LV14780B - Preparation method of new luminescence polymeric material - Google Patents
Preparation method of new luminescence polymeric material Download PDFInfo
- Publication number
- LV14780B LV14780B LVP-12-93A LV120093A LV14780B LV 14780 B LV14780 B LV 14780B LV 120093 A LV120093 A LV 120093A LV 14780 B LV14780 B LV 14780B
- Authority
- LV
- Latvia
- Prior art keywords
- preparation
- luminescence
- polymeric material
- materials
- allylaminobenzantrone
- Prior art date
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION
Šī metode attiecas uz materiālzinātnes un spektroskopijas nozari. Tā var tikt pielietota jaunu luminiscējošo materiālu izstrādei, izmantojot jaunizstrādātu luminiscentu polimēru uz polivinilkarbazola bāzes, kuram piemīt intensīva fluorescence sarkanajā spektrālajā reģionā. Izstrādātais kopolimērs var tikt pielietots jaunu luminiscējošo materiālu izstrādei, to var izmantot elektrofotogrāfijā, displeju, gaismas avotu, sensoru, diožu lāzeru ražošanā un citās jomās, kurās nepieciešams nodrošināt luminiscenci, pārveidojot elektrisku enerģiju gaismā.This method applies to the field of materials science and spectroscopy. It can be applied to the development of new luminescent materials using a newly developed luminescent polymer based on polyvinylcarbazole, which exhibits intense fluorescence in the red spectral region. The developed copolymer can be used for the development of new luminescent materials, it can be used in electrophotography, displays, light sources, sensors, diode lasers and other areas where luminescence is needed to convert electrical energy into light.
Mūsdienās ir zināmi daudzi ķīmiskie savienojumi (luminofori), kas var luminiscēt ultravioletu starojumu iedarbībā. Luminofori ietilpst fluorescējošu krāsu sastāvā, kas, pateicoties luminiscējošās un atstarojošās gaismas savienojumiem, ir ļoti spilgtas. Luminoforus izmanto plastmasu, audumu, papīra, dabisku un sintētisku šķiedru krāsošanai, kā arī dažādiem pārklājumiem.Nowadays, many chemical compounds (luminophores) that can luminescence under the influence of ultraviolet radiation are known. Luminophores are a part of fluorescent colors which are very bright due to the combination of luminescent and reflective light. Luminophores are used for dyeing plastics, fabrics, paper, natural and synthetic fibers as well as various coatings.
Viens no modernākajiem luminiscējošu polimēru izmantošanas virzieniem ir dažādu elektroluminiscējošu ierīču (OLED diodes, monitori u.c.) konstruēšana, jo šobrīd pasaulē notiek intensīva OLED saturošu gaismas avotu, displeju un citu ierīču ražošanas attīstība. Pateicoties to lielajām priekšrocībām - ekonomiskumam, elastīgumam, augstai intensitātei un krāsu spilgtumam - arvien pieaug pieprasījums pēc šādām tehnoloģijām.One of the most advanced applications of luminescent polymers is the construction of various electroluminescent devices (OLED diodes, monitors, etc.) due to the intensive development of OLED-based light sources, displays and other devices. Due to their great advantages - economy, flexibility, high intensity and brightness of colors - there is a growing demand for such technologies.
īpašu interesi izraisa materiāli, kam piemīt sarkana luminiscence, jo tādu savienojumu skaits ir ierobežots salīdzinājumā ar zili, zaļi un dzelteni emitējošiem luminoforiem. Tāpat ari ir liels pieprasījums pēc kompozītmateriāliem un polimērmateriāliem, kas luminiscē baltā krāsā.Of particular interest are materials with red luminescence because of the limited number of such compounds compared to blue, green and yellow emitting luminophores. There is also a strong demand for composite and polymer materials that luminescence in white.
Ir zināmi un tiek plaši pielietoti polivinilkarbazola polimēri, kuriem, salīdzinājumā ar vairākiem citiem polimērmateriāliem, piemīt laba elektro vadītspēja un zaļa elektrolurainiscence. Saskaņā ar zinātnisko literatūru, veicot N-vinilkarbazola kopolimerizāciju ar poLimerizējamo fragmentu saturošiem organiskiem luminoforiem, var iegūt materiālus ar modificētām mehāniskām un optiskām īpašībām. Tāpat zinātniskajā literatūrā ir aprakstīti kopolimēri ar naflalskābes, fluorēna, stirola, tiofena, trifenilmetāna, fenalēna atvasinājumiem.Polyvinylcarbazole polymers are known and widely used, which, compared to several other polymeric materials, have good electrical conductivity and green electrolysis. According to the scientific literature, by copolymerization of N-vinylcarbazole with organic luminophores containing the polymerizable moiety, materials with modified mechanical and optical properties can be obtained. Copolymers with derivatives of naphthalic acid, fluorene, styrene, thiophene, triphenylmethane, phenalene have also been described in the scientific literature.
Fluorescējošu krāsu un pigmentu ražošanā ir izmantojami benzantrona atvasinājumi - organiskie luminofori, kuri pieder pie antrona krāsvielām, vairākām no tām piemīt izteikta fluorescence plašā spektrālā diapazonā. Sakarā ar antrona krāsvielu augsto fotostabilitāti un luminiscences spilgtumu 3-N-allilammobenzantrons, antrona atvasinājums ar polimerizējamu grupu ir sintezēts un pielietots darbā kā izejviela plānoto kopolimēru iegūšanai.In the production of fluorescent dyes and pigments, benzanthrone derivatives - organic luminophores, which belong to anthrone dyes - are used, some of which exhibit strong fluorescence over a wide spectral range. Due to the high photostability and luminescence brightness of anthron dyes, 3-N-allylamammobenzanthrone, an anthron derivative with a polymerizable group, has been synthesized and used as a starting material for the preparation of the planned copolymers.
Kopolimēru iegūšanas metodi realizē, polimerizējot kopā N-vinilkarbazolu un 3-N-alil-aminobenzantronu dažādās attiecībās (no 0,5 līdz 8% otra komponenta masas daļas) kā katalizatoru izmantojot 4,4'-azobis(4-cianobaldrianskābi).The process for preparing copolymers is carried out by co-polymerizing N-vinylcarbazole and 3-N-allylaminobenzantrone in various ratios (0.5 to 8% by weight of the second component) using 4,4'-azobis (4-cyanobaldric acid) as a catalyst.
Iegūšanas metodi realizē šādā veidā:The acquisition method is implemented as follows:
1. 3-N-alilaminobenzantrona sintēze.1. Synthesis of 3-N-allylaminobenzanthrone.
100 ml apaļkolbā ieber 0,25 g (1 mmol) 3-aminobenzantrona, ielej 30 ml toluola, 5 ml trietilamīha un 0,1 ml alilbromīda. Reakcijas maisījumu vāra ar atteces dzesinātāju 12 stundas, reakcijas gaitu kontrolējot ar plānslāņa hromatogrāfijas palīdzību sistēmā benzols:acetonitrils 3:1, kamēr maisījumā pazūd izejviela. Reakcijas maisījumu atdzesē, iegūtās nogulsnes filtrē, žāvē un pārkristalizē no hloroforma.Transfer 0.25 g (1 mmol) of 3-aminobenzantrone into a 100 ml round-bottomed flask, add 30 ml of toluene, 5 ml of triethylamine and 0.1 ml of allyl bromide. The reaction mixture is refluxed for 12 hours, the reaction being monitored by thin layer chromatography on benzene: acetonitrile 3: 1 until the mixture disappears. The reaction mixture is cooled, the resulting precipitate is filtered, dried and recrystallized from chloroform.
2. Kopolimēra iegūšana ar 3-N-alilaminobenzantrona masas daļu 0,5%.2. Preparation of a copolymer with 0.5% by weight of 3-N-allylaminobenzanthrone.
ml apaļkolbā ieber 9,95 g N-vinilkarbazola, 0,05 g 3-N-alilaminobenzantrona un 0,1 mg 4,4azobis(4-cianobaldriānskābes), rūpīgi samaisa. Iegūto maisījumu silda 10-12 stundas 80-90°C temperatūrā.Transfer 9.95 g of N-vinylcarbazole, 0.05 g of 3-N-allylaminobenzantrone and 0.1 mg of 4,4-azobis (4-cyanobaldrylic acid) into a 1 ml round-bottomed flask, mix thoroughly. The resulting mixture is heated at 80-90 ° C for 10-12 hours.
3. Kopolimēra iegūšana ar 3-N-alilaminobenzantrona masas daļu 1%.3. Preparation of 1% by weight of 3-N-allylaminobenzanthrone copolymer.
ml apaļkolbā ieber 9,90 g N-vinilkarbazola, 0,10 g 3-N-alilaminobenzantrona un 0,1 mg 4,4'azobis(4-cianobaldriānskābes), rūpīgi samaisa. Iegūto maisījumu silda 10-12 stundas 80-90°C temperatūrā.Transfer 9.90 g of N-vinylcarbazole, 0.10 g of 3-N-allylaminobenzantrone and 0.1 mg of 4,4'azobis (4-cyanobaldrylic acid) into a 1 ml round-bottomed flask, mix thoroughly. The resulting mixture is heated at 80-90 ° C for 10-12 hours.
Kopolimēra iegūšana ar 3-N-alilaminobenzantrona masas daļu 3%.Preparation of copolymer with 3% by weight of 3-N-allylaminobenzanthrone.
ml apaļkolbā ieber 9,70 g N-vinilkarbazola, 0,30 g 3-N-aUlaminobenzantrona un 0,1 mg 4,4'azobis(4-cianobaldriānskābes), rūpīgi samaisa. Iegūto maisījumu silda 10-12 stundas 80-90°C temperatūrā.Transfer 9.70 g of N-vinylcarbazole, 0.30 g of 3-N-α-aminobenzanthrone and 0.1 mg of 4,4'azobis (4-cyanobaldranoic acid) into a 1 ml round-bottomed flask, mix thoroughly. The resulting mixture is heated at 80-90 ° C for 10-12 hours.
4. Kopolimēra iegūšana ar 3-N-alilaminobenzantrona masas daļu 8%.4. Preparation of a copolymer with 8% by weight of 3-N-allylaminobenzanthrone.
ml apaļkolbā ieber 9,20 g N-vinilkarbazola, 0,80 g 3-N-alilaminobenzantrona un 0,1 mg 4,4'azobis(4-cianobaldriānskābes), rūpīgi samaisa. Iegūto maisījumu silda 10-12 stundas 80-90°C temperatūrā.Transfer 9.20 g of N-vinylcarbazole, 0.80 g of 3-N-allylaminobenzantrone and 0.1 mg of 4,4'azobis (4-cyanobaldrylic acid) into a 1 ml round-bottomed flask, mix thoroughly. The resulting mixture is heated at 80-90 ° C for 10-12 hours.
Iegūto polimērmateriālu luminiscento īpašību izpēte.Investigation of the luminescent properties of the obtained polymeric materials.
Lai raksturotu izstrādāto materiālu spektrālās īpašības, iegūtajiem paraugiem tika uzņemti luminiscences spektri. Iegūtie spektroskopiskie dati liecina par izstrādāto polimērmateriālu luminiscences atkarību no 3-N-alilaminobenzantrona atlikumu daudzuma sintezētajā polimērmateriālā: jo mazāka 3-N-alilaminobenzantrona koncentrācija, jo plašāks luminiscences spektrs un izstarotā gaisma tuvāka baltajai krāsai, to var izskaidrot ar polivinilkarbazola un kopolimēra luminiscences spektru pārklāšanos. Pieaugot aminobenzantrona atlikumu daudzumam sintezētajā polimērā, novērojama luminiscences maksimuma nobīde sarkanajā spektra pusē: no 595 um (0,5%) līdz 650 nm (8%).To characterize the spectral properties of the materials developed, the luminescence spectra were obtained for the obtained samples. The obtained spectroscopic data show the dependence of the luminescence of the developed polymer materials on the amount of 3-N-allylaminobenzantrone residues in the synthesized polymer material: the lower the concentration of 3-N-allylaminobenzantrone, . As the amount of aminobenzanthrone in the synthesized polymer increased, a shift in the luminescence peak on the red side of the spectrum was observed: from 595 µm (0.5%) to 650 nm (8%).
Šo īpatnību var uzskatīt par izstrādāto materiālu priekšrocību, jo tā dod iespēju regulēt polimērmateriāla optiskās īpašības atkarībā no pielietošanas vajadzībām.This feature can be considered as an advantage of the developed materials, because it allows to adjust the optical properties of the polymer material depending on the application needs.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-12-93A LV14780B (en) | 2012-06-11 | 2012-06-11 | Preparation method of new luminescence polymeric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-12-93A LV14780B (en) | 2012-06-11 | 2012-06-11 | Preparation method of new luminescence polymeric material |
Publications (2)
Publication Number | Publication Date |
---|---|
LV14780A LV14780A (en) | 2013-12-20 |
LV14780B true LV14780B (en) | 2014-03-20 |
Family
ID=50154048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-12-93A LV14780B (en) | 2012-06-11 | 2012-06-11 | Preparation method of new luminescence polymeric material |
Country Status (1)
Country | Link |
---|---|
LV (1) | LV14780B (en) |
-
2012
- 2012-06-11 LV LVP-12-93A patent/LV14780B/en unknown
Also Published As
Publication number | Publication date |
---|---|
LV14780A (en) | 2013-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abbel et al. | White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers | |
Efremova et al. | Polymerisable octahedral rhenium cluster complexes as precursors for photo/electroluminescent polymers | |
Wang et al. | Excitation wavelength-dependent nearly pure white light-emitting crystals from a single gold (I)-containing complex | |
Kubo et al. | White-light emissive materials based on dynamic polymerization in supramolecular chemistry | |
Deng et al. | Construction of regio-and stereoregular poly (enaminone) s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines | |
KR20180022705A (en) | Color conversion composition, color conversion film, and light emitting device, liquid crystal display device, and lighting device | |
TW201833299A (en) | Phosphorescent substance and phosphorescent element | |
CN107108590B (en) | Molecules exhibiting dual emission properties | |
Pati et al. | White light emission in butadiyne bridged pyrene–phenyl hybrid fluorophore: understanding the photophysical importance of diyne spacer and utilizing the excited-state photophysics for vapor detection | |
Van Hutten et al. | Excimer luminescence from single crystals and films of a cyano-substituted phenylene–vinylene model compound | |
CN102435588A (en) | Iodide ion sensing material and its application in iodide ion fluorescence and chromogenic detection | |
Turchetti et al. | Photo and electroluminescence behavior of a polyfluorene derivative containing complexed europium ions | |
TW201920055A (en) | Light-accumulating composition, light-accumulating element and wavelength control method | |
Tao et al. | Tuning aggregation-induced emission properties with the number of cyano and ester groups in the same dibenzo [b, d] thiophene skeleton for effective detection of explosives | |
CN103525402B (en) | Fluorescent material and preparation method thereof | |
Shimizu et al. | Synthesis and multicolor emission properties of polystyrene with difluoroboron avobenzone complexes at side chains | |
Wu et al. | Barbier polymerization induced emission toward stimuli-responsive aggregation-induced emission type green non-traditional intrinsic luminescence | |
CN106833009B (en) | Coumarins green light dyestuff containing triphenylamine ethylene lateral chain | |
Keshtov et al. | Synthesis, photophysical, and electrochromic properties of new triarylamino-containing polyphenylquinoxalines | |
Yuce et al. | BODIPY-based organic color conversion layers for WLEDs | |
Soman et al. | Multi-stimuli responsive and intrinsically luminescent polymer metallogel through ring opening copolymerization coupled with thiol-ene click chemistry | |
LV14780B (en) | Preparation method of new luminescence polymeric material | |
Damaceanu et al. | Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range | |
TW201923029A (en) | Organic luminescent composition and luminescent element | |
Shimizu et al. | Solid emission color tuning of polymers consisting of BODIPY and styrene in various ratios |