LV13959B - Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers) - Google Patents

Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers) Download PDF

Info

Publication number
LV13959B
LV13959B LVP-08-178A LV080178A LV13959B LV 13959 B LV13959 B LV 13959B LV 080178 A LV080178 A LV 080178A LV 13959 B LV13959 B LV 13959B
Authority
LV
Latvia
Prior art keywords
ulcers
adenylate deaminase
treatment
wounds
hydrogel
Prior art date
Application number
LVP-08-178A
Other languages
Latvian (lv)
Other versions
LV13959A (en
Inventor
Vizma Nikolajeva
Maiga Artjuha
Daina Eze
Zaiga PETRIŅA
Dmitrijs Babarikins
Aigars Muižnieks
Original Assignee
Latvijas Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Universitāte filed Critical Latvijas Universitāte
Priority to LVP-08-178A priority Critical patent/LV13959B/en
Publication of LV13959A publication Critical patent/LV13959A/en
Publication of LV13959B publication Critical patent/LV13959B/en

Links

Abstract

This invention relates to pharmacology, particularly to drug production and compositions of medical means which contains components of natural microbiological origin, which promote healing of dermal wounds (ulcers). The object of this invention is use of Penicillium lanoso-viride adenylate deaminase (AMP aminohydrolase, E.C. 3.5.4.6.) in manufacturing drug, especially gel for treatment of dermal wounds (ulcers), as well as manufacturing adenylate deaminase containing hydrogel composition. Offered hydrogel contain from 0,3 till 3,0 (U)/ml units of adenylate deaminase. Offered hydrogel promote healing of wounds, this is experimentally proved comparing with one of in Latvia registered gels for the treatment of wounds and ulcers which is set on base of Carbopol polymer.

Description

ADENILĀTDEZAMĪNĀZI SATUROŠS HIDROGĒLS UN TĀ IZMANTOŠANA ĀDAS BRŪČU (ČŪLU) ĀRSTĒŠANAIHydrogen Gel Containing ADENYL DAMAMINASE AND ITS USE FOR THE TREATMENT OF SKIN WINES

Tehnikas jomaTechnical field

Izgudrojums attiecas uz farmakoloģiju, konkrēti - zāļu ražošanu un ārstniecības līdzekļu kompozīcijām, kuru sastāvā ietilpst dabīgi mikrobioloģiskas izcelsmes komponenti, kas veicina ādas brūču (čūlu) dzīšanu.The invention relates to pharmacology, in particular to the manufacture of medicaments and to pharmaceutical compositions containing natural components of microbiological origin which promote the healing of skin wounds (ulcers).

Tehnikas līmenisState of the art

Brūču dzīšana ir dinamisks process, kurā iesaistīti šķīstoši mediatori, asins formelementi, ekstracelulārā matrica un parenhīmas šūnas. Dzīšanai ir trīs fāzes iekaisums, audu veidošanās un audu pārveidošanās; fāzes savstarpēji pārklājas (Singer AM, Clark RAF. Cutaneous wound healing. New Engl J Med 1999, 341:738-746). Šūnu līmenī katru fāzi virza vairāku veidu šūnu, tai skaitā iekaisuma šūnu, fībroblastu, keratinocītu un endoteliālo šūnu koordinēta mijiedarbība. Molekulārā līmenī brūču dzīšanas pirmajos etapos citokīni regulē iekaisuma šūnas, un polipeptīdu dabas augšanas faktoriem ir noteicošā loma ādas šūnu proliferācijā un diferenciācijā, kā arī ekstracelulārās matricas sintēzē (Martin P. Wound healing - aiming for perfect skin regeneration. Science 1997, 276:75-81; Goldman R. Growth factors and chronic wound healing: past, present, and fūture. Adv Skin Wound Care 2004, 17:24-35). Ir noskaidroti dažādi augšanas faktori, citokīni un hemokīni, kas darbojas ādas dzīšanas procesos (Wemer S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003, 83:835-870). Trombocīti, neitrofili, makrofagi, endotēlijs, fibroblasti un epitēlijs ekspresē un izdala epidermas augšanas faktorus (TGF), trombocītu izdalīto augšanas faktoru (PDGF), interleikīnus (IL), proteāzes, matricas olbaltumvielas un citus savienojumus (Parenteau N, Hardin-Young J. The biological mechanisms behind injury and inflammation: how they can affect treatment strategy, product performance, and healing. Wounds 2007, 19:87-96). Lai sadzīšana noritētu normāli, ļoti svarīga ir augšanas faktoru ekspresijas regulācija laikā un telpā (Wemer S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003, 83:835-870).Wound healing is a dynamic process involving soluble mediators, blood cells, extracellular matrix and parenchymal cells. Healing has three phases of inflammation, tissue formation and tissue remodeling; phases overlap (Singer AM, Clark RAF. Cutaneous wound healing. New Engl J Med 1999, 341: 738-746). At the cellular level, each phase is driven by a coordinated interaction of several types of cells, including inflammatory cells, fibroblasts, keratinocytes, and endothelial cells. At the molecular level, cytokines regulate inflammatory cells in the early stages of wound healing, and natural growth factors of polypeptides play a key role in skin cell proliferation and differentiation, as well as in the synthesis of extracellular matrix (Martin P. Wound, 276: 75- 81; Goldman R. Growth Factors and Chronic Wound Healing: Past, Present, and Future. Adv Skin Wound Care 2004, 17: 24-35). Various growth factors, cytokines and haemokines, which are involved in skin healing processes have been identified (Wemer S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003, 83: 835-870). Platelets, neutrophils, macrophages, endothelium, fibroblasts and epithelium express and secrete epidermal growth factors (TGF), platelet-derived growth factor (PDGF), interleukins (IL), proteases, matrix proteins and other compounds (Parenteau N, Hardin-Young J. The biological mechanisms behind injury and inflammation: how they can affect treatment strategy, product performance, and healing. Wounds 2007, 19: 87-96). The regulation of growth factor expression over time and space is very important for normal healing (Wemer S, Grose R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol Rev 2003, 83: 835-870).

Pasaulē veikts daudz dažādu pētījumu, lai noskaidrotu augšanas faktoru un citu mediatoru farmakoloģisko potenciālu. Diemžēl vispārējā pieredze ar šo aģentu pielietošanu brūču dzīšanas veicināšanai nav iepriecinoša. Tas nav pārsteidzoši, jo dzīšana ir kompleksa, un tajā mijiedarbojas dažādi šķīstoši citokīni, asins formelementi, ekstracelulārā matrica un šūnas (Singer AM, Clark RAF. Cutaneous wound healing. New Engl J Med 1999, 341:738-746; Pierce GF, Mustoe TA. Pharmacologic enhancement of wound healing. Annu Rev Med 1995, 46:467-481; Bello YM, Phillips TJ. Recent advances in wound healing. JAMA 2000, 283:716718), tomēr nepārtraukti turpinās intensīvi pētījumi. Pašlaik pētāmos jaunos terapeitiskos līdzekļus var iedalīt šādās grupās: augšanas faktori, ādas aizvietotāji, ekstracelulārās matricas olbaltumvielas, cilmes šūnu terapija, gēnu terapija, proteāžu inhibitori, angioģenēzes stimulatori, slāpekļa oksīdu atbrīvojoši aģenti, adenozīna agonisti, imūnstimulatori, vazoaktīvie savienojumi un granulācijas aģenti (Petrova N, Edmonds M. Emerging drugs for diabetic foot ulcer. Expert Opin Emerg Drugs 2006, 11:709-724).Many different studies have been conducted worldwide to determine the pharmacological potential of growth factors and other mediators. Unfortunately, the overall experience with using these agents to promote wound healing is not encouraging. This is not surprising because healing is complex and interacts with a variety of soluble cytokines, blood cells, extracellular matrix and cells (Singer AM, Clark RAF. Cutaneous wound healing. New Engl J Med 1999, 341: 738-746; Pierce GF, Mustoe TA: Pharmacologic enhancement of wound healing, Annu Rev Med 1995, 46: 467-481; Bello YM, Phillips TJ. The new therapeutic agents currently under investigation can be divided into the following groups: growth factors, skin substitutes, extracellular matrix proteins, stem cell therapy, gene therapy, protease inhibitors, angiogenesis stimulators, nitric oxide releasing agents, adenosine agonists, immunostimulants, N, Edmonds M. Emerging Drugs for Diabetic Foot Ulcer Expert Opin Emerg Drugs 2006, 11: 709-724).

Mikroskopiskās sēnes Penicillium lanoso-viride nespecifiskā adenilātdezamināze (AMP aminohidrolāze, EC 3.5.4.6.; AMPD) ir glikoproteīns (gM 210 kD), ko sēne sintezē konīdiju veidošanās stadijā (Revelina V, Muižnieks I, Shafranskij A. Adenylate deaminase from Penicillium lanoso-viride 8D. Some properties of the enzyme. In: Mauriņa H, editor. Utilization and transformation of purine and pyrimidine compounds in microorganisms. Riga: Latvian University Press, 1981, p. 88-96). Pētījumi ar eksperimenta dzīvniekiem in vivo parādījuši, ka attīrītai AMPD piemīt imūnmodulējošas īpašības, un tā ietekmē gan šūnu, gan humorālās imunitātes reakcijas. AMPD injekcijas veicina antivielas producējošo šūnu veidošanos liesā, sekmē limfocītu proliferāciju in vitro, aktivē peļu peritoneālos makrofagus (Nikolajeva V, Eze D, Petrina Z, Muižnieks I. Activation of mice peritoneal macrophages by adenylate deaminase from Penicillium lanoso-viride. Proc Latvian Acad Sci 1999, 53:12-15), stimulē naturālo killeru un audzēja šūnu salipšanu, ierobežo vairāku audzēju augšanu (Zak M, Novak F, Muižnieks IO, Nikolajeva VR, Kamradze AA, et al. Immunopotentiating and antitumour activity of the mould glycoprotein A. Sbomik Lekarsky 1986, 88:139-145), pastiprina organisma rezistenci pret infekcijām (Nikolajeva V, Eze D, Kamradze A, īndulena M, Muižnieks I. Protective effect of adenylate deaminase (from Penicillium lanoso-viride) against acute infections in mice. Immunopharmacology 1996, 35:163-169) un inhibē eksperimentālo autoimūno encefalomielītu (Nikolajeva V, Eze D, Petrina Z,The microscopic fungus Penicillium lanoso-viride non-specific adenylate deaminase (AMP aminohydrolase, EC 3.5.4.6; AMPD) is a glycoprotein (gM 210 kD) synthesized by the fungus during the conidia formation stage (Revelina V, Muiznieks I, Shafranskea A. viride 8D, Some properties of the enzyme In: Maurina H, Editor Utilization and transformation of purine and pyrimidine compounds in microorganisms (Riga: Latvian University Press, 1981, pp. 88-96). In vivo studies in experimental animals have shown that purified AMPD has immunomodulatory properties and affects both cellular and humoral immune responses. Injections of AMPD stimulate the production of antibody-producing cells in the spleen, promote lymphocyte proliferation in vitro, activate mouse peritoneal macrophages (Nikolayev V, Eze D, Petrina Z, Muiznieks I. 1999, 53: 12-15), stimulates natural killer and tumor cell adhesion, restricts the growth of multiple tumors (Zak M, Novak F, Muiznieks IO, Nikolaev VR, Kamradze AA, et al.) Immunopotentiating and antitumour activity of mold glycoprotein A. Sbomik Lekarsky 1986, 88: 139-145), enhances the body's resistance to infections (Nikolaev V, Eze D, Kamradze A, Indulena M, Muiznieks I. Protective effect of adenylate deaminase (from Penicillium lanoso-viride) against acute infections in mice. Immunopharmacology 1996, 35: 163-169) and inhibits experimental autoimmune encephalomyelitis (Nikolaev V, Eze D, Petrina Z,

Muižnieks I. Treatment of experimental autoimmune encephalomyelitis with adenylate deaminase from Penicillium lanoso-viride. J Autoimmunity 2000, 14:1075 113). AMPD nav tiešas antibakteriālas aktivitātes (Nikolajeva V, Eze D, Kamradze A,Landlord I. Treatment of experimental autoimmune encephalomyelitis with adenylate deaminase from Penicillium lanoso-viride. J Autoimmunity 2000, 14: 1075 113). AMPD has no direct antibacterial activity (Nikolaev V, Eze D, Kamradze A,

Indulena M, Muižnieks I. Protective effect of adenylate deaminase (from Penicillium lanoso-viride) against acute infections in mice. Immunopharmacology 1996, 35:163169). Pamatojoties uz mūsu iepriekšējiem pētījumiem par AMPD ietekmi uz sistēmisko imūno atbildi, tika izteikta hipotēze, ka AMPD labvēlīgi ietekmē arī lokālos imūnos procesus, un tika konstatēts, ka AMPD sekmē ādas brūču (čūlu) sadzīšanu.Indulena M, Souvenir I. Protective effect of adenylate deaminase (from Penicillium lanoso-viride) against acute infections in mice. Immunopharmacology 1996, 35: 163169). Based on our previous studies on the effects of AMPD on the systemic immune response, it was hypothesized that AMPD also beneficially affects local immune processes, and AMPD was found to promote healing of wounds (ulcers).

Izgudrojuma atklāšanaDisclosure of Invention

Izgudrojuma objekts ir adenilātdezamināzes (AMP aminohidrolāze, E.C. 3.5.4.6.) izmantošana zāļu ražošanai, lai izgatavotu gēlu ādas brūču (čūlu) apstrādei, kā arī adenilātdezamināzi saturoša hidrogēla kompozīcijas izstrādāšana. Jaunais hidrogēls paātrina brūču dzīšanu, kas eksperimentāli pierādīts, salīdzinot ar Latvijā reģistrēto gēlu brūču un čūlu ārstēšanai Sanagels, kura aktīvās sastāvdaļas ir metiluracils un lidokaīna hidrohlorids un kas veidots uz Carbopol polimēra bāzes.The present invention relates to the use of adenylate deaminase (AMP aminohydrolase, E.C. 3.5.4.6.) For the manufacture of a medicament for the manufacture of a gel for the treatment of skin wounds (ulcers), and to the development of a hydrogel composition containing adenylate deaminase. The new hydrogel accelerates wound healing, which has been experimentally proven compared to Sanagel, a Latvian-based gel for the treatment of wounds and ulcers, which contains Carbopol polymer based active ingredients methyluracil and lidocaine hydrochloride.

īss zīmējumu aprakstsa brief description of the drawings

Fig. 1 attēlota AMPD ietekmes uz ādas čūlu slēgšanos (V) diagramma, fig. 2 - epitelializēto čūlu procentuāla daudzuma eksperimenta 21. dienā diagramma, fig. 3 - epitelializācijas procesa, kas izteikts ar reģenerācijas koeficientu (Rkoef) diagramma, fig. 4 - epitelializācijas procesa, kas izteikts kā reģenerācijas regresijas indekss (Rreg) diagramma.FIG. 1 is a graph of the effect of AMPD on skin ulcer closure (V), FIG. 2 is a graph of the percentage of epithelialized ulcers at day 21 of the experiment, FIG. Fig. 3 is a diagram of the epithelialization process expressed by the regeneration factor (Rkoef), fig. 4 - Diagram of the epithelialization process expressed as Regression Regression Index (Rr eg ).

Izmantotā AMPD iegūta dotā izgudrojuma pieteicēju laboratorijā pēc iepriekš izstrādātas metodes (Revelina V, Muižnieks I, Shafranskij A. Adenylate deaminase from Penicillium lanoso-viride 8D. Some properties of the enzyme. In: Mauriņa H, editor. Utilization and transformation of purine and pyrimidine compounds in microorganisms. Riga: Latvian University Press, 1981, p. 88-96). Penicillium lanosoviride celmu 8D - adenilātdezamināzes producentu un adenilātdezamināzes iegūšanas paņēmieni ir aprakstīti patentos LV 5056, LV 5058 un LV 5059. Par vienu AMPD aktivitātes vienību (1 U) pieņemts AMPD daudzums, kas dezaminē 1,0 pmolu 5'AMP par 5'-IMP vienā minūtē 37°C, pH 6,0.The AMPD used was obtained in the Applicant Laboratory of the present invention according to a previously developed method (Revelin V, Muiznieks I, Shafransky A. Adenylate deaminase from Penicillium lanoso-viride 8D. In: Maurina H, editor. Utilization and transformation of purine and pyrimidine compounds in microorganisms. Riga: Latvian University Press, 1981, pp. 88-96). Methods of obtaining 8D-adenylate deaminase producers and adenylate deaminase from Penicillium lanosoviride strains are described in patents LV 5056, LV 5058, and LV 5059. Ampd is assayed per unit of AMPD activity (1 U) to deactivate 1.0 pmole of 5'AMP per 5'-IMP. per minute at 37 ° C, pH 6.0.

Izmantotās AMPD īpatnējā aktivitāte - 5-15 (vidēji - 10) U/ mg olbaltumvielu. Gēla pagatavošanai izmantots firmas PharmaZell GmbH (Vācija) ražotais Carbopol 940 un trietanolamīns.The specific activity of the AMPD used was 5-15 (mean - 10) U / mg protein. Carbopol 940 and triethanolamine from PharmaZell GmbH (Germany) were used to prepare the gel.

Izstrādātā hidrogēla kompozīcija: 1 % Carbopol 940, 1,35 % trietanolamīns, sterils 0,9 % NaCl un sterila AMPD. Eksperimentu veikšanai tika izveidotas divas gēla kompozīcijas ar dažādu AMPD koncentrāciju gēlā: 3,0 U/ml un 0,3 U/ml. Sagatavotais gēls tika glabāts 4±2 °C.Developed hydrogel composition: 1% Carbopol 940, 1.35% triethanolamine, sterile 0.9% NaCl and sterile AMPD. Two gel formulations with different concentrations of AMPD in the gel were prepared for experiments: 3.0 U / ml and 0.3 U / ml. The prepared gel was stored at 4 ± 2 ° C.

Hidrogēlu izmanto farmācijā galvenokārt kā dažādu peptīdu un olbaltumvielu inertu nesēju. Tam ir laba bioloģiskā savietojamība ar audiem. Tas saglabā mitru vidi, kas savukārt sekmē brūču dzīšanu. Hidrogēla hidrofilā, maigā struktūra nekairina audus, un šūnām un olbaltumvielām nav izteiktas tendences pielipt pie hidrogēla virsmas (Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices 2007, 4:147-164; Chu JS, Yu DM, Amidon GL, Weiner ND, Goldberg AH. Viscoelastic properties of polyacrylic acid gels in mixed solvents. Pharm Res 1992, 9:1659-1663). Viens no visvairāk izplatītajiem hidrogēlu nesējiem ir farmācijā akceptētais Carbopol polimērs, ko neitralizē ar trietanolamīnu.Hydrogel is used in pharmacy mainly as an inert carrier for various peptides and proteins. It has good biocompatibility with tissues. It maintains a moist environment, which in turn promotes wound healing. The hydrophilic, delicate structure of the hydrogel does not irritate the tissues, and cells and proteins do not show a tendency to adhere to the surface of the hydrogel (Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices 2007, 4: 147-164; Chu JS, Yu DM, Amidon GL, Weiner ND, Goldberg AH Viscoelastic properties of polyacrylic acid gels in mixed solvents (Pharm Res 1992, 9: 1659-1663). One of the most common hydrogel carriers is the pharmaceutically acceptable Carbopol polymer, which is neutralized with triethanolamine.

Izgudrojuma pārbaude veikta Latvijas Universitātē, izmantojot Wistar līnijas žurkas (123-169 g), saskaņā ar LR Pārtikas un veterinārā dienesta Dzīvnieku ētikas komitejas akceptēto eksperimenta protokolu. Žurkām tika izveidotas ādas čūlas, vieglā ētera narkozē labajā priekšplecā zem ādas ievadot 0,5 ml 9 % etiķskābes un intraperitoneāli ievadot 6 % dekstrānu devā 300 mg/kg. Ādas nekroze izveidojās trijās dienās. Dzīvnieki tika sadalīti četrās grupās pa 6-8 katrā grupā. 1. grupas žurkām čūlas tika apstrādātas ar Carbopol gēlu, kas saturēja AMPD 3,0 U/ ml. 2. grupas žurkas tika apstrādātas ar Carbopol gēlu, kas saturēja AMPD 0,3 U/ ml. 3. un 4. grupas žurkas bija kontrolei. 3. grupa saņēma Carbopol gēlu bez AMPD, bet 4. grupas žurkām čūlas palika neapstrādātas. Brūces lokāli apstrādāja ar gēliem katru dienu vienu reizi, sākot ar eksperimenta 4. dienu.The invention was tested at the University of Latvia using Wistar rats (123-169 g) according to the experimental protocol approved by the Animal Ethics Committee of the Food and Veterinary Service of the Republic of Latvia. In rats, skin ulcers were induced by administering 0.5 ml of 9% acetic acid under the skin in mild ether narcosis and 6% dextran administered intraperitoneally at a dose of 300 mg / kg. Skin necrosis developed within three days. The animals were divided into four groups of 6-8 in each group. In group 1 rats, ulcers were treated with Carbopol gel containing AMPD 3.0 U / ml. Group 2 rats were treated with Carbopol gel containing 0.3 U / ml AMPD. Groups 3 and 4 were controls. Group 3 received Carbopol gel without AMPD, whereas Group 4 rats remained untreated. The wounds were topically treated with gels once daily starting on day 4 of the experiment.

Dzīvnieki tika svērti 4., 7., 14. un 21. dienā. Tika noteikts čūlu slēgšanās ātrums, epitelializācijas laiks un novērtēta sāpju sajūta. Mērījumi veikti čūlu apstrādes sākumā - 4. dienā, kā arī 7., 14. un 21. dienā. Brūces virsmas procentuālā slēgšanās tika aprēķināta pēc formulas (Kirker KR, Luo Y, Nielson JH, Shelby J, Prestwich GD.Animals were weighed on days 4, 7, 14 and 21. The rate of ulcer closure, time of epithelialization, and sensation of pain were determined. Measurements were taken at the beginning of the ulcer treatment on day 4 and on days 7, 14 and 21. The wound surface percent closure was calculated using the formula (Kirker KR, Luo Y, Nielson JH, Shelby J, Prestwich GD.

Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 2002, 23:3661-3671): V = (Ao - At) / Ao x 100, kur Ao - sākotnējais čūlas laukums un At - čūlas laukums mērīšanas dienā. Epitelializācijas process izteikts kā reģenerācijas koeficients (Rk0ef) un reģenerācijas regresijas indekss (Rreg): Rkoef = sākotnējais čūlas laukums (mm) / čūlas laukums mērīšanas dienā (mm );Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 2002, 23: 3661-3671): V = (Ao - A t ) / A o x 100, where Ao is the initial area of the ulcer and A t is the area of the ulcer on the day of measurement. The epithelialization process is expressed as the recovery coefficient (Rk 0e f) and the regeneration regression index (R reg ): Rkoef = initial ulcer area (mm) / ulcer area on the day of measurement (mm);

Rreg = Rkoef eksperimetālaj ā grupā / Rkoef kontroles grupā.Rreg = Rkoef Experimental Group / Rkoef Control Group.

Sāpju sajūta tika novērtēta, viegli pieskaroties bojātajam ādas rajonam ar koka irbulīti. 14. un 21. eksperimenta dienā tika veiktas žurku asins analīzes, un noteikts leikocītu, eritrocītu un trombocītu daudzums, hemoglobīns, hematokrīts, leikocītu formula,The sensation of pain was assessed by lightly touching the affected area of skin with a wooden stylus. On day 14 and 21 of the experiment, rat blood tests were performed to determine white blood cells, erythrocytes and platelets, hemoglobin, hematocrit, leukocyte formula,

ALAT, ASAT, albumīns, sārmainā fosfatāze, holesterīns un olbaltumvielas. Tajās pašās dienās tika ņemti bojātās ādas paraugi histoloģiskajām analīzēm.ALT, AST, albumin, alkaline phosphatase, cholesterol and proteins. On the same days, damaged skin samples were taken for histological analysis.

Konstatēts, ka AMPD saturošie gēli būtiski (p<0,05) paātrināja ādas čūlu dzīšanu ganWe found that AMPD-containing gels significantly (p <0.05) accelerated the healing of skin ulcers

14., gan 21. dienā, salīdzinot gan ar Carbopol, gan neapstrādāto kontroles grupu (Fig.On days 14 and 21 compared with both Carbopol and the untreated control group (Figs.

1). Mazākā deva (0,3 U/ ml) uzrādīja būtisku (p<0,05) čūlu virsmas laukuma samazināšanos jau sākot ar 7. dienu, t.i., tikai pēc trim lietošanas reizēm. Nākošajā nedēļā nozīmīgi pastiprinājās lielākās devas (3,0 U/ ml) efektivitāte. Trešajā nedēļā slēgšanās ātrums samazinājās, tomēr abās AMPD grupās palika būtiski lielāks nekā kontroles grupās.1). The lowest dose (0.3 U / ml) showed a significant (p <0.05) reduction in ulcer surface area as early as day 7, i.e., only after three administrations. The efficacy of the higher dose (3.0 U / ml) was significantly increased the following week. At week 3, the rate of closure declined but remained significantly higher in both AMPD groups than in the control groups.

Epitelializācijas laiks atbilda brūču slēgšanās laikam. Pilnīga epitelializācija 21. dienā konstatēta visiem AMPD 3,0 U/ml grupas dzīvniekiem un 60 % AMPD 0,3 U/ ml grupas dzīvniekiem (Fig. 2). Tajā pašā laikā nevienam no abu kontroles grupu dzīvniekiem čūlas nebija pilnīgi epitelializējušās. Rkoef (Fig. 3.) un Rreg (Fig. 4) apstiprina, ka AMPD uzlabo brūču dzīšanu un ka dzīšana atkarīga no AMPD devas.Epithelialization time corresponded to wound closure time. Complete epithelialization on day 21 was observed in all animals in the AMPD 3.0 U / ml group and 60% in the AMPD 0.3 U / ml group (Fig. 2). At the same time, none of the animals in both control groups had complete epithelialization. Rk oe f (Fig. 3) and R reg (Fig. 4) confirm that AMPD improves wound healing and that healing is dose dependent.

Visi mērītie asins formelementu un bioķīmiskie rādītāji bija normas robežās un būtiski 5 neatšķīrās starp grupām (p>0,05). Dzīvniekiem bija laba veselība, apetīte, un viņi vienmērīgi pieņēmās svarā, līdzīgi visās grupās (p>0,05). Sāpju sajūtas novērtējums neuzrādīja atšķirības starp dažādu grupu dzīvniekiem. Histoloģiskajos pētījumos visos paraugos konstatēta dažādas pakāpes un intensitātes reepitelializācija, granulācijas un savienotājaudu veidošanās.All measured blood cell and biochemical parameters were within the normal range and did not significantly differ between groups (p> 0.05). The animals had good health, appetite, and gained weight evenly across all groups (p> 0.05). The assessment of the sensation of pain showed no difference between the animals in the different groups. Histologic examination showed reepithelialization, granulation, and connective tissue formation of varying degrees and intensity in all samples.

Claims (7)

1. Penicillium lanoso-viride adenilātdezamināzes (AMP aminohidrolāze, E.C. 3.5.4.6.) lietošana zāļu iegūšanai.Use of Penicillium lanoso-viride adenylate deaminase (AMP aminohydrolase, E.C. 3.5.4.6) for the preparation of a medicament. 2. Penicillium lanoso-viride adenilātdezamināzes lietošana saskaņā ar 1. pretenziju, raksturīga ar to, ka zāles izmanto ārējai lietošanai.Use of Penicillium lanoso-viride adenylate deaminase according to claim 1, characterized in that the medicament is used for external use. 3. Penicillium lanoso-viride adenilātdezamināzes lietošana saskaņā ar 1. vai 2. pretenziju, raksturīga ar to, ka zāles lieto ādas brūču (čūlu) ārstēšanai.Use of Penicillium lanoso-viride adenylate deaminase according to claim 1 or 2, characterized in that the medicament is used for the treatment of skin wounds (ulcers). 4. Penicillium lanoso-viride adenilātdezamināzes lietošana saskaņā ar 1. pretenziju, hidrogēla iegūšanā ādas brūču (čūlu) ārējai ārstēšanai.Use of Penicillium lanoso-viride adenylate deaminase according to claim 1 for the preparation of a hydrogel for external treatment of skin wounds (ulcers). 5. Hidrogēls saskaņā ar 4. pretenziju, raksturīgs ar to, ka adenilātdezamināzes koncentrācija gēlā ir no 0,3 līdz 3,0 vienības (U)/ml.The hydrogel according to claim 4, characterized in that the concentration of adenylate deaminase in the gel is from 0.3 to 3.0 units (U) / ml. 6. Hidrogēls saskaņā ar jebkuru no 4. līdz 5. pretenzijai, raksturīgs ar to, ka neitrālais nesējs ir Carbopol polimērs.The hydrogel according to any one of claims 4 to 5, characterized in that the neutral carrier is a Carbopol polymer. 7. Hidrogēls saskaņā ar jebkuru no 4. līdz 6. pretenzijai, raksturīgs ar to, ka satur fizioloģisko šķīdumu (0,9 % NaCl).Hydrogel according to any one of claims 4 to 6, characterized in that it contains saline (0.9% NaCl).
LVP-08-178A 2008-10-21 2008-10-21 Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers) LV13959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-08-178A LV13959B (en) 2008-10-21 2008-10-21 Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-08-178A LV13959B (en) 2008-10-21 2008-10-21 Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers)

Publications (2)

Publication Number Publication Date
LV13959A LV13959A (en) 2009-06-20
LV13959B true LV13959B (en) 2009-08-20

Family

ID=41694517

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-08-178A LV13959B (en) 2008-10-21 2008-10-21 Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers)

Country Status (1)

Country Link
LV (1) LV13959B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875805A1 (en) * 2013-11-26 2015-05-27 Latvijas Universitate Method for the isolation of glycoprotein-rich fungal extract and its use in anti-ageing cosmetic formulations
EP3165233A1 (en) 2015-08-28 2017-05-10 Latvijas Universitate Biomaterial for treatment of acute and chronic skin wounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875805A1 (en) * 2013-11-26 2015-05-27 Latvijas Universitate Method for the isolation of glycoprotein-rich fungal extract and its use in anti-ageing cosmetic formulations
EP3165233A1 (en) 2015-08-28 2017-05-10 Latvijas Universitate Biomaterial for treatment of acute and chronic skin wounds

Also Published As

Publication number Publication date
LV13959A (en) 2009-06-20

Similar Documents

Publication Publication Date Title
KR102254260B1 (en) Tetrapeptides derived from human c-x-c chemokines useful for treatment of various skin conditions
EP2407147B1 (en) Composition with bio-regenerative, restorative and eutrophying activity
Luo et al. A synthetic leukotriene B4 receptor type 2 agonist accelerates the cutaneous wound healing process in diabetic rats by indirect stimulation of fibroblasts and direct stimulation of keratinocytes
JP6348126B2 (en) Biologically active short peptides that promote wound healing
EP3620186A1 (en) Biomaterial devices and topical compositions for guided tissue regeneration
CA3035830A1 (en) Topical erythropoietin formulations and methods for improving wound healing with and cosmetic use of the formulations
Qayoom et al. Lecithin-based deferoxamine nanoparticles accelerated cutaneous wound healing in diabetic rats
JP4017660B2 (en) Low molecular weight hyaluronic acid with peptide or protein
ES2404669T3 (en) Short bioactive peptides for cellular and immunological modulation
LV13959B (en) Adenylate deaminase containing hidrogel and use thereof for the treatment of dermal wounds (ulcers)
JP5560570B2 (en) Pharmaceutical composition for wound treatment
Saifullah et al. Development and optimization of film forming non-pressurized liquid bandage for wound healing by Box-Behnken statistical design
CN111450121A (en) American cockroach sticking film agent for promoting wound repair and preparation method and application thereof
CN115569110B (en) Recombinant type III collagen hydrogel composition, preparation method and application
CN116036247B (en) Composition for inhibiting inflammatory response, promoting angiogenesis and wound healing and application thereof
PL205732B1 (en) Promoting cell regeneration and/or cell differentiation with non-metabolizable sugar and a polymeric absorbent
RU2447082C1 (en) Method of stimulating skin and mucous lining defect repair and medicinal agent for realising said method
KR101219295B1 (en) Composition for Promoting Production of Hyaluronic Acid Containing Musk T
Migliario et al. Regenerative effect of epiregulin-loaded hydrogel
WO2022074523A1 (en) Primed placental tissue and uses in regenerative medicine
US9314504B2 (en) Use of members of IL-10 cytokine family
WO2022125593A2 (en) Compositions and methods for treating wounds
RU2153352C1 (en) Pharmaceutical composition showing wound-healing and anti-inflammatory effect
JP2021070661A (en) Composition for inhibiting tslp gene expression, for inhibiting il-33 gene expression, or for promoting filaggrin production
Tanakab et al. A synthetic leukotriene B4 receptor type 2 agonist accelerates the cutaneous wound healing process in diabetic rats by indirect stimulation of fibroblasts and direct stimulation of keratinocytes