu aferentu refleksu loks, kas nosaka viņa izturēšanos (1). Ārstējot sāpes vai pasargājot pacientu no potenciālajam sāpēm, ārsts vadās pēc sāpju līmeņa noteikšanas. Pēc citas definīcijas ko sniedz IASP (International Association for the Study of Pain) ”Sāpes ir nepatīkamas sajūtas un emocijas, kas saistītas ar reālu vai potenciālu audu bojājumu, vai arī tiek uztvertas, kā šāds bojājums. Tās ir vienmēr subjektīvas sajūtas”. Tomēr gadījumos, kad pacients atrodas „narkozē”, medikamentozā miegā vai pastāv kognitīvas uztveres problēmas (psihiska vai somatiska stāvokļa dēļ), informācija par subjektīvām sāpju līmeņa izjūtam nav pieejama. Tādēļ ir nepieciešamība, netiešā veidā objektivizēt pacienta reakcijas uz sāpīgiem stimuliem vai uz ārstniecisko iedarbību, kas veikti, lai mazinātu jau esošās (piemēram, hroniskās) sāpes, vai potenciālās, kā, piemēram, reģionālā anestēzija pirms ķirurģiskas operācijas. Objektīvizācijas nolūkos ir jāizmanto kvantitatīvas tehnoloģijas.By definition, pain is a conscious sensory perception and one of the hallmarks of human brain activity, a complex multi-level afferent reflex that determines his or her behavior (1). When treating pain or protecting a patient from potential pain, the physician guides the pain level. Another definition provided by the IASP (International Association for the Study of Pain) “Pain is an unpleasant sensation and emotion associated with, or perceived as, a real or potential tissue injury. These are always subjective feelings. ” However, in cases where the patient is in 'narcosis', medication sleep or cognitive problems (due to mental or somatic condition), no information on subjective pain level is available. Therefore, there is a need, indirectly, to objectify the patient's response to painful stimuli or therapeutic effects to relieve pre-existing (e.g., chronic) pain, or potential, such as regional anesthesia prior to surgery. Quantitative technologies must be used for objectification purposes.

Viens no galvenajiem reģionālās anestēzijas (RA) uzdevumiem ir nodrošināt pacienta atbrīvošanu no sāpēm. Patlaban nav zināmas tiešas, ideālas metodes, ar kuru palīdzību varētu noteikt RA esamību vai tās pakāpi pie samaņas neesošam pacientam. Jūtīguma pazušanu tradicionāli nosaka ar adatas dūrieniem, saspiežot ādu, pieskaroties ar ledus gabaliņu, vai citādi mehāniski iedarbojoties uz ādu [2,3]. Šīs klīniskās noteikšanas metodes nenoliedzami ir vienkāršas, bet subjektīvas un balstās uz ārsta - pacienta kontaktu. Diemžēl šis kontakts mēdz būt apgrūtināts vairāku objektīvo iemeslu dēļ, piemēram, pacienta stress, traumas esamība un smagums, nepierastie apstākļi, vecuma mentālās īpatnības, blakus saslimšanas. Līdz ar to ļoti bieži vienkārši fiziski nav iespējams saņemt no pacienta adekvātu atbildi par viņa sensorām izjūtam un vēl vairāk - šādā veidā iegūta atbilde var būt ne tikai neprecīza un neskaidra, bet viltus pozitīva. Tas savukārt var novest pie situācijas, ka pacients pirms operācijas faktiski nav noanestezēts, bet iespēja pāriet uz citu anestēzijas veidu pie esošas situācijas nav realizējama.One of the major tasks of regional anesthesia (RA) is to provide pain relief for the patient. There is currently no direct, ideal method for detecting the presence or degree of RA in an unconscious patient. Loss of sensitivity has traditionally been determined by needle punctures, pinching the skin, touching a piece of ice, or other mechanical action on the skin [2,3]. These clinical detection methods are undoubtedly simple but subjective and based on the patient-doctor contact. Unfortunately, this contact tends to be difficult for a number of objective reasons, such as patient stress, the presence and severity of the injury, unusual circumstances, age-related mental features, and co-morbidity. As a result, it is very often simply impossible for the patient to physically obtain an adequate response to their senses, and moreover, the response obtained in this way can be not only inaccurate and unclear, but also a false positive. This, in turn, can lead to a situation where the patient is not actually anesthetized prior to surgery, but the possibility of switching to another type of anesthesia under the existing situation is not feasible.

Sāpju fizioloģijā ievērojama sastāvdaļa pieder simpātiskai nervu sistēmai. Iespēja kvantitatīvi izmērīt organisma simpātiskas atbildes reakcijas ļaus pasargāt pacientu no potenciālajam sāpēm (RA) un, no otras puses, izvērtēt ārstniecisko efektu no manipulācijām (ablatīvas iejaukšanas, blokādes).A significant component of pain physiology is the sympathetic nervous system. The ability to quantify the body's sympathetic responses will protect the patient from potential pain (RA) and, on the other hand, evaluate the therapeutic effect from manipulation (ablative interference, blockade).

Izmērīt sāpes tiešā veidā pieejamās tehnoloģijas pagaidām neļauj, bet ļoti daudz faktoru palīdz spriest par sāpju līmeni netiešā veidā. Pēc lokālā anestētiķa (LA) ievadīšanas, iestājoties adekvātai anestēzijai, ir sagaidāms sensorais, motorais un simpātiskais bloki. Ja nevar tieši izmērīt sensoro bloku, tad var mēģināt novērtēt simpātisko efektu un tad pēc tā netieši spriest par gaidāmo sensoro efektu. Simpātiskais efekts asociējas ar nepārprotamu periferu vazodilatāciju, periferās asins plūsmas palielināšanos un ādas temperatūras paaugstināšanos. Temperatūras rutīna monitorēšana ir ļoti efektīva, bet aprobežojas ar ļoti nelielu mērāmās ādas zonu. Kā viena no modernākajām metodēm, kas ļauj novērtēt lielāku platību, būtu jāatzīmē termogrāfijas kamera, kas ļauj veikt netiešu RA vizuālu monitoringu, nosakot temperatūras atšķirības starp dažādām ādas zonām un to izmaiņas laikā [4-6]. Diemžēl šī metode ir ļoti dārga un nav pieejama visās klīnikās.The technology available to measure pain directly does not yet allow to measure pain, but many factors help to judge pain levels indirectly. After administration of a local anesthetic (LA), sensory, motor, and sympathetic blocks may be expected with adequate anesthesia. If it is not possible to measure the sensory block directly, one can try to evaluate the sympathetic effect and then indirectly judge the expected sensory effect. The sympathetic effect is associated with marked peripheral vasodilation, increased peripheral blood flow and elevated skin temperature. Temperature routine monitoring is very effective but limited to a very small area of skin to be measured. As a state-of-the-art method for estimating a larger area, a thermography camera that allows indirect RA visual monitoring by detecting temperature differences between different skin areas and their changes over time should be noted [4-6]. Unfortunately, this method is very expensive and not available in all clinics.

Ir zināmas vairākas neinvazīvas RA noteikšanas metodes un ierices, piemēram, ierice un metode veiksmīgas spinālās anestēzijas monitoringam [7], kas paredz vismaz viena elektroniskā temperatūras sensora ievietošanu uz ādas virsmas vismaz vienas dermatomas robežās. Ierice optiski un/vai akustiski signalizē par situāciju, kad temperatūras mērījumu rezultāti izmainās par 2-3° C, norādot uz pozitīvo anestēzijas rezultātu.Several non-invasive methods and devices for detecting RA are known, such as a device and method for monitoring successful spinal anesthesia [7], which involves the insertion of at least one electronic temperature sensor on the skin surface within at least one dermatome. The device signals optically and / or acoustically when the temperature measurement results change by 2-3 ° C, indicating a positive anesthetic result.

Ir zināma metode RA adekvāta bloka evolūcijas novērtēšanai [8], ka tiek izmantots pacienta pulsa indekss, tas tiek mērīts ik pēc vienas minūtes, sakot ar 5 minūti, vienlaicīgi uz operējamās un veselās ekstremitātes. Tiek izvērtēts vidējais koeficients uz bloķētas un veselas ekstremitātes un gadījumā, kad savstarpējo koeficientu starpība pārsniedz trīs reizes, anestēziju uzskata par veiksmīgo.There is a known method for evaluating the evolution of an adequate block of RA [8], which uses a patient's pulse index, which is measured every minute, starting with 5 minutes, simultaneously on the operated and healthy limbs. The median coefficient on a blocked and healthy limb is evaluated and anesthesia is considered successful if the difference between the coefficients exceeds three times.

Ļoti populāra ir ultrasonoskopijas vizualizācijas ierice kombinācija ar pulsa oksimetriju RA veikšanai un periferā bloka apstiprināšanai [9].The combination of ultrasound imaging with pulse oximetry for RA and peripheral block validation is very popular [9].

Vēl zināmas metodes anestēzijas noteikšanai ir balstītas uz elektrodermālas aktivitātes mērījumiem. Ādas konduktivitātes pārmaiņās tika kontrolētas pēc simpātiska bloka iestāšanas, kas asociējas ar veiksmīgu RA [10,11].Other known methods of determining anesthesia are based on the measurement of electrodermal activity. Changes in skin conductance were controlled after the onset of a sympathetic block associated with successful RA [10,11].

Ir izveidotas arī citas ierīces, piemēram, PAINVISION PS-210 (Osachi Itd; 2003) kvantitatīvais percepcijas monitoringam, kurās izmanto kopēja anestezioloģiskā standarta novērošanās parametri (elektrokardiogrāfijas, TA u.c.) un regulējamie elektriskie stimuli.Other devices, such as PAINVISION PS-210 (Osachi Itd; 2003) for quantitative perceptual monitoring using common anesthetic standard observation parameters (electrocardiography, TA, etc.) and adjustable electrical stimuli, have also been developed.

Ir zināms paņēmiens un ierice RA monitoringam, izmantojot bezkontakta fotopletizmogrāfijas (PPG) principu [12], Fotopletizmogrāfija ir neinvazīva optiska metode asins tilpuma pulsāciju mērīšanai. Metodes pamatā ir optiskā starojuma spēja iespiesties audos vairāku milimetru dziļumā. Starojums tiek absorbēts mīkstajos audos un asinīs. Sirdsdarbības un elpošanas rezultātā, kā ari vazomociju darbības rezultātā asins apjoms periodiski mainās, un zemādas audos izkliedētā starojuma intensitāte tiek modulēta uz šo procesu rēķina. Asins tilpuma izmaiņas var reģistrēt, izmantojot videokameru, kas detektē no ādas audiem atstaroto starojumu. Metodi var izmantot ādas audu asins plūsmas (perfuzijas) monitoringā.There is a known technique and device for monitoring RA using the principle of non-contact photoplethysmography (PPG) [12], photoplethysmography is a non-invasive optical method for measuring blood volume pulsations. The method is based on the ability of optical radiation to penetrate the tissue to a depth of several millimeters. Radiation is absorbed into soft tissues and blood. As a result of cardiac and respiratory function, as well as vasomotor activity, blood volume changes periodically, and the intensity of radiation diffused into the subcutaneous tissue is modulated at the expense of these processes. Changes in blood volume can be recorded using a video camera that detects radiation reflected from the skin tissue. The method can be used to monitor the blood flow (perfusion) of skin tissue.

Izgudrojuma mērķis, būtība, zīmējumu apraksts un izgudrojuma detalizēts izklāstsOBJECT, NATURE, DESCRIPTION OF THE DRAWINGS AND DETAILED DESCRIPTION OF THE INVENTION

Izgudrojuma mērķis ir pilnveidot bezkontakta monitoringu reģionālās un/vai sāpju terapijas efektivitātes objektīvam novērtējumam.The object of the invention is to improve contactless monitoring for an objective evaluation of the effectiveness of regional and / or pain therapy.

Pašlaik aizvien plašāk operāciju zālēs ievieš baltās gaismas LED operāciju lampas ar iebūvētu videokameru ķirurģisko operāciju dokumentēšanai - piemēram, atbilstoši vietnē [13] sniegtajam aprakstam. Videokamera parasti atrodas lampas centrā un vienmēr ir orientēta pret visvairāk apgaismoto (anestezējamo) ķermeņa vietu, kura tiek operēta. Piedāvātais paņēmiens paredz, ka operācijas laikā šādu kombinētu lampu izmanto vienlaicīgi kā gaismas avotu un fotouztvērēju ādas mikrocirkulācijas monitoringam, lai nodrošinātu RA un ST iedarbības briža fiksēšanu un iedarbības nepārtrauktu monitoringu procedūras laikā. Šajā gadījumā ir papildus nepieciešams tikai signāla apstrādes modulis, kas ietver procesoru un attēlu apstrādes datorprogrammu. Programma var tikt papildināta ar jaunām funkcijām, salīdzinot ar [12], piemēram, RA izraisīto ādas krāsas izmaiņu RGB monitoringu.Nowadays, white led LED operating lamps with a built-in video camera for documenting surgical operations - such as the one described on the website [13] - are increasingly being introduced in the operating room. The camcorder is usually located in the center of the lamp and is always oriented towards the most illuminated (anesthetized) area of the body to be operated on. The proposed technique involves the simultaneous use of such a combined lamp as a light source and a photo receiver for monitoring the microcirculation of the skin during surgery, to ensure the momentum of RA and ST exposure and continuous monitoring of exposure during the procedure. In this case, only a signal processing module is required, which includes a processor and a computer program for image processing. New features can be added to the program compared to [12], such as RGB monitoring of skin color changes caused by RA.

Kā ierīci RA monitoringam var izmantot arī viedtālruni vai cita veida mobilu ierīci, kurā gaismas avots, videokamera, procesors un displejs ir integrēti kopīgā korpusā. Monitoringā informāciju iespējams pārraidīt reālā laikā ar mobilā tīkla starpniecību un saglabāt uz datu servera. Šajā gadījumā papildus esošajam aprīkojumam nepieciešams tikai fiksēts ierīces turētājs un datorprogramma (piemēram, aplikācija viedtālrunim).A smartphone or other mobile device that integrates a light source, a camcorder, a processor, and a display into a common enclosure can also be used as a RA monitoring device. In monitoring, information can be transmitted in real time over a mobile network and stored on a data server. In this case, in addition to the existing equipment, you only need a fixed device holder and a computer program (eg smartphone application).

Izgudrojuma būtību paskaidro pievienotie attēli, kur:The following figures illustrate the invention:

1. att. ir parādīta bezkontakta RA monitoringa ierīces blokshēma, kura satur:Fig. 1 a flow chart of a non-contact RA monitoring device is shown, which contains:

- stabilizētu operāciju lampu vai citu gaismas avotu, kas ir piemērots anestezējamās ādas virsmas apstarošanai - baltās gaismas vai šaurjoslas spektra redzamās gaismas vai infrasarkanā starojuma avotu 1, piemēram, veidotu no gaismas diodēm (LED);- a stabilized operating lamp or other light source suitable for irradiating the surface of the skin to be anesthetized, such as white light or narrow-band visible light or infrared light source 1, such as light emitting diodes (LEDs);

- lampā integrētu trīs-krāsu (RGB) vai melnbaltu attēlu sensoru 2, piemēram, videokameru, kas ir piemērots videosignāla reģistrēšanai no ādas virsmas;- a triple-color (RGB) or black-and-white image sensor integrated into the lamp, such as a video camera, capable of recording video signals from the skin surface;

- analīzes bloku (procesoru) 3, kas aprēķina PPG signāla amplitūdu katrā sirdsdarbības ciklā un no tās aprēķina signāla amplitūdas mediāno vērtību un standartnovirzi noteiktā laika intervālā, RA iedarbības reģistrēšanai, un lampas vadībai;- an assay unit (processor) 3, which calculates the PPG signal amplitude for each heartbeat cycle and calculates the median value and standard deviation of the signal amplitude over a given time interval, for recording RA exposure, and for lamp control;

- izvadierīci, piemēram grafisko displeju, kas attēlo PPG amplitūdas grafiku, vai gaismas vai skaņas indikatoru, kas indicē RA iestāšanās brīdi.- an output device, such as a graphic display showing the graph of the PPG amplitude, or a light or sound indicator indicating the occurrence of RA.

Analīzes bloks var būt funkcionāli saistīts vai ari nesaistīts ar gaismas avotu.The assay unit may be functionally linked or not related to the light source.

2. att. ir parādīts reģistrētā PPG signāla amplitūdas izmaiņu grafiks un RA iestāšanās bridis, kas tiek noteikts pēc signāla standartnovirzes.Fig. 2 shows the graph of the amplitude changes of the recorded PPG signal and the time of onset of RA, which is determined by the signal standard deviation.

Piedāvātajā paņēmienā RA iedarbības bezkontakta noteikšanai izmanto operāciju zālē jau esošu operāciju lampu ar iebūvētu videokameru operācijas gaitas dokumentēšanai. Lampa emitē redzamā vai tuvā infrasarkanā spektra starojumu, kas atstarojoties no anestezējamās ādas, tiek reģistrēts ar iebūvēto videokameru vai citu gaismas jutīgu RGB krāsu vai monohromu sensoru. No videosignāla tiek aprēķināta PPG signāla amplitūda katrā sirdsdarbības ciklā. Tad tiek aprēķināta mediānā signāla amplitūdas vērtība un standartnovirze izvēlētā laika intervālā. Par statistiski ticamu anestēzijas iestāšanās bridi tiek uzskatīts laiks, kurā PPG amplitūda divu standartnoviržu intervālā (SN2) pārsniedz mērījuma sākuma brīža PPG amplitūdu divu standartnoviržu intervālā (SNi) (2. att.). Tiklīdz iestājas statistiski ticams anestēzijas iedarbības sākuma bridis, mērīšanu var pārtraukt, un bez liekas gaidīšanas var sākt ķirurģiskās manipulācijas.In the proposed method, a non-contact RA exposure detector uses an operating lamp with a built-in video camera already in the operating room to document the progress of the operation. The lamp emits visible or near infrared radiation, which is reflected from the anesthetized skin and is recorded by a built-in camcorder or other light sensitive RGB color or monochrome sensor. The amplitude of the PPG signal from each video cycle is calculated from the video signal. The median signal amplitude value and standard deviation over a selected time interval are then calculated. The time at which the PPG amplitude within two standard deviations (SN 2 ) exceeds the baseline measurement PPG amplitude within two standard deviations (SNi) is considered statistically significant (Fig. 2). As soon as a statistically significant onset of anesthesia occurs, measurement can be discontinued and surgical manipulation may be initiated without undue delay.

Ar piedāvāto metodi un atbilstošo aprīkojumu reģionālās anestēzijas iestāšanās process ir viegli nosakāms un skatoties ņo lietotāja viedokļa - nekomplicēts. Noteikšanas process ir objektīvs, neatkarīgs no pacienta mentālā un fiziskā stāvokļa. Nav ierobežojumu, kas asociējas ar pacienta vai ārsta subjektīvo viedokli. Nav ierobežojumu, kas asociējas ar laika limitu vai izmantojamās aparatūras augstajām izmaksām, respektējot tas izplatību un vieglu pieejamību (praktiski jebkurā darba vietā, proti, operācijas zālē). Nav ierobežojumu, kas asociējas ar garu un dārgu personāla apmācību PC un videokameras lietošanā.With the proposed method and appropriate equipment, the process of regional anesthesia is easy to detect and, from the user's point of view, uncomplicated. The detection process is objective, independent of the patient's mental and physical condition. There are no limitations associated with the subjective opinion of the patient or doctor. There are no limitations associated with the time limit or the high cost of the hardware used, given its widespread availability and ease of access (in virtually any workplace, the operating room). There are no restrictions associated with long and costly staff training on PC and camcorder use.

AtsaucesReferences

1. www.sapes.lv/?p=6089&lang=12401. www.sapes.lv/?p=6089&lang=1240

2. Boscheinen-Morrin J., Conolly W. Brūce. The Hand: Fundamentāls of Therapy. Third 10 edition, I, pp. 6-7 (2002)2. Boscheinen-Morrin J., Conolly W. Bruce. The Hand: The Fundamental of Therapy. Third 10 edition, I, pp. 6-7 (2002)

3. Chan A. W., MacFarlane I. A., Bowsher D., Campbell J. A. Weighted needle pinprick sensory thresholds: a simple tēst of sensory function in diabetic peripheral neuropathy. J. Neurol. Neurosurg. Psychiatry, 55, pp. 56-59 (1992)3. Chan A. W., MacFarlane I. A., Bowsher D., Campbell J. A. Weighted needle pinprick sensory thresholds: a simple exercise of sensory function in diabetic peripheral neuropathy. J. Neurol. Neurosurg. Psychiatry, 55, p. 56-59 (1992).

4. Jansen T., Asghar S., Kristensen P. L., Skjonnemand M., Nergaard P., Lange K. H. W. 15 Infrared thermography after selective ultrasound-guided peripheral blocks in the upper limbs. NYSORA World Anesthesia Congress, Dubai, UAE, Congress Abstracts CD (2010)4. Jansen T., Asghar S., Kristensen P. L., Skjonnemand M., Nergaard P., Lange K. H. W. 15 Infrared thermography after selective ultrasound-guided peripheral blocks in the upper limbs. NYSORA World Anesthesia Congress, Dubai, UAE, Congress Abstracts CD (2010)

5. J. Klaessens, M. Landman, R. De Roode, H. J. Noordmans, R. M. Verdaasdonk. Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging. Proc. SPIE v.7895, 78950Q (2011)5. J. Klaessens, M. Landman, R. De Roode, H. J. Noordmans, R. M. Verdaasdonk. Objective methods for achieving an early prediction of the effectiveness of regional block anesthesia using thermography and hyper-spectral imaging. Proc. SPIE v.7895, 78950Q (2011)

6. J. Klaessens, H. J. Noordmans, M. Nelisse, R. Verdaasdonk. Development of a LEDmultispectral imaging system for non-contact tissue perfusion and oxygenation imaging, first results of clinical intervention studies. SPIE vol. 7174, (2013, in press)6. J. Klaessens, H. J. Noordmans, M. Nelisse, R. Verdaasdonk. Development of an LEDmultispectral imaging system for non-contact tissue perfusion and oxygenation imaging, first results of clinical intervention studies. SPIE vol. 7174, (2013, in press)

7. A.Penno, U.Grossmann. Device and method for monitoring the success of spinal anesthesia. 25 Patentpieteikums W02010075997 (8.06.2010)7. A. Penn, U.Grossmann. Device and method for monitoring the success of spinal anesthesia. 25 Patent Application WO2010075997 (6/8/2010)

8. S. Nedzvetskij, A. Tarasov, N. Vaganov. Method of evaluation of adequacy of block in conduction anesthesia. Patents RU2357660 (10.06.2009)8. S. Nedzvetsky, A. Tarasov, N. Vaganov. Method of evaluation of adequacy of block in conduction anesthesia. Patent RU2357660 (Jun 10, 2009)

9. R Nagarajan, et.al. Integrated ultrasound imaging device with pulsē oximeter waveform display for application of regional anesthesia. Patentpieteikums WO2010076808 (8.06.2010)9. R Nagarajan, et.al. Integrated ultrasound imaging device with pulse oximeter waveform display for application of regional anesthesia. Patent Application WO2010076808 (June 8, 2010)

10. Ledowski T, Preuss J, Ford A, Paech MJ, McTeman C, Kapila R, Schug SA. New parameters of skin conductance compared with bispectral index monitoring to assess emergence from total intravenous anaesthesia. Br.J.Anaesth., 99: 547-551 (2007)10. Ledowski T, Preuss J, Ford A, Paech MJ, McTeman C, Kapila R, Schug SA. New parameters of skin conductance compared with bispectral index monitoring to assess emergence from total intravenous anesthesia. Br.J.Anaesth., 99: 547-551 (2007).

11. H Matsumura, Evaluation of pain intensity measurement during the removal of wound 5 dressing material using 'the PainVision™ system' for quantitative analysis of perception and pain sensation in healthy subjects. Int Wound J.; 9(4):451-5. doi: 10.1111/j.1742481Χ.2011.00911.x. (2012)11. H Matsumura, Evaluation of pain intensity measurement during wound removal 5 dressing material using 'the PainVision ™ system' for quantitative analysis of perception and pain sensation in healthy subjects. Int Wound J.; 9 (4): 451-5. doi: 10.1111 / j.1742481Χ.2011.00911.x. (2012)

12. A.Miscuks, R.Erts, U.Rubins, J.Spigulis, M.Mihelsons. Paņēmiens un ierice periferās reģionālās anestēzijas iedarbības noteikšanai, izmantojot bezkontakta fotopetizmogrāfiju.12. A.Miscuks, R.Erts, U.Rubins, J.Spigulis, M.Mihelsons. Method and device for determining the effect of peripheral regional anesthesia using non-contact photopetysmography.

Patents LV14444 B (20.02.2012)Patent LV14444 B (2/20/2012)

13. http://www.skytron.us/camera_intro.htm; http://www.brandon-medical.com/; http://www.brennanco.ie/brennanco/Main/MedicalEng_OperatingLights_New.htm13. http://www.skytron.us/camera_intro.htm; http://www.brandon-medical.com/; http://www.brennanco.ie/brennanco/Main/MedicalEng_OperatingLights_New.htm

Claims (6)

PretenzijasClaims 1. Paņēmiens reģionālās anestēzijas iedarbības bezkontakta monitoringam, kas raksturīgs ar to, ka monitorings tiek veikts ar iemontētu operāciju lampā vai citādi ar to saistītu tris krāsu (RGB) vai melnbaltu attēlu sensoru, kas tiek uzstādīts videosignāla reģistrācijai no ādas virsmas, kur no videosignāla tiek aprēķināta fotopletizmogrāfiskā signāla (PPG) amplitūda katrā sirdsdarbības ciklā un signāla amplitūdas mediānā vērtība un standartnovirze noteiktā laika intervālā, lai noteiktu reģionālās anestēzijas iestāšanās bridi1. A method of non-contact monitoring of the effect of a regional anesthetic, characterized in that the monitoring is performed with a built-in lamp or other related trichromatic (RGB) or black-and-white image sensor installed for recording a video signal from the skin surface. calculated photoplethysmographic signal (PPG) amplitude for each heart rate cycle and median signal amplitude value and standard deviation over a defined time interval to determine the moment of regional anesthesia 2. Paņēmiens saskaņā ar 1. pretenziju, kas raksturīgs ar to, ka papildus tiek veikta pacienta ādas krāsas izmaiņu analīze pēc RGB signālu amplitūdu attiecībām.The method of claim 1, further comprising analyzing the patient's skin discoloration for the ratio of RGB signal amplitudes. 3. Ierīce, kas paredzēta paņēmiena saskaņā ar 1 .un 2. pretenziju realizācijai, kura satur stabilizētu operāciju lampu vai baltās gaismas vai šaurjoslas spektra redzamās gaismas vai infrasarkanā starojuma avotu (1) ar tris-krāsu (RGB) vai melnbaltu attēlu sensoru (2) videosignāla reģistrācijai no ādas virsmas, ka ari analīzes bloku, kas sastāv no procesora (3) attēlu sensora videosignāla analīzei un fotopletizmogrāfiskā signāla (PPG) amplitūdas aprēķināšanai un salīdzināšanai anestēzijas iedarbības monitoringam, turklāt analīzes bloks var būt funkcionāli saistīts vai ari nesaistīts ar gaismas avotu.Device for carrying out the method according to claims 1 and 2, comprising a stabilized operation lamp or a white light or narrow-band visible light or infrared source (1) with a tris-color (RGB) or black-and-white image sensor (2). ) for recording a video signal from the skin surface and an analysis unit consisting of a processor (3) for image video analysis of the image sensor and calculation and comparison of the amplitude of the photoplethysmographic signal (PPG) for monitoring anesthesia effects; . 4. Ierīce saskaņā ar 3. pretenziju, kurā starojuma avots (1) ir izveidots no gaismas diodēm (LED)The device according to claim 3, wherein the radiation source (1) is made of light emitting diodes (LEDs). 5. Ierīce saskaņā ar 3. un 4. pretenziju, kas papildus satur izvadierici (4), kas paredzēta signāla amplitūdas laika grafika vai skaitliskās vērtības attēlošanai un anestēzijas efekta vizuālai vai skaņas indicēšanai.The device according to claims 3 and 4, further comprising an output device (4) for displaying a time graph or numerical value of the signal amplitude and for visual or acoustic indication of the anesthetic effect. 6. Ierīce saskaņā ar jebkuru no 3. līdz 5. pretenzijai, kurā apgaismošanai un signālu reģistrācijaijUn apstrādei ir izmantots viedtālrunis vai cita veida mobilā ierīce.The device according to any one of claims 3 to 5, wherein a smartphone or other mobile device is used for illumination and signal registration and processing.
LVP-13-173A 2013-11-07 2013-11-07 Method and device for monitoring regional anaesthesia and invasive pain therapy LV14819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-13-173A LV14819B (en) 2013-11-07 2013-11-07 Method and device for monitoring regional anaesthesia and invasive pain therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-13-173A LV14819B (en) 2013-11-07 2013-11-07 Method and device for monitoring regional anaesthesia and invasive pain therapy

Publications (2)

Publication Number Publication Date
LV14819A LV14819A (en) 2014-03-20
LV14819B true LV14819B (en) 2014-05-20

Family

ID=50543392

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-13-173A LV14819B (en) 2013-11-07 2013-11-07 Method and device for monitoring regional anaesthesia and invasive pain therapy

Country Status (1)

Country Link
LV (1) LV14819B (en)

Also Published As

Publication number Publication date
LV14819A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US11963793B2 (en) Real-time tracking of cerebral hemodynamic response (RTCHR) of a subject based on hemodynamic parameters
Guignard Monitoring analgesia
Ginosar et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia
JP3240134B2 (en) Monitor for analyzing pulse rate by photoplethysmography measurement
Gram et al. Dynamic spectral indices of the electroencephalogram provide new insights into tonic pain
KR102386000B1 (en) System for sleep apnea monitoring
Gursul et al. Nociception and the neonatal brain
US20070167694A1 (en) Integrated Portable Anesthesia and Sedation Monitoring Apparatus
Ozawa et al. Influence of repeated painful procedures on prefrontal cortical pain responses in newborns
Litscher Integrative laser medicine and high-tech acupuncture at the Medical University of Graz, Austria, Europe
CA2655782A1 (en) System and method for measurement of biological parameters of a subject
Lang Beyond Fitbit: a critical appraisal of optical heart rate monitoring wearables and apps, their current limitations and legal implications
Ranger et al. Innovating in pain assessment of the critically ill: exploring cerebral near-infrared spectroscopy as a bedside approach
Ranger et al. Cerebral near-infrared spectroscopy as a measure of nociceptive evoked activity in critically III infants
Stenglova et al. Continuous non-invasive arterial pressure assessment during surgery to improve outcome
WO2015171619A1 (en) MONITORING SOMATOSENSORY EVOKED POTENTIALS (SSEPs) FOR COMPARTMENT SYNDROME
WO2014152020A1 (en) Pain detection system and method utilizing near-infrared spectroscopy
Huggins et al. Utility of lacrimal caruncle infrared thermography when monitoring alterations in autonomic activity in healthy humans
Shahiri et al. Exploration of the Nociception Level (NOL™) Index for pain assessment during endotracheal suctioning in mechanically ventilated patients in the intensive care unit: An observational and feasibility study
Hu et al. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain
Hsu et al. Monitoring sedation for bronchoscopy in mechanically ventilated patients by using the Ramsay sedation scale versus auditory-evoked potentials
Song et al. Low-frequency oscillations in cerebrovascular and cardiovascular hemodynamics: Their interrelationships and the effect of age
WO2014164717A1 (en) Real-time tracking of cerebral hemodynamic response (rtchr) of a subject based on hemodynamic parameters
LV14819B (en) Method and device for monitoring regional anaesthesia and invasive pain therapy
US20220104738A1 (en) Ongoing pain detection system and method for utilizing near-infrared spectroscopy