LV13648B - Device of thermal siphon type for collecting solar energy - Google Patents

Device of thermal siphon type for collecting solar energy Download PDF

Info

Publication number
LV13648B
LV13648B LV060032A LV060032A LV13648B LV 13648 B LV13648 B LV 13648B LV 060032 A LV060032 A LV 060032A LV 060032 A LV060032 A LV 060032A LV 13648 B LV13648 B LV 13648B
Authority
LV
Latvia
Prior art keywords
building
solar
floor
roof
heat
Prior art date
Application number
LV060032A
Other languages
Latvian (lv)
Inventor
Leons Magelis
Original Assignee
Leons Magelis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leons Magelis filed Critical Leons Magelis
Priority to LV060032A priority Critical patent/LV13648B/en
Publication of LV13648B publication Critical patent/LV13648B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Building Environments (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The offered heat supply system provided with solar energy collector that is not located on the roof of a building but is located below the heat consumption unit in order to ensure circulation of heat transfer medium in conformity with the operation principle of thermal siphon. Such construction of the system ensures its automatic operation without a circulation pump and without a control unit, thus decreasing the expenses for the arrangement of the solar heating system. For multistorey buildings it is possible to place the collectors of solar energy in each storey below the lower edges of windows' openings, and the total area of said collectors is not conditional on area of the building's roof but is dependent only on the ratio of the storey's height to the height of the window's openings, this ratio being independent of the number of storeys.

Description

Termosifona tipa saules enerģijas kolektoriekārta Izgudrojuma aprakstsDESCRIPTION OF THE INVENTION

Ir zināmas un plaši tiek pielietotas saules enerģijas (siltuma) izmantošanas iekārtas, kurās siltumanesēju sasilda uz ēkas jumta novietots saules enerģijas kolektoriekārta. Tā ir plakana iekārta, kuras iekšpuse ir melnā krāsā, lai labāk absorbētu saules enerģiju. Kolektorā ir novietotas caurules vai plakani elementi, kuros cirkulē siltumnesējs - parasti šķidrums. Tas var būt ūdens, bet, ja pieejamais ūdens ir ciets un var veidoties katlakmens, vai arī ir jābaidās no ūdens sasalšanas, arī cits siltumnesējs, kurš tad cirkulē pa noslēgtu kontūru un siltummaini siltumu nodod ūdenim. Lai palielinātu saules enerģijas kolektoriekārtas lietderības koeficientu, tā no virsas ir aizsargāta ar stiklojumu vai stikla paketi, kas neļauj siltumam no kolektora izkļūt atpakaļ ārā.Solar energy (heat) utilization devices in which the heat carrier is heated by a solar collector on the roof of the building are known and widely used. It is a flat unit with a black interior to better absorb solar energy. The manifold is provided with pipes or flat elements in which the heat carrier, usually a liquid, circulates. It may be water, but if the available water is hard and may be descaling, or if you have to be afraid of the water freezing, another heat carrier, which then circulates in a closed loop and transfers the heat to the water. To increase the efficiency of the solar collector unit, it is protected from the surface by glazing or insulating glass, which prevents the heat from the collector from returning to the outside.

Jebkura šķidruma tilpumsvars air atkarīgs no temperatūras un pie lielākas temperatūras tas ir mazāks. Tādēļ, lai siltumnesēju no jumta nogādātu ēkā, ir nepieciešamas cirkulācijas sūknis, kurš ir jāiegādājas un jāinstalē. Sūkņa darbība ir atkarīga no nepārtrauktas elektroenerģias padeves, bet sūkņa patērētās elektroenerģijas izmaksa, kaut arī relatīvi neliela, sadārdzina šādas iekārtas ekspluatācijas izmaksas un tādējādi pasliktina tās ekonomiskos rādītājus.The volume density of any liquid air is temperature dependent and at higher temperatures it is less. Therefore, a circulating pump, which must be purchased and installed, is required to bring the heat carrier from the roof to the building. The operation of the pump depends on a continuous supply of electricity, but the cost of the electricity consumed by the pump, although relatively small, increases the operating costs of such a plant and thus worsens its economic performance.

Otra problēma ir tā, ka ir jābūt arī kontroles un vadības sistēmai, kura izslēgtu cirkulācijas sūkni naktī, īpaši ziemā, kad āra gaisa temperatūra ir negatīva un vispār nav saules radiācijas vai tā ir nepietiekama, lai cirkulācijas sūknis nepadotu sistēmā siltumenesēju ar negatīvu temperatūru un apsildīšanas vietā siltums no ēkas netiku sūknēts ārā.The other problem is that there must also be a control and control system that turns off the circulation pump at night, especially in winter when the outdoor air temperature is negative and there is no or no solar radiation so that the circulation pump does not feed the system with negative temperature and heating instead, heat from the building was not pumped out.

Visi minētie faktori ierobežo saules siltuma kolektoru masveida izplatību, jo sadārdzina to ierīkošanu, īpaši nelielām ēkām, kurām siltumsūkņa vadu instalācijas un vadības sistēmas izmaksas ir relatīvi lielākas, salīdzinot ar reāli iegūstamo siltuma daudzumu. Vienmēr jārēķinās ar to, ka ērtības labad bez saules siltuma kolektoriem ir vajadzīgas dublējošas siltuma jaudas elektrisko vai gāzes ūdens sildītāju veidā.All of these factors limit the mass spread of solar thermal collectors by making them more expensive to install, especially for smaller buildings where the cost of installing and controlling the heat pump wiring is relatively higher than the amount of heat that can actually be obtained. It should always be borne in mind that, for convenience, solar thermal collectors require duplicative heat output in the form of electric or gas water heaters.

Savukārt daudzstāvu ēkām uz dienvidiem vērstās jumta slīpnes laukums var būt nepietiekams, lai apgādātu ar silto ūdeni visu ēku. Vēl ir svarīgi, ka saules siltuma kolektors visefektīvāk darbojas tad, kad tas ir orientēts perpendikulāri saules stariem. Lielām kolektoru plaknēm tas tehniski ir grūti realizējams, tādēļ kolektorus novieto uz jumta dienvidu puses slīpnes. Taču jumta slīpums ir robežās no 30° līdz 45°. Latvijas apstākļos optimālais kolektora plaknes slīpums pret horizontu būtu vienāds ar vietas ģeogrāfisko platumu, t.i., apmēram ir no 56° līdz 58°, kas atbilst saules stāvoklim pavasara un rudens ekvinokciju laikā, vai pat ir lielāks, jo vasarā pietiekams siltuma daudzums tiek iegūts arī tad, ja kolektora plakne nav perpendikulāra saules stariem dienvidū, bet agrāk pavasarī un vēlāk rudenī šāds kolektors darbosies maksimāli efektīvi.In the case of high-rise buildings, the south-facing roof ramp may not be sufficient to supply the entire building with warm water. It is also important that the solar thermal collector works most effectively when oriented perpendicular to the sun's rays. For large collector planes, this is technically difficult to implement, so the collectors are placed on the southern slope of the roof. However, the roof slope ranges from 30 ° to 45 °. In Latvia, the optimum slope of the collector plane to the horizon would be equal to the geographic latitude of the site, ie approximately 56 ° to 58 °, which corresponds to the solar position during spring and autumn equinoxes, or even higher, since sufficient heat is produced , if the collector plane is not perpendicular to the sun's rays in the south, but in the early spring and later in the autumn such collector will operate at maximum efficiency.

Ņemot vērā iepriekš minētās problēmas, šai izgudrojumā piedāvāts saules enerģijas kolektoru 1 novietot nevis uz ēkas jumta tā plaknes slīpumā, bet to novietot pie ēkas sienas zem logu līmeņa (zīm.1) un orientēt ēkas ģeogrāfiskā platuma slīpumā vai nedaudz stāvāk. Ja ēkas dienvidu puses siena nav vērsta tieši dienvidu virzienā, kolektoru var novietot uz zemes un pavērst tieši dienvidu virzienā.In view of the above-mentioned problems, this invention proposes to place the solar collector 1 not on the roof of the building at its slope but on the wall of the building below the window level (Fig.1) and to orient the building at a slope or slightly steeper. If the south wall of the building is not facing south, the manifold can be placed on the ground and facing directly south.

Siltumnesējs vienmēr vissiltākais ir saules enerģijas kolektora augšdaļā un, ja siltummainis 2 novietots augstāk par kolektora augšu, piemēram, virtuvē zem griestiem, siltumnesējs sistēmā cirkulē automātiski pēc termosifona principa, jo sasilušais siltumnesējs ceļas uz augšu un pa attiecīgā slīpumā iebūvētu cauruli 3 nokļūst siltummmainī, bet tur, atdodot daļu siltuma un atdziestot, kļūst smagāks un pa atpakaļgaitas cauruli 4 nonāk saules enerģijas kolektora lejasdaļā. Tādējādi atkrīt vajadzība pēc cirkulācijas sūkņa un ar to saistītiem izdevumiem. Savukārt, ja āra gaisa temperatūra ir zemāka un nav pietiekamas saules radiācijas, aukstais siltumnesējs paliek saules enerģijas kolektorā un nevar atdzesēt visu sistēmu, resp. nav vajadzības iegādāties un instalēt kolektora vadības sistēmu, kas vēl papildus palētina saules enerģijas kolektoriekārtu.The heat carrier is always the warmest at the top of the solar collector and, if the heat exchanger 2 is located above the collector, for example in the kitchen below the ceiling, the heat carrier circulates automatically in the system there, as part of the heat is released and cooled down, it becomes heavier and passes through the return pipe 4 into the lower part of the solar collector. This eliminates the need for a circulation pump and the associated costs. Conversely, if the outdoor air temperature is lower and there is not enough solar radiation, the cold heat carrier stays in the solar collector and cannot cool the entire system, or. there is no need to purchase and install a collector management system that further slows down the solar collector.

Vairākstāvu ēkās ar saules enerģijas kolektoriem 1 var aprīkot katru stāvu atsevišķi (zīm.2), novietojot tos starp zemākā stāva logu augšmalu un apsildāmā stāva logu apakšmalu. Tādējādi ir iespējams katram ēkas stāvam nodrošināt, pietiekamu enerģijas kolektora laukumu neatkarīgi no stāvu skaita ēkā. Lai kolektors pārāk tālu neatvirzītos no sienas plaknes, šajā gadījumā to var būvēt divos stāvos, kā tas parādīts zīm.2.In multi-storey buildings, solar panels 1 can be installed on each floor separately (Fig. 2), located between the top of the lower floor windows and the bottom of the heated floor windows. Thus, it is possible to provide a sufficient energy collector area for each floor of the building, regardless of the number of floors in the building. In this case, the collector can be built on two floors, as shown in Fig. 2, so that the collector does not move too far from the wall plane.

Claims (3)

Izgudrojuma formulaFormula of the Invention 1. Saules enerģijas kolektoriekārta, kura nav novietota uz ēkas jumta, kā rezultātā tās laukums nav atkarīgs no ēkas jumta platības, bet ir novietota zemāk par siltuma patēriņa mezglu, lai siltumnesējs sistēmā cirkulētu pēc termosifona principa un lai nodrošinātu automātisku sistēmas darbību bez cirkulācija sūkņa un regulēšanas mezgla, tādējādi palētinot saules siltuma izmantošanas sistēmas ierīkošanu, kas raksturīga ar to, ka tā novietota pie ēkas sienas zemāk par logu aiļu apakšmalu (zīm.1) un ir orientēta ēkas ģeogrāfiskā platuma slīpumā vai nedaudz stāvāk, kā rezultātā atkrīt vajadzība pēc siltumnesēja cirkulācijas sūkņa un ar tā instalāciju saistītiem izdevumiem, kā arī nav vajadzības iegādāties un instalēt tās vadības iekārtu.1. Solar collector installation which is not located on the roof of the building, making its area independent of the roof area of the building but located below the heat consumption unit to circulate the heat carrier in the system according to the thermosiphon principle and to ensure automatic operation of the system adjusting unit, thus slowing down the installation of the solar heat utilization system, which is located on the wall of the building below the bottom of window openings (Fig. 1) and oriented at a slope of the geographical width of the building or slightly steeper; pump and its installation costs, as well as no need to purchase and install its control unit. 2. Ēkas siltumapgādes sistēma, kas aprīkota vismaz ar vienu saules enerģijas kolektoriekārtu saskaņā ar 1. punktu.2. A building heating system which is equipped with at least one solar collector according to paragraph 1. 3. Vairākstāvu ēkas siltumapgādes sistēma (zīm.2), kas aprīkota ar saules enerģijas kolektoriem katram stāvam atsevišķi, novietojot tos starp apakšstāva logu augšmalu un apsildāmā stāva logu apakšmalu, tādējādi katram ēkas stāvam neatkarīgi no to skaita nodrošinot pietiekamu saules enerģijas kolektoriekārtas laukumu, ko nosaka tikai stāva augstums un logu aiļu augstums.3. Multi-storey building heating system (Fig. 2) equipped with solar collectors for each floor separately, located between the top of the lower floor windows and the bottom of the heated floor windows, thus providing sufficient space for solar collectors for each floor, only the height of the floor and the height of the window openings determine.
LV060032A 2006-02-27 2006-02-27 Device of thermal siphon type for collecting solar energy LV13648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LV060032A LV13648B (en) 2006-02-27 2006-02-27 Device of thermal siphon type for collecting solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LV060032A LV13648B (en) 2006-02-27 2006-02-27 Device of thermal siphon type for collecting solar energy

Publications (1)

Publication Number Publication Date
LV13648B true LV13648B (en) 2008-01-20

Family

ID=39638484

Family Applications (1)

Application Number Title Priority Date Filing Date
LV060032A LV13648B (en) 2006-02-27 2006-02-27 Device of thermal siphon type for collecting solar energy

Country Status (1)

Country Link
LV (1) LV13648B (en)

Similar Documents

Publication Publication Date Title
Bevilacqua et al. Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?
US4213448A (en) Thermosiphon solar space heating system with phase change materials
US4373573A (en) Long term storage and use of solar energy
RU2433359C2 (en) Heat pump system
CN102338415A (en) Self-controlled hot-air solar floor heat storage system
JP2009299314A (en) Temperature regulating system of house
CN109737486B (en) Combined heating system of heat collection and storage wall and air water heat collector
Bourdakis et al. Simulation study of discharging PCM ceiling panels through night-time radiative cooling
US20110168165A1 (en) Free-convection, passive, solar-collection, control apparatus and method
Yanagimachi Report on Two and a Half Years’ Experimental Living in Yanagimachi Solar House II
JP3848652B2 (en) Solar system house
WO2013177656A1 (en) Building using solar energy for heating and cooling
WO2015094102A1 (en) Construction comprising a building structure and a ground-based heat storage
HRP20180464A2 (en) Hotair facade mounted solar panel
LV13648B (en) Device of thermal siphon type for collecting solar energy
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
Athienitis Design of advanced solar homes aimed at net-zero annual energy consumption in Canada
Xhexhi Bioclimatic Eco-Renovation. Case Study Tirana, Albania
Pasini et al. Systems design of the Canadian solar decathlon house
Stieglitz et al. Low Temperature Systems for Buildings
Hastings et al. Solar air systems
SG187872A1 (en) A building facade system
Gonçalves et al. A passive solar Office Building in Portugal
US11067294B1 (en) System to collect, store and distribute heat energy for a multi-unit building
Glinskienė Active and passive solar building design