LU92909B1 - Optical Smart Trunk Opener - Google Patents

Optical Smart Trunk Opener Download PDF

Info

Publication number
LU92909B1
LU92909B1 LU92909A LU92909A LU92909B1 LU 92909 B1 LU92909 B1 LU 92909B1 LU 92909 A LU92909 A LU 92909A LU 92909 A LU92909 A LU 92909A LU 92909 B1 LU92909 B1 LU 92909B1
Authority
LU
Luxembourg
Prior art keywords
detection system
proximity detection
optical proximity
operating
light emitting
Prior art date
Application number
LU92909A
Other languages
German (de)
French (fr)
Inventor
Laurent Lamesch
Original Assignee
Iee Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iee Sa filed Critical Iee Sa
Priority to LU92909A priority Critical patent/LU92909B1/en
Priority to PCT/EP2016/080373 priority patent/WO2017102573A1/en
Application granted granted Critical
Publication of LU92909B1 publication Critical patent/LU92909B1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/2054Means to switch the anti-theft system on or off by foot gestures
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F15/74Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using photoelectric cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/77Power-operated mechanisms for wings with automatic actuation using wireless control
    • E05F15/78Power-operated mechanisms for wings with automatic actuation using wireless control using light beams
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • E05F2015/765Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects using optical sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/852Sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/856Actuation thereof
    • E05Y2400/858Actuation thereof by body parts, e.g. by feet
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/548Trunk lids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2209/00Indexing scheme relating to groups G07C9/00 - G07C9/38
    • G07C2209/60Indexing scheme relating to groups G07C9/00174 - G07C9/00944
    • G07C2209/63Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle
    • G07C2209/64Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle using a proximity sensor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/94036Multiple detection, i.e. where different switching signals are generated after operation of the user is detected at different time instants at different locations during the actuation movement by two or more sensors of the same or different kinds
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94102Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation
    • H03K2217/94108Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation making use of reflection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94111Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector having more than one emitter

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A method of operating an optical proximity detection system (20) that comprises at least one light emitting member (24, 40) and at least one optical sensor (26) configured to generate a sensor signal indicative of light reflected by a scene. The method comprises the steps of operating the light emitting member (24, 42) in a first operational mode (reflectance mode), and if a sensor signal amplitude variation exceeds a predetermined threshold, operating at least one light emitting member (24, 42) in a second operational mode (time-of-flight mode). The method further comprises determining (64) and evaluating (66) data regarding distance between the at least one optical sensor (26) and at least one object of the scene from time-of-flight information, generating (68) a trigger signal (22) indicative of an occurrence of an event if at least one predetermined criterion is fulfilled. (Fig. 2)

Description

Optical Smart Trunk Opener
Technical field [0001] The invention relates to a method of operating an optical proximity detection system with regard to generating a trigger signal indicative of an occurrence of an event, an optical proximity detection system for generating a trigger signal indicative of an occurrence of an event, a control system for controlling activation of a motor-driven vehicle door member, the control system comprising such optical proximity detection system, and a software module for carrying out such method.
Background of the Invention [0002] Sensor-controlled automatic actuation of motor-displaceable closure elements of a motor vehicle is known in the art.
[0003] For instance, utility patent document DE 20 2005 020 140 U1 describes a motor vehicle door arrangement with at least one motor vehicle door and a drive for motorized movement of the motor vehicle door from the closed position into the open position and from the open position into the closed position. The arrangement further comprises a control for triggering the drive, the control being assigned an optionally actuatable mobile part which the user generally carries and which interacts with the control means over a wireless transmission link when the user approaches the motor vehicle, enhanced activation automatically carrying out opening and/or a closing as triggered by a predetermined process of use and without the necessity of activating the mobile part. In one embodiment, provision is made for a user-side operator control event, namely a user-side foot movement, to cause the motorized opening of the tailgate. With respect to enhanced activation, the control means, especially with the vehicle stopped, can be moved into the activated and deactivated states, and can be triggered by the predetermined usage process exclusively when the control means is in the activated state.
[0004] Further, a use of a combination of capacitive and optical sensors for sensor-controlled automatic actuation of motor-displaceable closure elements is known from, by way of example, patent application US 2015/0226870 A1, which describes an electronic sensor unit for a motor vehicle that includes a housing and a control and evaluation device arranged in the housing, which can be coupled to a control system for the motor vehicle. The electronic sensor unit further includes at least one capacitive sensor electrode having a detection range. The capacitive sensor electrode is coupled to the control and evaluation system, and is disposed in the housing. A capacitance change of the capacitive sensor electrode can be detected by the control and evaluation system. The electronic sensor unit furthermore comprises a lighting system having a lamp that can emit an optical signal. The lighting system is likewise coupled to the control and evaluation system. A target region characterizing the detection range outside the housing can be marked using the optical signal. The lighting system can be disposed on or in the housing, in which case the housing must have an opening through which the optical signal can pass. The housing, the control and evaluation system, the at least one capacitive sensor electrode and the lighting system form an integral assembly. When an intrusion has been detected in detection range by the control and evaluation system, and at the same time, a user is authorized to open the motor vehicle, a door or hatch located thereto can be opened via a control system.
Object of the invention [0005] Using an optical sensor for detecting a user-intended control event, for instance a user-side foot movement (“kick”) for a vehicle trunk opener, requires reliable kick detection and low power consumption at the same time. Proximity detection based on measurement of a change of reflectance of a scene has the advantage of requiring comparatively low power but is sensitive to a reemission factor of the object to be detected. The problem to be solved is the reduction of a dependence of an optical proximity detection system on the reemission factor, while keeping power consumption low, for applications in which the probability of object proximity is small.
[0006] It is desirable to provide a method of operating an optical detection system for detecting an occurrence of an event that allows for low-power operation and reliable detection.
General Description of the Invention [0007] In one aspect of the present invention, the object is achieved by a method of operating an optical proximity detection system with regard to generating a trigger signal indicative of an occurrence of an event, in particular a user-intended control event. The optical proximity detection system comprises at least one light emitting member, at least one optical sensor that is configured to generate a sensor signal indicative of a change of incident light that has been emitted by the at least one light emitting member and has been reflected by a scene, and at least one control and evaluation unit for controlling an operation of the at least one light emitting member and for evaluating generated sensor signals.
[0008] The method comprises steps of operating at least one of the at least one light emitting member in a first operational mode, acquiring sensor signals generated by emitted light which has been reflected by the scene, comparing change of amplitude, i.e. an amplitude variation, obtained from acquired sensor signals to at least one predetermined threshold for a signal amplitude variation, upon the amplitude variation of the acquired sensor signals exceeding the at least one predetermined threshold for a signal amplitude variation, commencing operating at least one of the at least one light emitting member in a second operational mode, acquiring sensor signals generated by emitted light which has been reflected by at least one object of the scene, determining data regarding distance between the at least one optical sensor and the at least one object from time-of-flight information obtained from relations between the acquired sensor signals and the light emitted by the at least one light emitting member, evaluating the determined data regarding the distance with regard to at least one predetermined criterion, and generating a trigger signal indicative of an occurrence of an event if the at least one predetermined criterion is fulfilled.
[0009] The phrase “operating at least one of the at least one light emitting member in a first operation mode”, as used in this application, shall be understood as follows: If the detection system comprises only one light emitting member, then this light emitting member is operated in the first operation mode. If the detection system comprises more than one light emitting member, then at least one out of the more than one light emitting members is operated in the first operation mode. The main goal of the first operational mode is to detect changes in the amplitude of the reflected light.
[0010] Although the second operational mode (in the following also named “time-of-flight mode”) requires more power than the first operational mode (“reflectance measurement mode”), the average power consumption is not substantially increased, as the probability of object proximity, and therefore the operation time of the time-of-flight mode, is small compared to the operation time of the reflectance measurement mode.
[0011] The above-mentioned object is achieved by separating the detection of the occurrence of an event, for instance a kicking motion, into two measurements: a first continuous but low-power one, and a second one which is only started if a probable event is detected, but which consumes more power. The benefit compared to the conventional solutions lies in that operating an optical proximity detection system with regard to generating a trigger signal indicative of an occurrence of an event with low power consumption and accurate detection of the occurrence of an event can be enabled at the same time.
[0012] Preferably, the at least one light emitting member or the light emitting members are formed by light emitting diodes (LED).
[0013] Further, preferably the at least one light emitting member or the light emitting members are configured to emit light having a wavelength that lies in the near-infrared (IR-A) region of electromagnetic waves between 0.75 pm and 1.4 pm.
[0014] In a preferred embodiment, the steps of the method are repetitively carried out. Preferably, the steps are periodically carried out. In this way, a sufficient availability for detecting potentially occurring events can be provided.
[0015] If the steps of acquiring sensor signals comprise a step of digitally converting the acquired sensor signals, the benefits of methods that are well-known in the art of digital signal processing can be applied to the subsequent steps of the method.
[0016] In another preferred embodiment of the method, the step of commencing operating at least one of the at least one light emitting member in a second operational mode comprises a preceding step of halting operating the at least one of the at least one light emitting member in the first operational mode. This has the advantage of savings in hardware effort and an operation at a lower average power consumption.
[0017] In some embodiments of the method, the step of operating at least one of the at least one light emitting member in a first operational mode includes amplitude-modulating the light emitted by the at least one of the at least one light emitting member at a first modulation frequency, and the step of comparing an amplitude variation of acquired sensor signals includes a preceding step of demodulating the acquired sensor signals. In this way, an influence of background light can be reduced to a large extent.
[0018] Preferably, the acquired sensor signals generated by emitted light which has been reflected by the at least one object are synchronously demodulated by mixing the optical sensor signal with the modulation signal in order to suppress the influence of the background light.
[0019] In some embodiments of the method, the step of operating at least one of the at least one light emitting member in a second operational mode includes amplitude-modulating the light emitted by the at least one of the at least one light emitting member at a second modulation frequency. In this way, the hardware for modulating the at least one of the at least one light emitting member in the first operational mode can be laid out independent from the hardware for modulating the at least one of the at least one light emitting member in the second operational mode, enabling applying specific solutions for fulfilling requirements, by which in total a cost-efficient solution can be provided.
[0020] Advantageously and in order to keep a hardware effort as low as possible, the first modulation frequency is adapted to fulfill the requirements of a measurement in the reflectance mode, and the second modulation frequency is adapted to fulfill the requirements of a measurement in the time-of-flight mode. Preferably, the first modulation frequency is selected to have a fundamental frequency that lies within a frequency range between 1 kHz and 100 kHz, and the second modulation frequency is selected to have a fundamental frequency that is larger than 10 MHz, more preferable larger than 20 MHz, and, most preferably, larger than 30 MHz. The term “fundamental frequency”, as used in this application, shall be understood particularly as a lowest sinusoidal frequency in a Fourier analysis of the light emitted at the modulation frequency.
[0021] In yet another preferred embodiment of the method, a duty cycle of the first operational mode is less than 5%, more preferably less than 2% and, most preferably, less than or equal to 1%, by which the optical proximity detection system can be operated at a sufficient availability with very low average power consumption.
[0022] In some embodiments of the method, the event is formed by an operator-intended control event and the trigger signal is designed as an input to a control system for controlling an activation of a motor-driven vehicle door member. In this way, the method can, for instance, beneficially be employed for operating optical proximity detection systems for kick-triggered vehicle trunk or vehicle tailgate openers, and can provide low-power operation and reliable detection in combination with robustness regarding electromagnetic interference (EMI) to meet electromagnetic compatibility (EMC) requirements to a large extent.
[0023] In another aspect of the invention, an optical proximity detection system for generating a trigger signal indicative of an occurrence of an event is provided. The optical proximity detection system includes a light emitting member and at least one optical sensor that is configured to generate a sensor signal indicative of a change of incident light that has been emitted by the light emitting member and has been reflected by a scene. Furthermore, the optical proximity detection system comprises a control and evaluation unit for controlling an operation of the light emitting member and for evaluating the generated sensor signals, and at least one processor unit and at least one digital data memory unit. The at least one processor unit has data access to the at least one digital data memory unit. The at least one processor unit is configured to carry out the steps of an embodiment of the method disclosed herein.
[0024] In this embodiment, the light emitting member is at first operated in the first operational mode in order to detect changes in the amplitude of the reflected light, and, after the change of amplitude or the amplitude variation of the acquired sensor signals exceeded the at least one predetermined threshold, is then operated in the second operational mode.
[0025] The benefits of the described embodiments of the disclosed method as well apply to the optical proximity detection system.
[0026] In another embodiment, the optical proximity detection system further includes at least a second light emitting member. The control and evaluation unit is configured for operating the first light emitting member in the first operational mode and for operating the at least second light emitting member in the second operational mode.
[0027] In one embodiment, the control and evaluation unit is configured to halt the operation of the first light emitting member in the first operational mode before commencing operating the at least second emitting member in the second operational mode.
[0028] In one embodiment, the control and evaluation unit is configured to continue operating the first light emitting member in the first operational mode while operating the at least second light emitting member in the second operational mode.
[0029] In another aspect of the invention, a control system for controlling activation of a motor-driven vehicle door member, preferably a vehicle trunk or a vehicle tailgate, is provided. The control system comprises at least one processor unit and at least one digital data memory unit, wherein the at least one processor unit has data access to the at least one digital data memory unit. The control system further includes an embodiment of the optical proximity detection system disclosed herein for generating a trigger signal indicative of an occurrence of an event. The at least one processor unit is configured to receive the trigger signal from the optical proximity detection system and, upon and as long as receiving the trigger signal from the optical proximity detection system, to generate an output signal for at least initiating an activation of the motor-driven vehicle door member.
[0030] In this way, the benefits of the disclosed optical proximity detection system as well apply to the control system.
[0031] In another embodiment, the control system further includes a second optical proximity detection system. The control and evaluation unit of the first optical proximity detection system is at least configured for operating, controlled by the at least one processor unit of the control system, the at least one light emitting member in the first operational mode, and the control and evaluation unit of the second optical proximity detection system is at least configured for operating, controlled by the at least one processor unit of the control system, the at least one light emitting member in the second operational mode. In suitable embodiments that make use of appropriate data communication links, retro-fitting of existing optical proximity detection systems can be facilitated in this way.
[0032] In yet another aspect of the invention, a software module for controlling an execution of steps of an embodiment of the method disclosed herein is provided.
[0033] The method steps to be conducted are converted into a program code of the software module, wherein the program code is implementable in a digital memory unit and is executable by a processor unit. Preferably, the digital memory unit and/or processor unit may be a digital memory unit and/or a processing unit of the control and evaluation unit of the optical proximity detection system. The processor unit may, alternatively or supplementary, be another processor unit that is especially assigned to execute at least some of the method steps.
[0034] The software module can enable a robust and reliable execution of the method and can allow for a fast modification of method steps.
[0035] These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Brief Description of the Drawings [0036] Further details and advantages of the present invention will be apparent from the following detailed description of not limiting embodiments with reference to the attached drawing, wherein:
Fig.1 schematically illustrates in a partial view an arrangement of a control system for controlling activation of a motor-driven vehicle door member as installed in a vehicle;
Fig. 2 is a schematic illustration of the control system pursuant to Fig. 1, comprising an optical proximity detection system in accordance with the invention;
Fig. 3 is a schematic illustration of the control system pursuant to Fig. 1 comprising an alternative embodiment of the optical proximity detection system in accordance with the invention;
Fig. 4 is a flow scheme of the method in accordance with the invention; and
Fig. 5 is a schematic illustration of an alternative control system, comprising two optical proximity detection systems in accordance with the invention.
Description of Preferred Embodiments [0037] An arrangement of a control system 10 for controlling activation of a motor-driven vehicle door member 18 as installed in a vehicle that is designed as a passenger car is schematically illustrated in Fig. 1. The vehicle door member 18 is formed as a vehicle trunk. The control system 10 comprises an optical proximity detection system 20 in accordance with the invention that is arranged at a location close to the vehicle trunk. The optical proximity detection system 20 is configured for generating a trigger signal 22 that is indicative of an occurrence of an event, in particular an operator-intended control event, which is formed by a user-side foot movement (“kick”).
[0038] Fig. 2 schematically illustrates a setup of the control system 10. Besides the optical proximity detection system 20, the control system 10 further includes a processor unit 12 and a digital data memory unit 14 to which the processor unit 12 has data access. The processor unit 12 is configured to receive the trigger signal 22 from the optical proximity detection system 20 via data communication link 46. Upon and as long as receiving the trigger signal 22 from the optical proximity detection system 20, the processor unit 12 is configured to generate an output signal 16 for initiating an activation of the motor-driven vehicle door member 18, as will be described later on. The condition of the generated output signal 16 can be combined with another condition or other conditions that need to be fulfilled for activating the motor-driven vehicle door member 18. For instance, one additional condition may be the presence of a car key, which a user usually carries and which interacts with vehicle control means over a wireless transmission link, as is well known in the art.
[0039] The optical proximity detection system 20 includes a light emitting member 24 formed by an infrared LED that is designed to emit light in the near- infrared region, in particular at a wavelength of about 850 nm, when being energized. The light emitting member 24 is arranged to illuminate the ground underneath the vehicle trunk, as indicated in Fig. 1. Then, the optical proximity detection system 20 comprises an optical sensor 26 that is configured to generate a sensor signal indicative of a change of incident light that has been emitted by the light emitting member 24 and has been reflected by a scene which in this specific embodiment includes the space between a lower side of the vehicle under the vehicle trunk and the ground. The optical sensor 26 is formed by a phototransistor, but other light-sensitive sensors that appear to be suitable to those skilled in the art are also contemplated, for instance a photodiode.
[0040] Combinations of an infrared LED and a phototransistor with the option of amplitude modulation are nowadays commercially available and can therefore readily obtained. One example is the proximity sensor SFH 7741 by OSRAM Licht AG.
[0041] Moreover, the optical proximity detection system 20 includes a control and evaluation unit 28 for controlling an operation of the light emitting member 24. The light emitting member 24 is connected to an output port 34 of the control and evaluation unit 28, and the optical sensor 26 is operatively connected to an input port 36 of the control and evaluation unit 28 (typically via a not shown transimpedance amplifier), as is schematically indicated in Fig. 2. The input port comprises an analog-to-digital converter (ADC, not shown).
[0042] The control and evaluation unit 28 is equipped with a processor unit 30 and a digital data memory unit 32 of its own. The processor unit 30 has data access to the digital data memory unit 32 and is configured for acquiring and evaluating the generated sensor signals. To this end, the control and evaluation unit 28 includes a software module 44 for carrying out a method of operating the optical proximity detection system 20 with regard to generating a trigger signal 22 indicative of an occurrence of the user-side foot movement carried out underneath the vehicle trunk.
[0043] The trigger signal 22 is designed as an input to the processor unit 12 of the control system 10. The method steps to be conducted are converted into a program code of the software module 44, wherein the program code is implemented in the digital data memory unit 32 of the control and evaluation unit 28 and is executed by the processor unit 30 of the control and evaluation unit 28.
[0044] In the following, an embodiment of the method will be described. A flowchart of the method is illustrated in Fig. 4. In preparation of operating the optical proximity detection system 20, it shall be understood that all involved units and devices are in an operational state and configured e.g. as illustrated in Figs. 1 and 2.
[0045] In a first step 48 of the method, the light emitting member 24 is being operated in a first operational mode by the control and evaluation unit 28. The first operational mode includes an amplitude-modulation of a driving current through the light emitting member 24, and, by that, of the light emitted by the light emitting member 24 at a first modulation frequency. The amplitude-modulation is carried out by providing a driving current by the control and evaluation unit 28 that has a square wave shape with a fundamental frequency that lies within a frequency range between 1 kHz and 100 kHz, namely of 30 kHz.
[0046] In next steps 50, 54 of the method, sensor signals generated by emitted light which has been reflected by the scene are acquired and digitally converted. Amplitudes are obtained from the acquired sensor signals by carrying out an interim step 52 of synchronously demodulating the acquired sensor signals by mixing the phototransistor output signals with the amplitude-modulation signal of the first modulation frequency in order to suppress the influence of the background light. In another step 56 then, the change or variation of the obtained amplitudes is compared to a predetermined threshold for a signal amplitude variation. The predetermined threshold is chosen large enough in order to prevent undesired false activation by electronic noise or very small objects that happen to approach the optical sensor 26 by chance, such as leaves that are moved by the wind.
[0047] The reflectance detection is switched on only periodically, namely each 100 ms, for a specified time of 1 ms, resulting in a duty cycle of the first operational mode of only 1%. In-between the cycles of reflectance detection, the light emitting member 24 may be switched off in order to save power.
[0048] If the predetermined threshold for the signal amplitude variation is not reached or exceeded, the control and evaluation unit 28 continues with the step 50 of acquiring sensor signals.
[0049] Upon the change of amplitude of the acquired sensor signals exceeding the predetermined threshold for the signal amplitude variation, operating the light emitting member 24 in a second operational mode is commenced in the next step 60, which also includes a preceding step 58 of halting operating the light emitting member 24 in the first operational mode. The second operational mode includes an amplitude-modulation of a driving current through the light emitting member 24, and, by that, of the light emitted by the light emitting member 24, at a second modulation frequency. The amplitude-modulation is carried out by providing a driving current having a square wave shape with a fundamental frequency that is selected to have a fundamental frequency that is larger than 10 MHz, namely 30 MHz.
[0050] In another step 62, sensor signals generated by emitted light which has been reflected by the at least one object of the scene are acquired and digitally converted. Then, in the next step 64, data regarding distance between the optical sensor 26 and the at least one object are determined from time-of-flight information obtained from relations between the acquired sensor signals and the light emitted by the light emitting member 24. This is carried out by a mixer (not shown), for instance the mixer that had been carrying out the synchronous demodulation, or another mixer, that is operated in four different sequential phases. In the first phase, the mixer is using the modulation signal as local oscillator input. In the second phase, the mixer is using the modulation signal shifted by 90 degrees phase shift. In the third phase, the mixer is using the modulation signal shifted by 180 degrees, and in the fourth phase the mixer is using the modulation signal shifted by 270 degrees. The mixer output signal for each of the four phases is recorded, for instance with a microcontroller, using an analog-to-digital converter (ADC). The output signal of the first phase is assigned to a variable A, the second one to variable B, the third one to variable C, and the fourth one to variable D. Then, a value of the expression
is indicative of the distance between the optical sensor 26 and the at least one object. This measurement sequence and distance evaluation is repeated continually, with a repetition rate of 1 kHz, and for the duration of 1 s.
[0051] In another step 66, the determined data regarding the distance are evaluated with regard to a predetermined criterion, which is given by a duration of a close proximity to the optical sensor 26.
[0052] Optionally, the calculated values indicative of the distance between the optical sensor 26 and the at least one object can be further evaluated, for instance by the microcontroller, to reliably detect a user-side foot movement (“kick”). For instance, features in a temporal development of the determined data regarding the distance, such as a rising time of the mixer output signal or a falling time, a valley duration, or a rising time of the distance indication that are found to be characteristic for a human foot moving sideways back and forth in close proximity to the optical sensor 26, can be extracted in order to reliably discriminate between a valid kick movement and a false alarm.
[0053] If the predetermined criterion is fulfilled, a trigger signal 22 that is indicative of an occurrence of the event is generated by the processor unit 30 of the optical proximity detection system 20 in a next step 68. If the predetermined criterion is not fulfilled, the optical proximity detection system 20 resumes step 48 of operating the light emitting member 24 in the first operational mode, and the disclosed steps are repeated.
[0054] Fig. 3 is a schematic illustration of the control system 10 pursuant to Fig. 1 comprising an alternative embodiment of the optical proximity detection system 20 in accordance with the invention. For distinction purposes, the alternative control system is denoted by 10' and the alternative optical proximity detection system by 20'.For brevity, only differences to the embodiment disclosed beforehand will be described.
[0055] The optical proximity detection system 20' comprises a second light emitting member 42. The control and evaluation unit 28 includes a second output port 36 and is configured for operating the first light emitting member 24 in the first operational mode and for operating the second light emitting member 42 in the second operational mode.
[0056] In a method of operating the alternative embodiment of the optical proximity detection system 20', the step 60 of commencing operating the second fight emitting member 42 in the second operational mode may or may not include the preceding step 58 of halting operating the first light emitting member 24 in the first operational mode. The former has the advantage of a lower average power consumption. The latter has the advantage of providing additional information that can further be used for discriminating between a valid kick movement and a false alarm.
[0057] Fig. 5 is a schematic illustration of an alternative control system 10", comprising two optical proximity detection systems 20-i, 202 in accordance with the invention. The two optical proximity detection systems 20^, 202 are identically designed to the optical proximity detection system 20 pursuant to Fig. 2. The control and evaluation unit 28i of the first optical proximity detection system 20i is at least configured for operating, controlled by the processor unit 12 of the control system 10", the light emitting member 24i in the first operational mode, and the control and evaluation unit 282 of the second optical proximity detection system 202 is at least configured for operating, controlled by the at least one processor unit 12 of the control system 10", the light emitting member 242 in the second operational mode. If the upper part of Fig. 5 was an existing control system for controlling activation of a motor-driven vehicle door member already installed in a vehicle, retro-fitting would be possible in the way shown in Fig. 5.
[0058] While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments.
[0059] Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting scope.
List of Reference Symbols 10 control system 12 processor unit 14 digital data memory unit 16 output signal 18 vehicle door member 20 optical proximity detection system 22 trigger signal 24 light emitting member 26 optical sensor 28 control and evaluation unit 30 processor unit 32 digital data memory unit 34 output port 36 output port 38 input port 40 control and evaluation unit 42 light emitting member 44 software module 46 data communication link steps of: 48 operate light emitting member in 1st operational mode 50 acquire sensor signals 52 demodulate acquired sensor signals 54 digitally convert demodulated sensor signals 56 compare change of amplitudes to predetermined threshold 58 halting operating light emitting member in 1st operational mode 60 operating light emitting member in 2nd operational mode 62 acquire sensor signals 64 determine data regarding distance sensor-object 66 evaluate determined distance data in view of criterion 68 generate trigger signal

Claims (16)

1. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) im Hinblick auf das Erzeugen eines Auslösesignals (22), das das Eintreten eines Ereignisses anzeigt, wobei das optische Näherungsdetektionssystem (20) wenigstens ein Leuchtelement (24, 42), wenigstens einen optischen Sensor (26), der dafür ausgelegt ist, ein Sensorsignal zu erzeugen, welches eine Änderung von einfallendem Licht anzeigt, das von dem wenigstens einen Leuchtelement (24, 42) ausgegeben und von einer Szene reflektiert wurde, und wenigstens eine Steuer- und Auswerteeinheit (28; 40) zum Steuern eines Betriebs des wenigstens einen Leuchtelements (24, 42) und zum Auswerten von erzeugten Sensorsignalen umfasst, wobei das Verfahren die folgenden Schritte umfasst: - Betreiben (48) von wenigstens einem des wenigstens einen Leuchtelements (24, 42) in einem ersten Betriebsmodus, - Erfassen (50) von Sensorsignalen, die von ausgegebenem Licht erzeugt wurden, das von der Szene reflektiert wurde, - Vergleichen (56) einer Amplitudenvariation, die von erfassten Sensorsignalen erhalten wurde, mit wenigstens einem vorbestimmten Schwellenwert für eine Signalamplitudenvariation, - wenn die Amplitudenvariation der erfassten Sensorsignale den wenigstens einen vorbestimmten Schwellenwert für eine Signalamplitudenvariation übersteigt, Beginnen des Betriebs (60) von wenigstens einem des wenigstens einen Leuchtelements (24, 42) in einem zweiten Betriebsmodus, - Erfassen (62) von Sensorsignalen, die durch ausgegebenes Licht erzeugt wurden, das von wenigstens einem Objekt der Szene reflektiert wurde, - Bestimmen (64) von Daten betreffend den Abstand zwischen dem wenigstens einen optischen Sensor (26) und dem wenigstens einen Objekt aus Laufzeit-Informationen, die von Beziehungen zwischen den erfassten Sensorsignalen und dem von dem wenigstens einen Leuchtelement (24, 42) ausgegebenen Licht erhalten wurden, - Auswerten (66) der bestimmten Daten betreffend den Abstand in Bezug auf wenigstens ein vorbestimmtes Kriterium, und - Erzeugen (68) eines Auslösesignals (22), welches das Eintreten eines Ereignisses anzeigt, falls das wenigstens eine vorbestimmte Kriterium erfüllt ist.A method of operating an optical proximity detection system (20) to generate a trigger signal (22) indicative of the occurrence of an event, the optical proximity detection system (20) comprising at least one light emitting element (24, 42), at least one optical sensor (20). 26) adapted to generate a sensor signal indicative of a change in incident light output from the at least one luminous element (24, 42) and reflected from a scene, and at least one control and evaluation unit (28; 40) for controlling operation of the at least one light emitting element (24, 42) and for evaluating generated sensor signals, the method comprising the steps of: - operating (48) at least one of the at least one light emitting element (24, 42) in one first mode of operation, - detecting (50) sensor signals generated from output light reflected from the scene, - comparisons n (56) an amplitude variation obtained from sensed sensor signals having at least one predetermined signal amplitude variation threshold, if the amplitude variation of the sensed sensor signals exceeds the at least one predetermined signal amplitude variation threshold, commencing operation (60) of at least one of at least one luminous element (24, 42) in a second mode of operation, - detecting (62) sensor signals generated by output light reflected from at least one object of the scene, - determining (64) data relating to the distance between the at least one optical sensor (26) and the at least one object of runtime information obtained from relationships between the detected sensor signals and the light output from the at least one light-emitting element (24, 42), - evaluating (66) the particular data the distance with respect to at least one vorbes Takes the criterion, and - generating (68) a trigger signal (22) indicating the occurrence of an event, if the at least one predetermined criterion is met. 2. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach Anspruch 1, wobei die Schritte wiederholt ausgeführt werden.2. A method for operating an optical proximity detection system (20) according to claim 1, wherein the steps are carried out repeatedly. 3. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach Anspruch 1 oder 2, wobei die Schritte (50, 62) des Erfassens von Sensorsignalen einen Schritt (54) des digitalen Umwandeins der erfassten Sensorsignale umfasst.A method of operating an optical proximity detection system (20) according to claim 1 or 2, wherein the steps (50, 62) of detecting sensor signals comprises a step (54) of digitally converting the detected sensor signals. 4. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach einem der vorhergehenden Ansprüche, wobei der Schritt (60) des Beginnens des Betreibens von wenigstens einem des wenigstens einen Leuchtelements (24, 42) in einem zweiten Betriebsmodus einen vorausgehenden Schritt (58) des Anhaltens des Betreibens des wenigstens einen des wenigstens einen Leuchtelements (24, 42) im ersten Betriebsmodus umfasst.A method of operating an optical proximity detection system (20) according to any one of the preceding claims, wherein the step (60) of starting to operate at least one of the at least one light element (24, 42) in a second mode of operation comprises a preliminary step (58) of Stopping the operation of the at least one of the at least one lighting element (24, 42) in the first mode of operation. 5. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach einem der vorhergehenden Ansprüche, wobei der Schritt (48) des Betreibens von wenigstens einem des wenigstens einen Leuchtelements (24, 42) in einem ersten Betriebsmodus eine Amplitudenmodulation des von dem wenigstens einen des wenigstens einen Leuchtelements (24, 42) ausgegebenen Lichts mit einer ersten Modulationsfrequenz umfasst, und wobei der Schritt (56) des Vergleichens einer Amplitudenvariation von erfassten Sensorsignalen einen vorausgehenden Schritt (52) des Demodulierens der erfassten Sensorsignale umfasst.5. A method for operating an optical proximity detection system (20) according to any one of the preceding claims, wherein the step (48) of operating at least one of the at least one light emitting element (24, 42) in a first mode of operation, an amplitude modulation of the at least one of the at least a light emitting element (24, 42) having a first modulation frequency, and wherein the step (56) of comparing an amplitude variation of detected sensor signals comprises a preceding step (52) of demodulating the detected sensor signals. 6. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach einem der vorhergehenden Ansprüche, wobei der Schritt (60) des Betreibens wenigstens eines des wenigstens einen Leuchtelements (24, 42) in einem zweiten Betriebsmodus eine Amplitudenmodulation des von dem wenigstens einen des wenigstens einen Leuchtelements (24, 42) ausgegebenen Lichts mit einer zweiten Modulationsfrequenz umfasst.A method of operating an optical proximity detection system (20) according to any one of the preceding claims, wherein the step (60) of operating at least one of the at least one light emitting element (24, 42) in a second mode of operation, amplitude modulating that of the at least one of the at least one Luminous element (24, 42) emitted light having a second modulation frequency. 7. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach Anspruch 5 oder 6, wobei die erste Modulationsfrequenz so ausgewählt ist, dass sie eine Grundfrequenz aufweist, die innerhalb eines Frequenzbereichs zwischen 1 kHz und 100 kHz liegt, und die zweite Modulationsfrequenz so ausgewählt ist, dass sie eine Grundfrequenz aufweist, die größer als 10 MHz ist.A method of operating an optical proximity detection system (20) according to claim 5 or 6, wherein the first modulation frequency is selected to have a fundamental frequency that is within a frequency range between 1 kHz and 100 kHz, and the second modulation frequency is selected in that it has a fundamental frequency greater than 10 MHz. 8. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach einem der vorhergehenden Ansprüche, wobei ein Tastgrad des ersten Betriebsmodus weniger als 5 % beträgt.A method of operating an optical proximity detection system (20) according to any one of the preceding claims, wherein a duty cycle of the first mode of operation is less than 5%. 9. Verfahren zum Betreiben eines optischen Näherungsdetektionssystems (20) nach einem der Ansprüche 1 bis 8, wobei - das Ereignis durch ein vom Bediener beabsichtigtes Steuerereignis gebildet wird, und - das Auslösesignal (22) als eine Eingabe in ein Steuerungssystem (10) zum Steuern einer Aktivierung eines motorbetriebenen Fahrzeugtürelements (18) gestaltet ist.A method of operating an optical proximity detection system (20) according to any one of claims 1 to 8, wherein - the event is formed by an operator intended control event, and - the trigger signal (22) as an input to a control system (10) for control an activation of a motorized vehicle door member (18) is designed. 10. Optisches Näherungsdetektionssystem(20) zum Erzeugen eines Auslösesignals (22), welches das Eintreten eines Ereignisses anzeigt, umfassend - ein Leuchtelement (24), - wenigstens einen optischen Sensor (26), der dafür ausgelegt ist, ein Sensorsignal zu erzeugen, welches eine Änderung von einfallendem Licht anzeigt, welches von dem Leuchtelement (24) ausgegeben und durch eine Szene reflektiert wurde, und - eine Steuer- und Auswerteeinheit (28) zum Steuern eines Betriebs des Leuchtelements (24) und zum Auswerten der erzeugten Sensorsignale, - wenigstens eine Prozessoreinheit (30) und wenigstens eine digitale Datenspeichereinheit (32), wobei die wenigstens eine Prozessoreinheit (30) Datenzugriff auf die wenigstens eine digitale Datenspeichereinheit (32) hat, wobei die wenigstens eine Prozessoreinheit (30) dafür ausgelegt ist, die Schritte des Verfahrens nach einem der Ansprüche 1 bis 9 auszuführen.An optical proximity detection system (20) for generating a trigger signal (22) indicative of the occurrence of an event, comprising - a light emitting element (24), - at least one optical sensor (26) adapted to generate a sensor signal indicates a change of incident light output from the luminous element (24) and reflected by a scene, and - a control and evaluation unit (28) for controlling an operation of the luminous element (24) and for evaluating the generated sensor signals, - at least a processor unit (30) and at least one digital data storage unit (32), the at least one processor unit (30) having data access to the at least one digital data storage unit (32), the at least one processor unit (30) being adapted to perform the steps of the method To carry out according to one of claims 1 to 9. 11. Optisches Näherungsdetektionssystem(20) nach Anspruch 10, ferner umfassend wenigstens ein zweites Leuchtelement (42), wobei die Steuer- und Auswerteeinheit (40) dafür ausgelegt ist, das erste Leuchtelement (24) im ersten Betriebsmodus und das zweite Leuchtelement (42) im zweiten Betriebsmodus gemäß den Schritten des Verfahrens nach einem der Ansprüche 1 bis 9 zu betreiben.11. An optical proximity detection system (20) according to claim 10, further comprising at least a second light-emitting element (42), wherein the control and evaluation unit (40) is adapted to the first light-emitting element (24) in the first operating mode and the second light-emitting element (42). operate in the second mode of operation according to the steps of the method according to any one of claims 1 to 9. 12. Steuerungssystem (10) zum Steuern der Aktivierung eines motorbetriebenen Fahrzeugtürelements (18), wobei das Steuerungssystem (10) Folgendes umfasst: - wenigstens eine Prozessoreinheit (12) und wenigstens eine digitale Datenspeichereinheit (14), wobei die wenigstens eine Prozessoreinheit (12) Datenzugriff auf die wenigstens eine digitale Datenspeichereinheit (14) hat, - ein optisches Näherungsdetektionssystem (20) zum Erzeugen eines Auslösesignals (22), welches das Eintreten eines Ereignisses nach Anspruch 10 oder 11 anzeigt, wobei die wenigstens eine Prozessoreinheit (12) dafür ausgelegt ist, das Auslösesignal (22) von dem optischen Näherungsdetektionssystem (20) zu empfangen und, bei Empfangen und während des Empfangene des Auslösesignals (22) von dem optischen Näherungsdetektionssystem (20), ein Ausgangssignal (16) zumindest zum Initiieren einer Aktivierung des motorbetriebenen Fahrzeugtürelements (18) zu erzeugen.A control system (10) for controlling the activation of a powered vehicle door panel (18), the control system (10) comprising: - at least one processor unit (12) and at least one digital data storage unit (14), the at least one processor unit (12) Having data access to the at least one digital data storage unit (14), an optical proximity detection system (20) for generating a trigger signal (22) indicating the occurrence of an event according to claim 10 or 11, the at least one processor unit (12) being arranged therefor receive the trigger signal (22) from the optical proximity detection system (20) and, upon receiving and receiving the trigger signal (22) from the optical proximity detection system (20), output signal (16) at least for initiating activation of the powered vehicle door member (16). 18). 13. Steuerungssystem (10) nach Anspruch 12, ferner umfassend ein zweites optisches Näherungsdetektionssystem (2Ο2), wobei die Steuer- und Auswerteeinheit (28-i) des ersten optischen Näherungsdetektionssystems (20^ wenigstens dafür ausgelegt ist, gesteuert durch die wenigstens eine Prozessoreinheit (12) des Steuerungssystems, das wenigstens eine Leuchtelement (24) im ersten Betriebsmodus zu betreiben, und die Steuer- und Auswerteeinheit (282) des zweiten optischen Näherungsdetektionssystems (202) wenigstens dafür ausgelegt ist, gesteuert durch die wenigstens eine Prozessoreinheit (12) des Steuerungssystems, das wenigstens eine Leuchtelement (242) im zweiten Betriebsmodus zu betreiben.13. Control system (10) according to claim 12, further comprising a second optical proximity detection system (2Ο2), wherein the control and evaluation unit (28-i) of the first optical proximity detection system (20 ^ is at least designed, controlled by the at least one processor unit ( 12) of the control system, which operates at least one light-emitting element (24) in the first operating mode, and the control and evaluation unit (282) of the second optical proximity detection system (202) is designed at least for it, controlled by the at least one processor unit (12) of the control system to operate the at least one lighting element (242) in the second operating mode. 14. Steuerungssystem (10) nach Anspruch 12 oder 13, wobei das motorbetriebene Fahrzeugtürelement (18) als ein Kofferraum eines Fahrzeugs oder eine Ladeklappe eines Fahrzeugs ausgelegt ist.14. A control system (10) according to claim 12 or 13, wherein the motorized vehicle door member (18) is configured as a trunk of a vehicle or a tailgate of a vehicle. 15. Softwaremodul (44) zum Ausführen des Verfahrens nach einem der Ansprüche 1 bis 9, wobei die auszuführenden Verfahrensschritte (48 -68) in einen Programmcode des Softwaremoduls (44) umgewandelt werden und wobei der Programmcode in einen digitalen Datenspeicher (32) implementierbar und durch eine Prozessoreinheit (30) ausführbar ist.A software module (44) for executing the method of any one of claims 1 to 9, wherein the method steps (48-68) to be executed are converted to program code of the software module (44) and wherein the program code is implementable in a digital data memory (32) and by a processor unit (30) is executable. 16. Verwendung des optischen Näherungsdetektionssystems (20) zum Erzeugen eines Auslösesignals (22), welches ein Eintreten eines Ereignisses nach den Ansprüchen 10 bis 12 in einem Steuerungssystem (10) zum Steuern der Aktivierung eines motorbetriebenen Fahrzeugtürelements (18) nach Anspruch 13 oder 14 anzeigt.Use of the optical proximity detection system (20) to generate a trigger signal (22) indicating occurrence of an event according to claims 10 to 12 in a control system (10) for controlling the activation of a powered vehicle door member (18) according to claim 13 or 14 ,
LU92909A 2015-12-15 2015-12-15 Optical Smart Trunk Opener LU92909B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LU92909A LU92909B1 (en) 2015-12-15 2015-12-15 Optical Smart Trunk Opener
PCT/EP2016/080373 WO2017102573A1 (en) 2015-12-15 2016-12-09 Optical smart trunk opener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU92909A LU92909B1 (en) 2015-12-15 2015-12-15 Optical Smart Trunk Opener

Publications (1)

Publication Number Publication Date
LU92909B1 true LU92909B1 (en) 2017-06-21

Family

ID=55080148

Family Applications (1)

Application Number Title Priority Date Filing Date
LU92909A LU92909B1 (en) 2015-12-15 2015-12-15 Optical Smart Trunk Opener

Country Status (2)

Country Link
LU (1) LU92909B1 (en)
WO (1) WO2017102573A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540088B2 (en) 2015-10-08 2022-12-27 Voxx International Corporation System and method for locating a portable device in different zones relative to a vehicle and with device zone indicators
WO2018207030A1 (en) * 2017-05-09 2018-11-15 Tyco Fire & Security Gmbh Wireless dual technology displacement sensor
CN110359811A (en) * 2019-07-17 2019-10-22 郑州森鹏电子技术有限公司 A kind of vehicle and its passenger doors safety control system
WO2021141949A1 (en) * 2020-01-06 2021-07-15 Voxx International Corporation System and method for locating a portable device in different zones relative to a vehicle and with device zone indicators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133956A1 (en) * 2010-11-30 2012-05-31 Stmicroelectronics (Research & Development) Limited Proximity Sensor
US20120133617A1 (en) * 2010-11-30 2012-05-31 Stmicroelectronics (Research & Development) Limited Application using a single photon avalanche diode (spad)
DE102011000578A1 (en) * 2011-02-09 2012-08-09 Paul Hettich Gmbh & Co. Kg Operating arrangement for driving a furniture drive
US20150262436A1 (en) * 2012-08-08 2015-09-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Control method and control system for a vehicle closing element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887188B1 (en) * 2013-12-18 2018-05-30 ams AG Control system for a gesture sensing arrangement and method for controlling a gesture sensing arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133956A1 (en) * 2010-11-30 2012-05-31 Stmicroelectronics (Research & Development) Limited Proximity Sensor
US20120133617A1 (en) * 2010-11-30 2012-05-31 Stmicroelectronics (Research & Development) Limited Application using a single photon avalanche diode (spad)
DE102011000578A1 (en) * 2011-02-09 2012-08-09 Paul Hettich Gmbh & Co. Kg Operating arrangement for driving a furniture drive
US20150262436A1 (en) * 2012-08-08 2015-09-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Control method and control system for a vehicle closing element

Also Published As

Publication number Publication date
WO2017102573A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
LU92909B1 (en) Optical Smart Trunk Opener
JP6649541B2 (en) Method of opening movable panel in motor vehicle and related opening control device
US9344083B2 (en) Method for opening/closing of a secure hands-free access by detection of movement of a lower member of a user
US9568527B2 (en) Proximity switch assembly and activation method having virtual button mode
CN104583027B (en) Control method for vehicle closure element and control system
US9219472B2 (en) Proximity switch assembly and activation method using rate monitoring
CN105960358B (en) Method for providing an operating signal
US9637049B2 (en) Method for generating an operator control message when an operator control event occurs
US9573565B2 (en) Method for detecting a function actuation on vehicles
US8933708B2 (en) Proximity switch assembly and activation method with exploration mode
US9660644B2 (en) Proximity switch assembly and activation method
US10407024B2 (en) Assembly module
US10613519B2 (en) Method for controlling a sliding door arrangement of a motor vehicle
CN105083821B (en) Intelligent garbage can and automatic opening and closing method thereof
US20150176323A1 (en) Control system for a motorized closure element arrangement of a motor vehicle
US20130079985A1 (en) Method and device for automatically actuating a locking element of a vehicle
CN105939897A (en) Emblem for a motor vehicle, said emblem comprising a sensor system, and method for same
CN105579870B (en) Vehicle reflective optical sensor and Vehicular door controller for opening and closing
WO2007124835A1 (en) Motor vehicle
US20150077141A1 (en) Capacitive sensor for an anti-collision apparatus, and capacitive sensor
CN209924740U (en) Image processing anti-clamping device for automatic door
CN111580175A (en) Infrared signal processing method and device and household appliance
CN109744980A (en) A kind of the enabling method for early warning and system of dish-washing machine
CN109034005A (en) A kind of electronic equipment and human body induction control method with human body sensing
EP4004655B1 (en) Method and device for performing an operation based on sensor signal data

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20170621