LV14107B - Wavelength division multiplexing transmission system with narrow-band filter - Google Patents

Wavelength division multiplexing transmission system with narrow-band filter Download PDF

Info

Publication number
LV14107B
LV14107B LVP-09-240A LV090240A LV14107B LV 14107 B LV14107 B LV 14107B LV 090240 A LV090240 A LV 090240A LV 14107 B LV14107 B LV 14107B
Authority
LV
Latvia
Prior art keywords
optical
wavelength division
ghz
division multiplexing
channel
Prior art date
Application number
LVP-09-240A
Other languages
Latvian (lv)
Other versions
LV14107A (en
Inventor
Girts Ivanovs
Jurgis Porins
Vjaceslavs Bobrovs
Oskars Ozolins
Original Assignee
Univ Rigas Tehniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Rigas Tehniska filed Critical Univ Rigas Tehniska
Priority to LVP-09-240A priority Critical patent/LV14107B/en
Publication of LV14107A publication Critical patent/LV14107A/en
Publication of LV14107B publication Critical patent/LV14107B/en

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

The invention concerns to field of telecommunications, particularly to optically multiplexed transmission systems. Its aim is to enlarge spectral efficiency of wavelength division in multiplexing transmission systems. This aim is achieved by applying in the optical receiver quasi-rectangular optical filter of 18.75 GHz providing transmission bandwidth at 3 dB level. Thus frequency interval between adjacent channels is reduced and data transmission speed for each channel is kept fixed. Invention scheme is realized with frequency interval not less than 37.5 GHz between adjacent channels by keeping fixed data transmission speed 10 Gbit/s for each channel. In such way spectral efficiency of wavelength division multiplexing system is enlarged.

Description

Izgudrojuma aprakstsDescription of the Invention

Izgudrojums attiecas uz telekomunikāciju nozari, konkrēti - uz optiski blīvētām pārraides sistēmām. Zināmas dažādas viļņgarumdales blīvēšanas sakaru sistēmas ar iespēju pārraidīt informāciju ar noteiktu frekvenču attālumu starp blakus esošajiem kanāliem un datu pārraides ātrumu konkrētā kanālā. Pašlaik lielākajā daļā pētījumu ir mēģinājumi palielināt kopējo pārraides ātrumu vienai optiskajai šķiedrai. Lielākā daļa no šiem pētījumiem ir balstīti uz jaunām modulācijas metodēm konkrētam viļņu garumam. Alternatīvs līdzīgs risinājums ir samazināt frekvenču intervālu starp blakus esošajiem kanāliem līdz minimumam, saglabājot nemainīgu datu pārraides ātrumu kanālā [1],The invention relates to the telecommunications industry, in particular to optically densified transmission systems. Various wavelength division multiplexing communication systems are known, with the capability of transmitting information over a fixed frequency distance between adjacent channels and data rates on a particular channel. Currently, most studies have attempted to increase the overall transmission rate per fiber. Most of these studies are based on novel modulation methods for a specific wavelength. Alternatively, a similar solution is to minimize the frequency spacing between adjacent channels while maintaining a constant data rate per channel [1],

Par izgudrojuma prototipu izvēlēta viļņgarumdales blīvēšanas sakaru sistēma [2], kura nodrošina frekvenču attālumu starp kanāliem, ne mazāku kā 50 GHz, un datu pārraides ātrumu kanālā, ne mazāku par 9 Gbit/s. Par pārraides vidi izmantota standarta vienmodu optiskā šķiedra. Prototipa galvenais trūkums ir optiskā filtra raksturlīkne, kas nodrošina 50 GHz frekvenču intervālu starp kanāliem. Lai realizētu viļņgarumdales blīvēšanas sakaru sistēmas ar augstāku spektrālo efektivitāti, šī raksturlīkne ir jāuzlabo.The wavelength division multiplexing communication system [2], which provides a frequency spacing between channels of at least 50 GHz and a data rate in the channel of at least 9 Gbit / s, has been chosen as a prototype of the invention. The standard single mode optical fiber is used as the transmission medium. The main disadvantage of the prototype is the optical filter characteristic, which provides a 50 GHz channel spacing. This characteristic curve needs to be improved in order to realize wavelength division multiplexing communication systems with higher spectral efficiency.

Izgudrojuma mērķis ir palielināt viļņgarumdales blīvēšanas sakaru sistēmas spektrālo efektivitāti. Šis mērķis ir sasniegts, optiskajā uztvērēja ievietojot pārskaņojamu kvazitaisnstūra optisko filtru ar caurlaides joslu 18,75 GHz mīnus 3dB līmenī. Tādējādi tiek samazināts frekvenču intervāls starp blakus esošajiem kanāliem, atstājot nemainīgu datu pārraides ātrumu kanālā. Izgudrojuma shēma ir atspoguļota 1. zīmējumā.The object of the invention is to increase the spectral efficiency of the wavelength division multiplexing communication system. This is achieved by inserting a tunable quasi-rectangular optical filter with a bandwidth of 18.75 GHz minus 3dB into the optical receiver. This reduces the frequency interval between adjacent channels, leaving the transmission rate constant throughout the channel. The scheme of the invention is illustrated in Figure 1.

Izgudrojuma shēmaScheme of Invention

Viļņgarumdales blīvēšanas sakaru sistēmai ir trīs daļas. Pirmā daļa ir optiskais raidītājs, kas sastāv no elektriskā signāla ģeneratora (1, 5), koda fonnētāja (2, 6), lāzera avota (3, 7) un signāla ārējā modulatora (4, 8). Elektriskā signāla ģenerators (1,5) veido pseidogadījuma 231-i bitu secību ar darbības frekvenci no 100 MHz līdz 12.5 GHz. Koda formētājs (2, 6) veido bezatgriešanās pie nulles kodu. Nepārtrauktu optiskā signālu veido lāzers (3, 7) ar sadalīto atgriezenisko saiti. Optiskā signāla ārējais modulators (4, 8) ir Mach-Zehnder modulators uz LiNbOs kristāla bāzes.The wavelength division communication system has three parts. The first part is an optical transmitter consisting of an electrical signal generator (1, 5), a code recorder (2, 6), a laser source (3, 7) and an external signal modulator (4, 8). The electric signal generator (1,5) generates a pseudorandom 2-by 31 -bit sequence with an operating frequency of 100 MHz to 12.5 GHz. The code generator (2, 6) generates a non-zero code. The continuous optical signal is formed by a laser (3, 7) with split feedback. The optical signal external modulator (4, 8) is a Mach-Zehnder modulator based on LiNbOs crystal.

Viļņgarumdales blīvēšanas sakaru sistēmas pirmā un otrā daļas ir savienotas ar 2:1 optisko apvienotāju (9). Viļņgarumdales blīvēšanas sakaru sistēmas otrā daļa sastāv no optiskās pārraides vides (11) un optiskā pastiprinātāja (10). Pārraides vide ir standarta vienmodu optiskā šķiedra (11), kas atbilst ITU G.652. Optiskai šķiedrai ir liels efektīvais laukums 80 pm2, vājinājums 0,2 dB/km, dispersija ir 17 ps/nm/km, dispersijas slīpums ir 0,07 ps/nm /km un nelineārais koeficients ir 2,5· 1O~20 cm/W pie 1550 nm viļņu garuma. Šķiedru optiskās līnijas garums ir atbilstošs standarta pastiprināšanas un dispersijas kompensēšanas apgabalam un ir vienāds ar 40 km 10 Gbit/s viļņgarumdales blīvēšanas sakaru sistēmai. Viļņgarumdales blīvēšanas sakaru sistēmas otrā un trešā daļas ir savienotas ar 1:2 optisko sazarotāju (12).The first and second parts of the wavelength division communication system are connected by a 2: 1 optical connector (9). The second part of the wavelength division communication system consists of an optical transmission medium (11) and an optical amplifier (10). The transmission medium is a standard single mode optical fiber (11) compliant with ITU G.652. The optical fiber has a large effective area of 80 pm 2 , a attenuation of 0.2 dB / km, a dispersion of 17 ps / nm / km, a slope of dispersion of 0.07 ps / nm / km and a nonlinear factor of 2.5 · 10 ~ 20 cm / W at 1550 nm. The fiber optic line has a standard gain and dispersion compensation area equal to 40 km for a 10 Gbit / s wavelength division multiplexing communications system. The second and third parts of the wavelength division multiplexing communication system are connected to a 1: 2 optical splitter (12).

Viļņgarumdales blīvēšanas sakaru sistēmas trešā daļa ir tiešās uztveršanas uztvērējs, kurš sastāv no optiska filtra (14, 18), pusvadītāju fotodiodes (15, 19) un elektriskā filtra (16, 20). Kvazitaisnstūra optiskais filtrs (14, 18) ir pietuvināts ideāla filtra parametriem ar pārskaņojamu caurlaides joslu no 0,15 nm līdz 0,7 nm mīnus 3 dB līmenī un centrālo viļņa gammu, maināmu plašā diapazonā no 1450 līdz 1650 nm ar augstu precizitāti ± 15 pm. Kvazitaisnstūra optiskā filtra (14, 18) raksturlīkne ir parādīta 2. zīmējumā. Optisko signālu uz elektrisko pārveido PIN fotodiode (15, 19) atbilstoši ITU standartam ar jūtības līmeni mīnus 15 dBm. Pēc fotodiodes ir pievienots 4. pakāpes Beseļa - Tomsona elektriskā signāla filtrs (16, 20).The third part of the wavelength division multiplexing communication system is a direct reception receiver consisting of an optical filter (14, 18), a semiconductor photodiode (15, 19) and an electric filter (16, 20). The quasi-rectangular optical filter (14, 18) is approximated to the ideal filter characteristics with a tunable bandwidth of 0.15 nm to 0.7 nm minus 3 dB and a central wavelength range variable from 1450 to 1650 nm with a high accuracy of ± 15 pm . The characteristic curve of the quasi-rectangular optical filter (14, 18) is shown in Figure 2. The optical signal is converted into an electrical signal by a PIN photodiode (15, 19) according to the ITU standard with a sensitivity level of minus 15 dBm. After the photodiode, a Bessel-Thomson Grade 4 electrical signal filter (16, 20) is connected.

Izgudrojuma shēmā pārraidītā signāla kvalitātes novērtēšanas daļa sastāv no elektriskā augstfrekvenču osciloskopa (17, 21) un optiskā spektra analizatora (13), kas attiecīgi pievienoti pie elektriskā filtra (16, 20) un pie optiskā sazarotāja (12).In the scheme of the invention, the portion of the transmitted signal quality evaluation consists of an electric high frequency oscilloscope (17, 21) and an optical spectrum analyzer (13) connected respectively to an electric filter (16, 20) and to an optical splitter (12).

Shēmas darbības aprakstsDescription of the operation of the scheme

Elektriskā pseidogadījuma 231-1 bitu secība ar darbības frekvenci 10,0 GHz tiek padota no elektriskā signāla ģeneratora (1, 5) uz koda formētāju (2, 6), kurš veido bezatgriešanās pie nulles kodu. Šis kods no koda formētāju (2, 6) tiek padots uz optiskā signāla ārējā modulatora (4, 8) elektrisko augstfrekvenču ieeju. Lai veidotu optisko plūsmu papildus elektriskajam bezatgriešanās pie nulles kodam, uz modulatoru (4, 8) tiek padots nepārtraukta starojuma optiskais signāls ar iepriekš izvēlētiem parametriem no lāzera (3, 7) ar sadalīto atgriezeniskās saiti. Ārējā modulatora izejā tiek iegūts optiskais signāls ar datu pārraides ātrumu 10,0 Gbit/s, kas kodēts ar bezatgriešanās pie nulles kodu. Izmantojot 2:1 optisko apvienotāju (9), tiek apvienoti viļņgarumdales blīvēšanas sakaru sistēmas abi optiskie signāli un tiek padoti uz optisko pastiprinātāju (10).Electrical 2 31 -1 pseudo-random bit sequence of the operating frequency 10.0 GHz is supplied from the electric signal generator (1, 5) of the code shaper (2, 6) which forms bezatgriešanās at zero code. This code is fed from the code formers (2, 6) to the electrical high frequency input of the external signal modulator (4, 8) of the optical signal. In order to generate the optical flow in addition to the electrical non-return to zero code, the modulator (4, 8) is provided with a continuous optical signal with preselected parameters from the laser (3, 7) with a distributed feedback. The output of the external modulator produces an optical signal with a data rate of 10.0 Gbit / s encoded with a non-return code of zero. Using a 2: 1 optical combiner (9) combines both optical signals of the wavelength division multiplexing communication system and feeds to an optical amplifier (10).

Katram no šiem optiskajiem signāliem ir sava nesēj frekvence 193,414 THz (2,= 1550,000 nm) un 193,377 THz (T2 =1550,300 nm) ar frekvenču intervālu 37,5 GHz. Optiskajā pastiprinātājā tiek kompensēts vājinājums, kas radies optiskajam signālam izplatoties optiskajā modulatorā. Pēc optiskā pastiprinātāja (10) optiskais signāls tiek padots uz standarta vienmodas optisko šķiedru (11), kas atbilst ITU G.652.Each of these optical signals has its own carrier frequency of 193,414 THz (2, = 1550,000 nm) and 193,377 THz (T 2 = 1550,300 nm) with a frequency range of 37.5 GHz. The optical amplifier compensates for the attenuation caused by the propagation of the optical signal through the optical modulator. After the optical amplifier (10), the optical signal is fed to a standard single-mode optical fiber (11) conforming to ITU G.652.

Pēc pārraides pa standarta vienmodas optisko šķiedru iepriekš apvienotais optiskais signāls tiek sadalīts ar 1:2 optisko sazarotāju (12). Pēc optiskā sazarotāja ir optiskais filtrs (14, 18), pirmais no kuriem filtrē optisko signālu ar nesējfrekveni 193,414 THz, bet otrais - optisko signālu ar nesēj frekvennci 193,377 THz un samazina trokšņu līmeni. Pēc optiskā filtra optiskais bezatgriešanās pie nulles kods tiek padots uz PIN fotodiodi (15, 19). Ar PIN fotodiodi (15, 19) optiskais signāls tiek pārveidots uz elektrisko signālu un ar elektrisko filtru (16, 20) tiek nofiltrēti elektriskie trokšņi. Izgudrojuma shēmā pārraidītā signāla kvalitātes novērtēšana tiek veikta ar elektrisko augstfrekvenču osciloskopu (17, 21), kas ieslēgts pēc elektriskā filtra un optiskā spektra analizatoru (13), kurš pievienots 1:2 optiskajam sazarotājam (12).After transmission over a standard single-mode optical fiber, the previously combined optical signal is divided by a 1: 2 optical splitter (12). Following the optical splitter is an optical filter (14, 18), the first of which filters an optical signal with a carrier frequency of 193,414 THz, and the second an optical signal with a carrier frequency of 193,377 THz, and reduces the noise level. After the optical filter returns to zero, the optical code is fed to the PIN photodiode (15, 19). The PIN photodiode (15, 19) converts the optical signal into an electrical signal, and the electric filter (16, 20) filters out the electrical noise. In the scheme of the invention, the quality of the transmitted signal is evaluated by means of an electric high frequency oscilloscope (17, 21) switched on by an electric filter and an optical spectrum analyzer (13) connected to a 1: 2 optical splitter (12).

Izmantotie informācijas avoti:Used information sources:

1. US Patent Application Publication 0239694 Al - Data Format For High Bit Rāte WDM Transmission, 2006.1. US Patent Application Publication 0239694 Al - Data Format For High Bit Frame WDM Transmission, 2006.

2. US Patent No. 6496615 B2 - WDM Transmission System, 2002 (prototips).2. U.S. Pat. 6496615 B2 - WDM Transmission System, 2002 (prototype).

PretenzijaClaim

Claims (1)

1. Viļņgarumdales blīvēšanas sakaru sistēma ar 50 GHz frekvenču intervālu starp blakus esošajiem kanāliem un datu pārraides ātrumu 9 Gbit/s katrā kanālā, kura sastāv no optiskā raidītāja, optiskās līnijas un optiskā uztvērēja, atšķirīga ar to, ka pārskaņojams kvazitaisnstūra optiskais filtrs optiskajā uztvērējā ar caurlaides joslu 18,75 GHz mīnus 3dB līmenī ir pieslēgts pie optiskā sazarotāja optiskā signāla sadalīšanai, kas nodrošina ne mazāku par 37,5 GHz frekvenču intervālu starp blakus esošajiem kanāliem, saglabājot nemainīgu datu pārraides ātrumu 10 Gbit/s katrā kanālā, kas palielina viļņgarumdales blīvēšanas sakaru sistēmas spektrālo efektivitāti.1. A wavelength division multiplexing communication system with a frequency of 50 GHz between adjacent channels and a data rate of 9 Gbit / s on each channel, consisting of an optical transmitter, an optical line, and an optical receiver, different from tuning a quasi-rectangular optical filter into an optical receiver A bandwidth of 18.75 GHz minus 3dB is coupled to an optical splitter for splitting optical signals that provides at least 37.5 GHz bandwidth between adjacent channels, maintaining a constant data rate of 10 Gbit / s per channel, which increases wavelength compression spectral efficiency of the communication system.
LVP-09-240A 2009-12-28 2009-12-28 Wavelength division multiplexing transmission system with narrow-band filter LV14107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-09-240A LV14107B (en) 2009-12-28 2009-12-28 Wavelength division multiplexing transmission system with narrow-band filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-09-240A LV14107B (en) 2009-12-28 2009-12-28 Wavelength division multiplexing transmission system with narrow-band filter

Publications (2)

Publication Number Publication Date
LV14107A LV14107A (en) 2010-02-20
LV14107B true LV14107B (en) 2010-06-20

Family

ID=44023201

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-09-240A LV14107B (en) 2009-12-28 2009-12-28 Wavelength division multiplexing transmission system with narrow-band filter

Country Status (1)

Country Link
LV (1) LV14107B (en)

Also Published As

Publication number Publication date
LV14107A (en) 2010-02-20

Similar Documents

Publication Publication Date Title
Yano et al. 2.6 Terabit/s WDM transmission experiment using optical duobinary coding
US6005702A (en) Optical transmission device, WDM optical transmission apparatus, and optical transmission system using return-to-zero optical pulses
US6151145A (en) Two-wavelength WDM Analog CATV transmission with low crosstalk
US7295728B2 (en) Optical transmission system including dispersion slope compensation
JPH0764131A (en) Optical communication device
JPWO2005088877A1 (en) Optical transmitter and optical transmission system
US8285147B2 (en) Bulk modulation of multiple wavelengths for generation of CATV optical comb
US20060188267A1 (en) System and method for suppression of stimulated Brillouin scattering in optical transmission communications
JP2004532583A (en) Method and system for transmitting information in an optical communication system performing distributed amplification
JP2004530374A (en) Receiver and method for receiving a multi-channel optical signal
US7239440B2 (en) Wavelength conversion apparatus
Mikkelsen et al. High spectral efficiency (0.53 bit/s/Hz) WDM transmission of 160 Gb/s per wavelength over 400 km of fiber
Houtsma et al. Investigation of 100G (4× 25G) NG-PON2 upgrade using a burst mode laser based on a multi-electrode laser to enable 100 GHz wavelength grid
Knudsen et al. 420 Gbit/s (42× 10 Gbit/s) WDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification
US8571417B2 (en) System and method for mitigating four-wave-mixing effects
Lu et al. A hybrid CATV/256-QAM/OC-48 DWDM system over an 80 km LEAF transport
EP2260596B1 (en) Improvements in or relating to optical networks
US20030043431A1 (en) Simultaneous demultiplexing and clock recovery of high-speed OTDM signals using a tandem electro-absorption modulator
Spolitis et al. Realization of dense bidirectional spectrum sliced WDM-PON access system
JP2004530373A (en) Method and system for adjusting an optical signal based on propagation conditions
LV14107B (en) Wavelength division multiplexing transmission system with narrow-band filter
US20060051095A1 (en) Modulation with low cross-talk in optical transmission
Thakur et al. Performance Evaluation of 32 Channel Wavelength Division Multiplexed Radio over Fiber (RoF) Communication System
JP2007150588A (en) Wavelength decision method in broadcast communication fusion optical transmission system
TWI393363B (en) Directly modulated optical fiber optical catv transport systems without optical amplification