LU504821B1 - Diagnostic marker for liver fibrosis in patient with hepatitis b, and method and use thereof - Google Patents

Diagnostic marker for liver fibrosis in patient with hepatitis b, and method and use thereof Download PDF

Info

Publication number
LU504821B1
LU504821B1 LU504821A LU504821A LU504821B1 LU 504821 B1 LU504821 B1 LU 504821B1 LU 504821 A LU504821 A LU 504821A LU 504821 A LU504821 A LU 504821A LU 504821 B1 LU504821 B1 LU 504821B1
Authority
LU
Luxembourg
Prior art keywords
insdseq
insdqualifier
hepatitis
patient
insdfeature
Prior art date
Application number
LU504821A
Other languages
German (de)
Inventor
Yifei Li
Xian Shen
Zhichao Lang
Yating Zhan
Lifan Lin
Jianjian Zheng
Original Assignee
First Affiliated Hospital Wenzhou Medical Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital Wenzhou Medical Univ filed Critical First Affiliated Hospital Wenzhou Medical Univ
Application granted granted Critical
Publication of LU504821B1 publication Critical patent/LU504821B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/9029Oxidoreductases (1.) acting on -CH2- groups (1.17)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure discloses a diagnostic marker for liver fibrosis in a patient with hepatitis B, and a method and use thereof. In the present disclosure, based on bioinformatics analysis, a key diagnostic marker ribonucleotide reductase M2 (RRM2) for liver fibrosis is found. An expression level of RRM2 in serum of a patient to be tested can be detected to allow diagnosis of a stage of fibrosis in a patient with hepatitis B. Compared with liver fibrosis indexes APRI, FIB-4, and M2BPGi, RRM2 has high diagnostic efficiency, and can allow staging diagnosis of fibrosis in a patient with hepatitis B in which an alanine transaminase (ALT) level is normal or abnormal. The detection technique established by the present disclosure can be used to determine a course of liver fibrosis in a patient with hepatitis B. In addition, the diagnostic marker disclosed in the present disclosure may be used to prepare a reagent or a kit for diagnosing liver fibrosis in a patient with hepatitis B or monitoring progression of liver fibrosis in a patient with hepatitis B, and can also be used to prepare an antiviral drug.

Description

DESCRIPTION LU504821
DIAGNOSTIC MARKER FOR LIVER FIBROSIS IN PATIENT WITH HEPATITIS B, AND
METHOD AND USE THEREOF
TECHNICAL FIELD
The present disclosure relates to the fields of biotechnology and medicine, and in particular to a diagnostic marker for liver fibrosis in a patient with hepatitis B, and a use thereof.
BACKGROUND
It is well known that hepatitis B virus (HBV)-induced hepatopathy is one of the main sources for immune liver diseases. In addition, chronic hepatitis B (CHB) contributes to the development of immune-mediated liver damage, thereby leading to progressive liver fibrosis or liver cirrhosis. Apparently, patients with hepatitis B are at a relatively high risk of developing hepatocellular carcinoma (HCC). HBV is a partially double-stranded DNA virus that infects liver cells and replicates in nuclei. In patients with hepatitis B, HBV clearance and liver damage are primarily induced by adaptive immune responses. Due to a medical burden caused by a large population of patients with hepatitis B in China, dynamic real-time monitoring should be adopted to control the progression of fibrosis.
Alanine transaminase (ALT) activity is an important reference index for treatment selection and prognosis evaluation of patients with hepatitis B. However, serum ALT levels are not always consistent with a state of liver damage. 37% of patients with hepatitis B in which an ALT level is normal have significant fibrosis and inflammation.
Currently, many patients with hepatitis B in which an ALT level is normal often miss the optimal antiviral therapy opportunity during routine examination. Therefore, there is an urgent need to find novel promising biomarkers.
The traditional liver fibrosis staging mainly relies on detection of a histopathologic, serum marker, or imaging method, but a gold standard of the staging is still liver histopathological examination with a pathological tissue acquired through liver biopsy.
Although the traditional pathological examination has a specified accuracy, the traditional pathological examination is an invasive means, which brings various inconveniences to patients, and even causes complications and sequelae such as bleeding and infection.
Compared with pathological examination, the development of serum markers facilitates,594g24 the staging diagnosis of liver fibrosis and leads to stable results. The widespread use of liver damage markers ALT and aspartate aminotransferase (AST) indicates a potential of serological markers in staging of liver fibrosis. Therefore, the search of effective non-invasive clinical serological markers is urgently needed to monitor the progression of liver fibrosis.
Ribonucleotide reductase (RR) is a multisubunit enzyme, which is a key enzyme for
DNA synthesis and repair, and plays a key role in regulation of an overall rate of DNA synthesis. An active RR complex consists of R1 and R2 subunits of a polymer, namely,
RRM1 and RRM2. Studies have shown that an increase in RRM2 activity is associated with malignant transformation, cancer cell growth, tumorigenesis, and HBV DNA replication.
RRM2 is often expressed in a disease-specific manner and thus has a potential to be a biomarker. At present, the relevant content of RRM2 in liver fibrosis in patients with hepatitis B still needs to be further investigated, and the exploration of a role of RRM2 in the occurrence and development of liver fibrosis in patients with hepatitis B is conducive to the exploration of novel biomarkers for diagnosis of liver fibrosis in patients with hepatitis B or markers for monitoring treatment responses, which plays an important role in diagnosis, treatment, and prevention of liver fibrosis in patients with hepatitis B.
SUMMARY
An objective of the present disclosure is to provide a diagnostic marker for liver fibrosis in a patient with hepatitis B, and a use thereof. The present disclosure proposes that RRM2 can be used as a diagnostic marker for staging of liver fibrosis in a patient with hepatitis B, and an expression level of RRM2 in serum of a patient to be tested can be detected to allow early diagnosis for a patient with hepatitis B. The diagnostic marker provided in the present disclosure has excellent specificity, and can accurately identify a fibrosis stage of a patient with CHB in which an ALT level is normal or abnormal. The present disclosure has advantages such as reliability and supportability, and can allow rapid screening of liver fibrosis in a patient with CHB.
To solve the above technical problems, the present disclosure provides the following technical solutions: A diagnostic marker for liver fibrosis in a patient with hepatitis B is provided, where the diagnostic marker is RRM2.
A diagnostic method using the diagnostic marker for liver fibrosis in a patient witfh,504821 hepatitis B described above is provided, where an expression level of RRM2 in serum of a patient with hepatitis B is detected to identify a stage of liver fibrosis in the patient with hepatitis B.
A use of the diagnostic marker for liver fibrosis in a patient with hepatitis B described above in preparation of a reagent or a kit for diagnosing a stage of liver fibrosis in a patient with hepatitis B is provided.
In the use, the reagent or kit includes RRM2.
A use of the diagnostic marker for liver fibrosis in a patient with hepatitis B described above in preparation of a drug for preventing or treating liver fibrosis in a patient with
CHB is provided.
In the use, the drug includes RRM2.
Compared with the prior art, the present disclosure proposes that RRM2 can be used as a diagnostic marker for staging of liver fibrosis in a patient with hepatitis B, and an expression level of RRM2 in serum of a patient to be tested can be detected to allow early diagnosis of liver fibrosis for a patient with hepatitis B. The diagnostic marker provided in the present disclosure has excellent specificity, and can accurately identify a fibrosis stage of a patient with CHB in which an ALT level is normal or abnormal. The diagnostic marker of the present disclosure has high sensitivity, standards for a detection level of the diagnostic marker are easily formulated, and a detection method of the diagnostic marker is simple, has high diagnostic efficiency and guaranteed reliability, and can allow rapid screening of liver fibrosis in a patient with CHB.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows clustering analysis results of inmune-associated subtypes in patients with hepatitis B in Example 1 of the present disclosure;
FIG. 2 shows construction results of key modules in a protein-protein interaction (PPI) network in Example 2 of the present disclosure;
FIG. 3 shows association analysis results of a module core gene RRM2 with fibrosis grading and staging in Example 3 of the present disclosure;
FIG. 4 shows association analysis results of a serum RRM2 level with liver fibrosis staging in Example 4 of the present disclosure; and
FIG. 5 shows correlation analysis results of PD-L1, CTLA4, and LAG3 between an,504821
RRM2 low expression group and an RRM2 high expression group in Example 6 of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The present disclosure is further described below with reference to accompanying drawings and embodiments, but the present disclosure is not limited thereto.
Example 1 Clustering analysis of immune-associated subtypes in patients with hepatitis B
Transcriptome spectra and clinical relevant data of 124 patients with hepatitis B (GSE84044) were downloaded by the inventors of the present disclosure from the Gene
Expression Omnibus (GEO) (https://www.ncbi.nim.nih.gov/) database for analysis. An "ssGSEA" package was used to calculate an ssGSEA immune score for each patient and conduct clustering analysis. In addition, a distribution of 29 immune components in immune-associated subtypes was analyzed.
Experimental results were shown in FIG. 1. The results in FIG. 1 showed that the 124 patients with hepatitis B exhibited three different immune states (Immunity_H,
Immunity_M, and Immunity_L) during evaluation of the immune components, where levels of the 29 immune components in the Immunity_H group were higher than those in the Immunity_L group.
Example 2 Construction and functional enrichment analysis of key modules in a PPI network log fold change (FC)|>1 and P < 0.05 were used by the inventors of the present disclosure as standards for differential expression analysis among immune subtypes. To investigate an interaction between differential genes, the PPI network was generated through the STRING database (https://string-db.org/), and a minimum interaction score was 0.900. In Cytoscape software, an MCODE plugin was used to identify a key module.
Experimental results were shown in FIG. 2. The results in FIG. 2 showed that 391 differential genes were detected, a PPI network with 181 nodes and 1,206 edges was generated, and two key modules were identified.
Example 3 Association analysis of a module key gene RRM2 and fibrosis grading,504824 and staging
Grouping was conducted according to staging and grading, and expression levels of serum RRM2 in patients at different stages and grades in GSE84044 were subjected to differential analysis.
Experimental results were shown in FIG. 3. The results in FIG. 3 showed that RRM2 was positively correlated with a fibrosis grade and stage.
Example 4 Association analysis of serum RRM2 with a liver fibrosis stage
Blood samples were collected by the inventors of the present disclosure from 317, 146, and 179 patients with hepatitis B in the First Affiliated Hospital of Wenzhou Medical
University (FAHWMU), the Second Affiliated Hospital of Wenzhou Medical University (SAHWMU), and the First People's Hospital of Zunyi (FPHZ), respectively. Liver biopsy was conducted for each patient, and a liver tissue sample with a length of at least 2.0 cm was collected. The research of the present disclosure was approved by ethics committees of all centers; all patients signed written informed consent forms; and all experiments were consistent with principles of the Declaration of Helsinki (DoH).
A fibrosis stage of each liver sample acquired through liver biopsy was evaluated according to Ishak fibrosis scores (FO: no fibrosis; F = 3: significant fibrosis; and F = 5: liver cirrhosis). A blood sample was centrifuged at 1,000 g for 20 min in a 4°C centrifuge, and then upper serum was collected and stored at -80°C. Relevant clinical indexes such as age, sex, body mass index (BMI), ALT, AST, alkaline phosphatase (ALP),
Platelet (PLT), and HBV DNA of the patients with hepatitis B were measured.
Relevant clinical characteristics of the patients with hepatitis B were shown in Tab|@,504824 1.
FAHWMU SAHWMU FPHZ
Total Total Total patients ALT < 40 | patients ALT < 40 | patients ALT < 40 (n=317) (n=121) | (n=146) (n=53) (n=179) (n=80)
Age 145 35 45 9 110 31 (= 45) | (45.7%) (28.9%) | (30.8%) (17.0%) | (61.5%) (38.8%)
Sex 168 61 79 25 84 39 (male) | (53.0%) (50.4%) | (54.1%) (47.2%) | (46.9%) (48.8%)
BMI 21.82 21.92 20.85 20.92 22.27 22.04 (21.59, (21.54, (20.45, (20.23, (21.87, (21.44, (kg/m?) 22.05) 22.29) 21.26) 21.62) 22.66) 22.64)
RRM2 1.62 1.60 1.86 1.52 1.80 1.92 (10910 (1.48, (1.37, (1.70, (1.43, 1.61) (1.65, 1.95) (1.81, 2.04) pg/ml) 1.76) 1.83) 2.02)
M2BP 7.05 5.35 6.11 7.42 6.25 6.76
Gi (6.30, (4.32, (5.47, (6.97, 7.86) (5.58, 6.92) (6.30, 7.22) (ng/ml) 7.81) 6.38) 6.74)
ALT 62.40 31.60 64.45 30.53 63.59 31.86 un (59.20, (30.48, (59.18, (28.56, (58.42, (30.34, 65.61) 32.73) 69.71) 32.51) 68.76) 33.38)
AST 67.20 53.84 73.78 64.63 80.23 73.44 un (63.77, (48.45, (68.80, (57.28, (75.45, (64.95, 70.63) 59.24) 78.76) 71.98) 85.00) 81.93)
ALP 86.77 86.88 88.13 86.75 77.24 76.14 un (85.07, (83.98, (85.70, (82.09, (74.83, (72.44, 88.47) 89.79) 90.57) 91.40) 79.64) 79.85)
PLT 187.68 186.41 179.84 177.05 195.87 209.60 (x102/) (181.58, (175.52, | (171.08, (161.07, | (189.17, (198.42, x 193.78) 197.29) 188.60) 193.03) | 202.57) 220.78)
HBV 6.20 6.61 5.52 6.17 6.50 5.68
DNA (5.98, (6.18, (5.30, (6.04, 6.30) (6.26, 6.74) (5.52, 5.84) (l0g10 6.41) 7.04) 5.74)
Total Total Total patients ALT < 40 | patients ALT < 40 | patients ALT < 40 (n=317) (n=121) | (n=146) (n=53) (n=179) (n=80) _mj | || {|}
Fibrosi
CP RE
77 36 26 12 22 14 87 23 39 15 34 22 65 33 37 12 40 21 15 23 9 50 15 38 14 21 5 33 8
Table 1
A serum RRM2 level in each patient with hepatitis B was quantitatively determined with an enzyme-linked immunosorbent assay (ELISA) kit. Specific experimental steps were as follows: (a): Standard wells and a sample well were set. 50 uL of a standard was added to each of the standard wells at different concentrations. (b): 50 uL of a sample to be tested was added to the sample well, and no sample was added to a blank well. (c): 100 uL of a horseradish peroxidase (HRP)-labeled detection antibody was added to each one of the standard wells and the sample well other than the blank well, reaction wells were sealed with a sealing film, and an ELISA plate was incubated in a water bath or incubator at 37°C for 60 min. (d): A liquid in each well was discarded, the ELISA plate was pat-dried on absorbent paper, each well was filled with a washing liquid (350 pL) and allowed to stand for 1 min, the washing liquid was removed, and the ELISA plate was pat-dried on absorbent paper; and this washing process was repeated 5 times (the ELISA plate may be washed with a plate washer). LU504821 (e): 50 uL of each of substrates A and B was added to each well, and the ELISA plate was incubated at 37°C in the dark for 15 min. (f): 50 pL of a stop solution was added to each well, and within 15 min, an OD value of each well was determined at a wavelength of 450 nm. (9): With an OD value of a tested standard as x-coordinate and a concentration value of a standard as y-coordinate, a standard curve was plotted on coordinate paper or with related software, and a linear regression equation was acquired; and an OD value of a sample was substituted into the equation to calculate a concentration of the sample. (h): The correlation between an RRM2 level and a stage was analyzed.
Experimental results were shown in FIG. 4. The results in FIG. 4 showed that, with an increase in a stage of liver fibrosis, a serum RRM2 level in a patient with hepatitis B in which an ALT level was normal or abnormal gradually increased.
Example 5 Diagnostic values of serum RRM2, APRI, FIB-4, and M2BPGi
An ELISA kit was used by the inventors of the present disclosure to quantitatively determine serum RRM2 and M2BPGi levels in a patient with hepatitis B in which an ALT level was normal or abnormal, and experimental steps were the same as in Example 4.
APRI and FIB-4 scores are calculated according to the following formulas, respectively:
APRI = (AST/upper normal value/PLT count (10%L)) x 100; and
FIB-4 = (age x AST)/(PLT count (10%L) x ALT?)
The diagnostic values of serum RRM2, APRI, FIB-4, and M2BPGi were evaluated through receiver operator characteristic (ROC) curve analysis.
Results of the diagnostic values of serum RRM2, APRI, FIB-4, and M2BPGi wefg,504821 shown in Table 2.
Gow | [Fw rele male FRS [mes fers joe (av [woe jomm jos mew jw em
I ELLE (mr [ees Jom joww jomm
TT jrs jem ow [wm fom (vas jomm [ee ww orm (amer Jom ow jw ow (wæwer(sams fom (ave [mw (ea oem jomm [ees Jom jem (ame [wgome ome (oem mew jm om
I CL (ue [ees Jomm Jom jon wes om fom [mm (emser own (ave [ee ew orm jon jomw we oem jew ow (wma (amet ome Jom [ew [orm Joe Jom
Table 2
It can be seen from Table 2 that, in the First Affiliated Hospital of Wenzhou Medical
University (FAHWMU), the Second Affiliated Hospital of Wenzhou Medical University (SAHWMU), and the First People's Hospital of Zunyi (FPHZ), compared with APRI,
FIB-4, and M2BPGi, serum RRM2 has a high AUC value, that is, RRM2 can well diagnose a stage of liver fibrosis in a patient with hepatitis B.
Example 6 Correlation analysis of immune checkpoints between an RRM2 loW,504821 expression group and an RRM2 high expression group
A low-risk group and a high-risk group were divided by the inventors of the present disclosure according to a median serum RRM2 value in each cohort. PD-L1, CTLA4, and
LAGS in each group were then detected by polymerase chain reaction (PCR). Specific steps were as follows:
RNA of each of PD-L1, CTLA4, and LAG3 in serum was extracted with a Trizol kit of
Thermo, and a concentration of the extracted RNA was determined by a nucleic acid quantification instrument, which needed to make an A260/280 ratio be 1.8 to 2.0. cDNA was then synthesized with a RevertAid First Strand cDNA Synthesis Kit of Thermo.
An FASTA sequence of PD-L1 was as follows: >NM_001267706.2 Homo sapiens CD274 molecule (CD274), transcript variant 2, mRNA.
AGTTCTGCGCAGCTTCCCGAGGCTCCGCACCAGCCGCGCTTCTGTCCGCCTG
CAGGGCATTCCAGAAAGA
TGAGGATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAACGCCCC
ATACAACAAAATCAA
CCAAAGAATTTTGGTTGTGGATCCAGTCACCTCTGAACATGAACTGACATGTCA
GGCTGAGGGCTACCCC
AAGGCCGAAGTCATCTGGACAAGCAGTGACCATCAAGTCCTGAGTGGTAAGAC
CACCACCACCAATTCCA
AGAGAGAGGAGAAGCTTTTCAATGTGACCAGCACACTGAGAATCAACACAACA
ACTAATGAGATTTTCTA
CTGCACTTTTAGGAGATTAGATCCTGAGGAAAACCATACAGCTGAATTGGTCAT
CCCAGAACTACCTCTG
GCACATCCTCCAAATGAAAGGACTCACTTGGTAATTCTGGGAGCCATCTTATTAT
GCCTTGGTGTAGCAC
TGACATTCATCTTCCGTTTAAGAAAAGGGAGAATGATGGATGTGAAAAAATGTG
GCATCCAAGATACAAA
CTCAAAGAAGCAAAGTGATACACATTTGGAGGAGACGTAATCCAGCATTGGAA
CTTCTGATCTTCAAGCA
GGGATTCTCAACCTGTGGTTTAGGGGTTCATCGGGGCTGAGCGTGACAAGAG
GAAGGAATGGGCCCGTGG
GATGCAGGCAATGTGGGACTTAAAAGGCCCAAGCACTGAAAATGGAACCTGG
CGAAAGCAGAGGAGGAGA
ATGAAGAAAGATGGAGTCAAACAGGGAGCCTGGAGGGAGACCTTGATACTTTE 504801
AAATGCCTGAGGGGCTC
ATCGACGCCTGTGACAGGGAGAAAGGATACTTCTGAACAAGGAGCCTCCAAG
CAAATCATCCATTGCTCA
TCCTAGGAAGACGGGTTGAGAATCCCTAATTTGAGGGTCAGTTCCTGCAGAAG
TGCCCTTTGCCTCCACT
CAATGCCTCAATTTGTTTTCTGCATGACTGAGAGTCTCAGTGTTGGAACGGGA
CAGTATTTATGTATGAG
TTTTTCCTATTTATTTTGAGTCTGTGAGGTCTTCTTGTCATGTGAGTGTGGTTGT
GAATGATTTCTTTTG
AAGATATATTGTAGTAGATGTTACAATTTTGTCGCCAAACTAAACTTGCTGCTTAA
TGATTTGCTCACAT
CTAGTAAAACATGGAGTATTTGTAAGGTGCTTGGTCTCCTCTATAACTACAAGTA
TACATTGGAAGCATA
AAGATCAAACCGTTGGTTGCATAGGATGTCACCTTTATTTAACCCATTAATACTC
TGGTTGACCTAATCT
TATTCTCAGACCTCAAGTGTCTGTGCAGTATCTGTTCCATTTAAATATCAGCTTTA
CAATTATGTGGTAG
CCTACACACATAATCTCATTTCATCGCTGTAACCACCCTGTTGTGATAACCACTA
TTATTTTACCCATCG
TACAGCTGAGGAAGCAAACAGATTAAGTAACTTGCCCAAACCAGTAAATAGCAG
ACCTCAGACTGCCACC
CACTGTCCTTTTATAATACAATTTACAGCTATATTTTACTTTAAGCAATTCTTTTATT
CAAAAACCATTT
ATTAAGTGCCCTTGCAATATCAATCGCTGTGCCAGGCATTGAATCTACAGATGT
GAGCAAGACAAAGTAC
CTGTCCTCAAGGAGCTCATAGTATAATGAGGAGATTAACAAGAAAATGTATTATT
ACAATTTAGTCCAGT
GTCATAGCATAAGGATGATGCGAGGGGAAAACCCGAGCAGTGTTGCCAAGAG
GAGGAAATAGGCCAATGT
GGTCTGGGACGGTTGGATATACTTAAACATCTTAATAATCAGAGTAATTTTCATTT
ACAAAGAGAGGTCG
GTACTTAAAATAACCCTGAAAAATAACACTGGAATTCCTTTTCTAGCATTATATTTA
TTCCTGATTTGCC
TTTGCCATATAATCTAATGCTTGTTTATATAGTGTCTGGTATTGTTTAACAGTTCTG
TCTTTTCTATTTA LU504821
AATGCCACTAAATTTTAAATTCATACCTTTCCATGATTCAAAATTCAAAAGATCCC
ATGGGAGATGGTTG
GAAAATCTCCACTTCATCCTCCAAGCCATTCAAGTTTCCTTTCCAGAAGCAACT
GCTACTGCCTTTCATT
CATATGTTCTTCTAAAGATAGTCTACATTTGGAAATGTATGTTAAAAGCACGTATT
TTTAAAATTTTTTT
CCTAAATAGTAACACATTGTATGTCTGCTGTGTACTTTGCTATTTTTATTTATTTTA
GTGTTTCTTATAT
AGCAGATGGAATGAATTTGAAGTTCCCAGGGCTGAGGATCCATGCCTTCTTTGT
TTCTAAGTTATCTTTC
CCATAGCTTTTCATTATCTTTCATATGATCCAGTATATGTTAAATATGTCCTACATAT
ACATTTAGACAA
CCACCATTTGTTAAGTATTTGCTCTAGGACAGAGTTTGGATTTGTTTATGTTTGC
TCAAAAGGAGACCCA
TGGGCTCTCCAGGGTGCACTGAGTCAATCTAGTCCTAAAAAGCAATCTTATTATT
AACTCTGTATGACAG
AATCATGTCTGGAACTTTTGTTTTCTGCTTTCTGTCAAGTATAAACTTCACTTTGA
TGCTGTACTTGCAA
AATCACATTTTCTTTCTGGAAATTCCGGCAGTGTACCTTGACTGCTAGCTACCC
TGTGCCAGAAAAGCCT
CATTCGTTGTGCTTGAACCCTTGAATGCCACCAGCTGTCATCACTACACAGCC
CTCCTAAGAGGCTTCCT
GGAGGTTTCGAGATTCAGATGCCCTGGGAGATCCCAGAGTTTCCTTTCCCTCT
TGGCCATATTCTGGTGT
CAATGACAAGGAGTACCTTGGCTTTGCCACATGTCAAGGCTGAAGAAACAGTG
TCTCCAACAGAGCTCCT
TGTGTTATCTGTTTGTACATGTGCATTTGTACAGTAATTGGTGTGACAGTGTTCT
TTGTGTGAATTACAG
GCAAGAATTGTGGCTGAGCAAGGCACATAGTCTACTCAGTCTATTCCTAAGTCC
TAACTCCTCCTTGTGG
TGTTGGATTTGTAAGGCACTTTATCCCTTTTGTCTCATGTTTCATCGTAAATGGC
ATAGGCAGAGATGAT
ACCTAATTCTGCATTTGATTGTCACTTTTTGTACCTGCATTAATTTAATAAAATATT
CTTATTTATTTTG
TTACTTGGTACACCAGCATGTCCATTTTCTTGTTTATTTTGTGTTTAATAAAATGT, U504821
TCAGTTTAACATCC
CA
An FASTA sequence of CTLA4 was as follows: >NM_001037631.3 Homo sapiens cytotoxic T lymphocyte-associated protein 4 (CTLA4), transcript variant 2, mRNA.
GCTTTCTATTCAAGTGCCTTCTGTGTGTGCACATGTGTAATACATATCTGGGATC
AAAGCTATCTATATA
AAGTCCTTGATTCTGTGTGGGTTCAAACACATTTCAAAGCTTCAGGATCCTGAA
AGGTTTTGCTCTACTT
CCTGAAGACCTGAACACCGCTCCCATAAAGCCATGGCTTGCCTTGGATTTCAG
CGGCACAAGGCTCAGCT
GAACCTGGCTACCAGGACCTGGCCCTGCACTCTCCTGTTTTTTCTTCTCTTCAT
CCCTGTCTTCTGCAAA
GCAATGCACGTGGCCCAGCCTGCTGTGGTACTGGCCAGCAGCCGAGGCATCG
CCAGCTTTGTGTGTGAGT
ATGCATCTCCAGGCAAAGCCACTGAGGTCCGGGTGACAGTGCTTCGGCAGGC
TGACAGCCAGGTGACTGA
AGTCTGTGCGGCAACCTACATGATGGGGAATGAGTTGACCTTCCTAGATGATTC
CATCTGCACGGGCACC
TCCAGTGGAAATCAAGTGAACCTCACTATCCAAGGACTGAGGGCCATGGACAC
GGGACTCTACATCTGCA
AGGTGGAGCTCATGTACCCACCGCCATACTACCTGGGCATAGGCAACGGAACC
CAGATTTATGTAATTGC
TAAAGAAAAGAAGCCCTCTTACAACAGGGGTCTATGTGAAAATGCCCCCAACA
GAGCCAGAATGTGAAAA
GCAATTTCAGCCTTATTTTATTCCCATCAATTGAGAAACCATTATGAAGAAGAGA
GTCCATATTTCAATT
TCCAAGAGCTGAGGCAATTCTAACTTTTTTGCTATCCAGCTATTTTTATTTGTTTG
TGCATTTGGGGGGA
ATTCATCTCTCTTTAATATAAAGTTGGATGCGGAACCCAAATTACGTGTACTACAA
TTTAAAGCAAAGGA
GTAGAAAGACAGAGCTGGGATGTTTCTGTCACATCAGCTCCACTTTCAGTGAA
AGCATCACTTGGGATTA
ATATGGGGATGCAGCATTATGATGTGGGTCAAGGAATTAAGTTAGGGAATGGCA
CAGCCCAAAGAAGGAA LU504821
AAGGCAGGGAGCGAGGGAGAAGACTATATTGTACACACCTTATATTTACGTATG
AGACGTTTATAGCCGA
AATGATCTTTTCAAGTTAAATTTTATGCCTTTTATTTCTTAAACAAATGTATGATTA
CATCAAGGCTTCA
AAAATACTCACATGGCTATGTTTTAGCCAGTGATGCTAAAGGTTGTATTGCATATA
TACATATATATATA
TATATATATATATATATATATATATATATATATATATATATATATTTTAATTTGATAGTATTG
TGCATAG
AGCCACGTATGTTTTTGTGTATTTGTTAATGGTTTGAATATAAACACTATATGGCA
GTGTCTTTCCACCT
TGGGTCCCAGGGAAGTTTTGTGGAGGAGCTCAGGACACTAATACACCAGGTA
GAACACAAGGTCATTTGC
TAACTAGCTTGGAAACTGGATGAGGTCATAGCAGTGCTTGATTGCGTGGAATTG
TGCTGAGTTGGTGTTG
ACATGTGCTTTGGGGCTTTTACACCAGTTCCTTTCAATGGTTTGCAAGGAAGCC
ACAGCTGGTGGTATCT
GAGTTGACTTGACAGAACACTGTCTTGAAGACAATGGCTTACTCCAGGAGACC
CACAGGTATGACCTTCT
AGGAAGCTCCAGTTCGATGGGCCCAATTCTTACAAACATGTGGTTAATGCCATG
GACAGAAGAAGGCAGC
AGGTGGCAGAATGGGGTGCATGAAGGTTTCTGAAAATTAACACTGCTTGTGTT
TTTAACTCAATATTTTC
CATGAAAATGCAACAACATGTATAATATTTTTAATTAAATAAAAATCTGTGGTGGT
CGTTTTCCGGA
An FASTA sequence of LAG3 was follows: >NM_001414176.1 Homo sapiens lymphocyte activation gene 3 (LAGS), transcript variant 2, mRNA.
AGAGACCAGCAGAACGGCATCCCAGCCACGACGGCCACTTTGCTCTGTCTGC
TCTCCGCCACGGCCCTGC
TCTGTTCCCTGGGACACCCCCGCCCCCACCTCCTCAGGCTGCCTGATCTGCC
CAGCTTTCCAGCTTTCCT
CTGGATTCCGGCCTCTGGTCATCCCTCCCCACCCTCTCTCCAAGGCCCTCTCC
TGGTCTCCCTTCTTCTA
GAACCCCTTCCTCCACCTCCCTCTCTGCAGAACTTCTCCTTTACCCCCCACCC
CCCACCACTGCCCCCTT LU504821
TCCTTTTCTGACCTCCTTTTGGAGGGCTCAGCGCTGCCCAGACCATAGGAGAG
ATGTGGGAGGCTCAGTT
CCTGGGCTTGCTGTTTCTGCAGCCGCTTTGGGTGGCTCCAGTGAAGCCTCTC
CAGCCAGGGGCTGAGGTC
CCGGTGGTGTGGGCCCAGGAGGGGGCTCCTGCCCAGCTCCCCTGCAGCCCC
ACAATCCCCCTCCAGGATC
TCAGCCTTCTGCGAAGAGCAGGGGTCACTTGGCAGCATCAGCCAGACAGTGG
CCCGCCCGCTGCCGCCCC
CGGCCATCCCCTGGCCCCCGGCCCTCACCCGGCGGCGCCCTCCTCCTGGGG
GCCCAGGCCCCGCCGCTAC
ACGGTGCTGAGCGTGGGTCCCGGAGGCCTGCGCAGCGGGAGGCTGCCCCT
GCAGCCCCGCGTCCAGCTGG
ATGAGCGCGGCCGGCAGCGCGGGGACTTCTCGCTATGGCTGCGCCCAGCCC
GGCGCGCGGACGCCGGCGA
GTACCGCGCCGCGGTGCACCTCAGGGACCGCGCCCTCTCCTGCCGCCTCCG
TCTGCGCCTGGGCCAGGCC
TCGATGACTGCCAGCCCCCCAGGATCTCTCAGAGCCTCCGACTGGGTCATTTT
GAACTGCTCCTTCAGCC
GCCCTGACCGCCCAGCCTCTGTGCATTGGTTCCGGAACCGGGGCCAGGGCC
GAGTCCCTGTCCGGGAGTC
CCCCCATCACCACTTAGCGGAAAGCTTCCTCTTCCTGCCCCAAGTCAGCCCCA
TGGACTCTGGGCCCTGG
GGCTGCATCCTCACCTACAGAGATGGCTTCAACGTCTCCATCATGTATAACCTC
ACTGTTCTGGGTCTGG
AGCCCCCAACTCCCTTGACAGTGTACGCTGGAGCAGGTTCCAGGGTGGGGCT
GCCCTGCCGCCTGCCTGC
TGGTGTGGGGACCCGGTCTTTCCTCACTGCCAAGTGGACTCCTCCTGGGGGA
GGCCCTGACCTCCTGGTG
ACTGGAGACAATGGCGACTTTACCCTTCGACTAGAGGATGTGAGCCAGGCCCA
GGCTGGGACCTACACCT
GCCATATCCATCTGCAGGAACAGCAGCTCAATGCCACTGTCACATTGGCAATCA
TCACAGTGACTCCCAA
ATCCTTTGGGTCACCTGGATCCCTGGGGAAGCTGCTTTGTGAGGTGACTCCAG
TATCTGGACAAGAACGC
TTTGTGTGGAGCTCTCTGGACACCCCATCCCAGAGGAGTTTCTCAGGACCTTG 504821
GCTGGAGGCACAGGAGG
CCCAGCTCCTTTCCCAGCCTTGGCAATGCCAGCTGTACCAGGGGGAGAGGCT
TCTTGGAGCAGCAGTGTA
CTTCACAGAGCTGTCTAGCCCAGGTGCCCAACGCTCTGGGAGAGCCCCAGGT
GCCCTCCCAGCAGGCCAC
CTCCTGCTGTTTCTCATCCTTGGTGTCCTTTCTCTGCTCCTTTTGGTGACTGGA
GCCTTTGGCTTTCACC
TTTGGAGAAGACAGGTGAGCCAGGGACATGGCAACCCCGCCCCCCAGCAGC
TCCCGCTCTTCCATCCTCA
GAGTGCTGATGGCACCCCTTCCTCAGGAAGTGGCGACCAAGACGATTTTCTG
CCTTAGAGCAAGGGATTC
ACCCTCCGCAGGCTCAGAGCAAGATAGAGGAGCTGGAGCAAGAACCGGAGC
CGGAGCCGGAGCCGGAACC
GGAGCCCGAGCCCGAGCCCGAGCCGGAGCAGCTCTGACCTGGAGCTGAGG
CAGCCAGCAGATCTCAGCAG
CCCAGTCCAAATAAACTCCCTGTCAGCAGCAA
An SYBR Green method was used to conduct real-time fluorescent quantitative
PCR. With GAPDH as an internal reference gene, PD-L1, CTLA4, and LAG3-specific
RT-PCR primers were used to conduct real-time fluorescent quantitative PCR to obtain relative expression levels of PD-L1, CTLA4, and LAG3.
PD-L1: RT-PCR forward primer sequence (F: CATTTGCTGAACGCCCCATA) and reverse primer sequence (R: TGTCCAGATGACTTCGGCCT).
CTLA4: RT-PCR forward primer sequence (F: CCATGGACACGGGACTCTAC) and reverse primer sequence (R: GGGCTTCTTTTCTTTAGCAATTACA).
LAG3: RT-PCR forward primer sequence (F: CAGCTCCCGCTCTTCCATC) and reverse primer sequence (R: AATCGTCTTGGTCGCCACTTC).
GAPDH: forward primer sequence (F: GCTAGGGACGGCCTGAAG) and reverse primer sequence (R: GCCCAATACGACCAAATCCGT).
A real-time fluorescent quantitative PCR system was 20 pL in total, including: 10 uL of SYBR Green Realtime PCR Master Mix, 0.5 pL of a forward primer (10 uM), 0.5 uL of a reverse primer (10 uM), 1 uL of cDNA, and the balance of ddH2O.
A reaction system prepared according to the above system was placed in a 7500504821
Fast quantitative PCR System instrument to conduct PCR, and a PCR procedure was shown in Table 3: me ee mem
Cee ee
Table 3
Real time-PCR experimental result analysis: The analysis was conducted with software in the 7500 Fast quantitative PCR System instrument, and analysis results were expressed as mean + standard deviation (SD). The GraphpadPrism software was used to analyze the data differences among different samples and plot a curve (the student T-test was used to statistically analyze a difference between two groups of samples; and P < 0.05, indicating that the difference was statistically significant).
Experimental results were shown in FIG. 5. The results in FIG. 5 showed that a patient with hepatitis B in which an RRM2 level was high was associated with high immune checkpoint levels (PD-L1, CTLA4, and LAG3), that is, a patient with CHB in which an RRM2 level was high may benefit from immunotherapy.
The results in the above examples show that, in the present disclosure, based on bioinformatics analysis, a key diagnostic marker RRM2 for liver fibrosis is found. An expression level of RRM2 in serum of a patient to be tested can be detected to allow diagnosis of a stage of fibrosis in a patient with hepatitis B. Compared with liver fibrosis indexes APRI, FIB-4, and M2BPGi, RRM2 has high diagnostic efficiency, and can allow staging diagnosis of fibrosis in a patient with hepatitis B in which an ALT level is normal or abnormal.
In summary, in the present disclosure, RRM2 is used as a diagnostic marker for staging of liver fibrosis in a patient with hepatitis B, and an expression level of RRM2 in serum of a patient to be tested is detected to allow early diagnosis for a patient with hepatitis B.
The diagnostic marker provided in the present disclosure has excellent specificity, 594821 and can accurately identify a fibrosis stage of a patient with hepatitis B in which an ALT level is normal or abnormal.
The diagnostic marker of the present disclosure has high sensitivity, standards for a detection level of the diagnostic marker are easily formulated, and a detection method of the diagnostic marker is simple, has high diagnostic efficiency and guaranteed reliability, and can allow rapid screening of liver fibrosis in a patient with hepatitis B.
The detection technique established by the present disclosure can be used to determine a course of liver fibrosis in a patient with hepatitis B.
In addition, the diagnostic marker disclosed in the present disclosure may be used to prepare a reagent or a kit for diagnosing liver fibrosis in a patient with hepatitis B or monitoring progression of liver fibrosis in a patient with hepatitis B, and can also be used to prepare an antiviral drug.
SEQUENCE LISTING LU504821 <ST26SequenceListing dtdVersion="V1_3" fleName="DIAGNOSTIC MARKER FOR
LIVER FIBROSIS IN PATIENT WITH HEPATITIS B, AND METHOD AND USE
THEREOF xml" softwareName="WIPO
Sequence" softwareVersion="2.2.0" productionDate="2023-04-18"> <ApplicantFileReference>The First Affiliated Hospital of Wenzhou Medical
University</ApplicantFileReference> <ApplicantName languageCode="zh">The First Affiliated Hospital of Wenzhou Medical
University</ApplicantName> <ApplicantNameLatin>The First Affiliated Hospital of Wenzhou Medical
University</ApplicantNameLatin> <InventionTitle languageCode="zh">DIAGNOSTIC MARKER FOR LIVER FIBROSIS IN
PATIENT WITH HEPATITIS B, AND METHOD AND USE THEREOF</InventionTitle> <SequenceTotalQuantity>11</SequenceTotalQuantity> <SequenceData sequencelDNumber="1"> <INSDSeq> <INSDSeq_length>3292</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..3292</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>mRNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q2"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>agttctgcgcagetteccgagactecgcaccagecgcacttctgtecgccetgcagggcat tccagaaagatgaggatatttgctgtctttatattcatgacctactggcatttgctgaacgccccatacaacaaaatcaacca aagaattttggttgtggatccagtcacctctgaacatgaactgacatgtcaggctgagggctaccccaaggccgaagtcat ctggacaagcagtgaccatcaagtcctgagtggtaagaccaccaccaccaattccaagagagaggagaagcttticaat gtgaccagcacactgagaatcaacacaacaactaatgagatttictactgcacttttaggagattagatcctgaggaaaac catacagctgaattggtcatcccagaactacctctggcacatcctccaaatgaaaggactcacttggtaattictgggagec atcttattatgccttggtgtagcactgacattcatcticcgtttaagaaaagggagaatgatggatgtgaaaaaatgtggcatc caagatacaaactcaaagaagcaaagtgatacacatttggaggagacgtaatccagcattggaacttctgatcttcaage agggattctcaacctgtggtttaggggttcatcggggctgagcgtgacaagaggaaggaatgggeccgtgggatgcagg caatgtgggacttaaaaggcccaagcactgaaaatggaacctggcgaaagcagaggaggagaatgaagaaagatg gagtcaaacagggagcctggagggagaccttgatactttcaaatgcctgaggggctcatcgacgectgtgacagggag 504821 aaaggatacttctgaacaaggagcctccaagcaaatcatccattgctcatcctaggaagacgggttgagaatccctaattt gagggtcagttcctgcagaagtgcecctttgecctccactcaatgectcaatttgttitctgcatgactgagagtctcagtgttgga acgggacagtatttatgtatgagtttttcctatttattttgagtctgtgaggtctictigtcatgtgagtgtggttgtgaatgatticttttg aagatatattgtagtagatgttacaattttgtcgccaaactaaacttgctgcttaatgatttgctcacatctagtaaaacatgga gtatttgtaaggtgcttggtctcctctataactacaagtatacattggaagcataaagatcaaaccgttggtigcataggatgtc acctttatttaacccattaatactctggttgacctaatcttatictcagacctcaagtgtctgtgcagtatctgticcatttaaatatc agctttacaattatgtggtagcctacacacataatctcatttcatcgctgtaaccaccctgttgtgataaccactattattttaccc atcgtacagctgaggaagcaaacagattaagtaacttgcccaaaccagtaaatagcagacctcagactgccacccact gtccttttataatacaatttacagctatattttactttaagcaattcttttattcaaaaaccatttattaagtgcccttgcaatatcaat cgctgtgccaggcattgaatctacagatgtgagcaagacaaagtacctgtcctcaaggagctcatagtataatgaggaga ttaacaagaaaatgtattattacaatttagtccagtgtcatagcataaggatgatgcgaggggaaaacccgagcagtgttg ccaagaggaggaaataggccaatgtggtctgggacggttggatatacttaaacatcttaataatcagagtaattticatttac aaagagaggtcggtacttaaaataaccctgaaaaataacactggaattccttitctagcattatatttattcctgatttgectttg ccatataatctaatgcttgtttatatagtgtctggtattgttitaacagttctgtctttictatttaaatgccactaaattttaaattcatac ctttccatgattcaaaattcaaaagatcccatgggagatggttggaaaatctccacttcatcctccaagecattcaagtttectt tccagaagcaactgctactgcctttcattcatatgtictictaaagatagtctacatttggaaatgtatgttaaaagcacgtatttit aaaatttttttcctaaatagtaacacattgtatgtctgctgtgtactttgctatttttatttattttagtgtticttatatagcagatggaat gaatttgaagttcccagggctgaggatccatgccttctttgttictaagttatctttcccatagcttticattatctttcatatgatcca gtatatgttaaatatgtcctacatatacatttagacaaccaccatttgttaagtatttgctctaggacagagtttggatttgtttatgt ttgctcaaaaggagacccatgggctctccagggtgcactgagtcaatctagtcctaaaaagcaatcttattattaactctgtat gacagaatcatgtctggaacttttgttttctgctttctgtcaagtataaacttcactttgatgctgtactigcaaaatcacattttcttt ctggaaattccggcagtgtaccttgactgctagctaccctgtgccagaaaagcectcattcgttgtgettgaacccttgaatgece accagctgtcatcactacacagccctcctaagaggcttcctggaggtttcgagattcagatgecctgggagatcccagagtt tectttccctcttggccatatictggtgtcaatgacaaggagtacettggctttgccacatgtcaaggctgaagaaacagtatct ccaacagagctccttgtgttatctgtttgtacatgtgcatttgtacagtaattggtgtgacagtgttcttigtgtgaattacaggcaa gaattgtggctgagcaaggcacatagtctactcagtctattcctaagtcctaactcctecttgtggtgttggatttgtaaggcact ttatcccttttgtctcatgtttcatcgtaaatggcataggcagagatgatacctaattctgcatttgattgtcacttttigtacctgcat taatttaataaaatattcttatttattttgttacttggtacaccagcatgtccattttctigtttattttgtgtitaataaaatgttcagtttaa catccca</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="2"> <INSDSeq> <INSDSeq_length>1887</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..1887</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>mRNA</INSDQualifier_value> </INSDQualifier>
<INSDQualifier id="q4"> LU504821 <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>gctttctattcaagtgccttctgtgtgtgcacatgtgtaatacatatctgggatcaaagctatct atataaagtccttgattctgtgtgggttcaaacacatttcaaagcttcaggatcctgaaaggttttgctctacttcctgaagacct gaacaccgctcccataaagccatggcttgecttggatttcagcggcacaaggcetcagetgaacctggcetaccaggacctg gccctgceactctcectgttttttctictcticatcectgtetictgcaaagcaatgcacgtggeccagectgetgtggtactggecag cagccgaggcatcgecagctttgtgtgtgagtatgcatctccaggcaaagecactgaggtccgggtgacagtgcettcgge aggctgacagccaggtgactgaagtctgtgcggcaacctacatgatggggaatgagttgaccttcctagatgattccatct gcacgggcacctccagtggaaatcaagtgaacctcactatccaaggactgagggccatggacacgggactctacatct gcaaggtggagctcatgtacccaccgccatactacctgggcataggcaacggaacccagatttatgtaattgctaaagaa aagaagccctcttacaacaggggtctatgtgaaaatgcccccaacagagccagaatgtgaaaagcaatttcagecttattt tattoccatcaattgagaaaccattatgaagaagagagtccatatttcaatttccaagagctgaggcaattctaacttttttgct atccagctatttttatttgtttgtgcatttggggggaattcatctctctitaatataaagttggatgcggaacccaaattacgtgtact acaatttaaagcaaaggagtagaaagacagagctgggatgtttctgtcacatcagctccactttcagtgaaagcatcactt gggattaatatggggatgcagcattatgatgtgggtcaaggaattaagttagggaatggcacagcccaaagaaggaaa aggcagggagcgagggagaagactatattgtacacaccttatatttacgtatgagacgtttatagccgaaatgatcitttica agttaaattttatgccttttatticttaaacaaatgtatgattacatcaaggcttcaaaaatactcacatggctatgttttagccagt gatgctaaaggttgtattgcatatatacatatatatatatatatatatatatatatatatatatatatatatatatatatatattttaattt gatagtattgtgcatagagccacgtatgtttttgtgtattigttaatggtitgaatataaacactatatggcagtgtctttccaccttg ggtcccagggaagttttgtggaggagctcaggacactaatacaccaggtagaacacaaggtcatttgctaactagcettgg aaactggatgaggtcatagcagtgcttgattgcgtggaattgtgctgagttggtgtigacatgtgcetttggggcttitacaccag ttcctttcaatggtttgcaaggaagccacagcetggtggtatctgagttgacttgacagaacactgtctigaagacaatggctta ctccaggagacccacaggtatgaccttctaggaagctccagttcgatgggcccaattcttacaaacatgtggttaatgccat ggacagaagaaggcagcaggtggcagaatggggtgcatgaaggtttctgaaaattaacactgcttgtgtttttaactcaat attttccatgaaaatgcaacaacatgtataatatttttaattaaataaaaatctgtggtggtcgttttccgga</INSDSeq_s equence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="3"> <INSDSeq> <INSDSeq_length>2062</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..2062</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>mRNA</INSDQualifier_value>
</INSDQualifier> LU504821 <INSDQualifier id="q6"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>agagaccagcagaacggcateccagccacgacggccactttgetctatctgctetccgc cacggacectactctgttecctgggacacececgececcacetectcagactgectgatctgcccagetttccagetttectctg gattecggectctggtcateectececcacecteteteccaaggcectctectggteteccttcttctagaaccecttectecacctc cctetetgcagaacttctcctttaccccccaccecccaccactgcecccctttecttttctgacctecttttggagggcetcagegcet gcccagaccataggagagatgtgggaggctcagttcetgggcettgetgttictgcagecgcetttgggtggetccagtgaage ctctccagecaggggcetgaggteceecggtggtgtgggeccaggagggggctectgeccagcetcecctgcagecccacaat ceccctccaggatctcagecttetgcgaagagcagggatcacttggcagcatcagecagacagtggeccgeecactgec gcceccgaccateccctggececcgacectcacecggegacacectectectgggggeccaggececgecactacacg gtgctgagcatggateccggaggcetgcgcagegggagactgecectgcagecccgegtecagetggatgagegegg ccggcagcgcggggacticicactatggctgcgeccageccggcgcgcggacgecggegagtaccgcgecgegatgc acctcagggacegcacectetectgccgectecgtetgcgccetgggccaggectegatgactgccagececccaggatet ctcagagectccgactggatcattttgaactactcettcagccgecctgaccgcccagectctatgcattggttecggaaccg gggccagggecgagtecctatecgggagtececccatcaccacttageggaaagcticctettectgceccaagtcagec ccatggactctgggcectgggactgcatectcacctacagagatggettcaacgtctccatcatgtataacctcactattctg gatctggageccccaacteccettgacagtgatacgctggagcagaticcaggatggggcetgcectgecacetgectactgat gtggggacecggtetttcctcactgccaagtagactectectgggggaggecctgacctectggtgactggagacaatggce gactttacccttcgactagaggatgtgagccaggeccaggcetgggacctacacctgccatatccatctgcaggaacagea gctcaatgccactgtcacattggcaatcatcacagtgactcccaaatcctttgggtcacctggatccctggggaagcetgcttt gtgaggtgactccagtatctggacaagaacgctttgtgtggagctctctggacaccccatcccagaggagttictcaggac cttggctggaggcacaggaggcccagctcctttcccagecttggcaatgecagcetgtaccagggggagaggcttcttgga gcagcagtgtacttcacagagctgtctagcccaggtgcccaacgcetctgggagagcecccaggtgecctcccagcaggec acctcctgctgtttctcatccttggtgtectttctetgetectttiggtgactggagcectttggcttticacctttggagaagacaggtg agccagggacatggcaaccccgcecccccagcagctcccgctctticcatcctcagagtgetgatggcacccecttcctcagg aagtggcgaccaagacgattttctgccttagagcaagggattcaccctecgcaggctcagagcaagatagaggagetgg agcaagaaccggagecggagecggagecggaaccggageccgageccgageccgagecggagcagetetgacot ggagctgaggcagccagcagatctcagcageccagtccaaataaactecctgtcagcagcaa</INSDSeq_sequ ence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="4"> <INSDSeq> <INSDSeq_length>20</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals> LU504821 <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q8"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>catttgctgaacgcecccata</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="5"> <INSDSeq> <INSDSeq_length>20</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..20</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q10"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>tgtccagatgacttcggcct</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="6"> <INSDSeq> <INSDSeq_length>20</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature>
<INSDFeature_key>source</INSDF eature_key> LU504821 <INSDFeature_location>1..20</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q12"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>ccatggacacgggactctac</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="7"> <INSDSeq> <INSDSeq_length>25</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..25</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSD Qualifier_value> </INSDQualifier> <INSDQualifier id="q14"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>gggcttctttictttagcaattaca</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="8"> <INSDSeq> <INSDSeq_length>19</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table> LU504821 <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..19</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSD Qualifier_value> </INSDQualifier> <INSDQualifier id="q16"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>cagcteccactcttccatc</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="9"> <INSDSeq> <INSDSeq_length>21</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..21</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q18"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>aatcgtcttggtcgccacttc</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="10"> <INSDSeq> <INSDSeq_length>18</INSDSeq_length>
<INSDSeq_moltype>RNA</INSDSeq_moltype> LU504821 <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..18</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q20"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>gctagggacggcctgaag</INSDSeq_sequence> </INSDSeq> </SequenceData> <SequenceData sequencelDNumber="11"> <INSDSeq> <INSDSeq_length>21</INSDSeq_length> <INSDSeq_moltype>RNA</INSDSeq_moltype> <INSDSeq_division>PAT</INSDSeq_division> <INSDSeq_feature-table> <INSDFeature> <INSDFeature_key>source</INSDFeature_key> <INSDFeature_location>1..21</INSDFeature_location> <INSDFeature_quals> <INSDQualifier> <INSDQualifier_name>mol_type</INSDQualifier_name> <INSDQualifier_value>other RNA</INSDQualifier_value> </INSDQualifier> <INSDQualifier id="q22"> <INSDQualifier_name>organism</INSDQualifier_name> <INSDQualifier_value>unidentified</INSDQualifier_value> </INSDQualifier> </INSDFeature_quals> </INSDFeature> </INSDSeq_feature-table> <INSDSeq_sequence>gcccaatacgaccaaatccgt</INSDSeq_sequence> </INSDSeq> </SequenceData> </ST26SequenceListing>

Claims (6)

CLAIMS LU504821
1. A diagnostic marker for liver fibrosis in a patient with hepatitis B, wherein the diagnostic marker is ribonucleotide reductase M2 (RRM2).
2. A method for diagnosing a stage of liver fibrosis in a patient with hepatitis B using the diagnostic marker for liver fibrosis in a patient with hepatitis B according to claim 1, wherein an expression level of RRM2 in serum of the patient with hepatitis B is detected to identify the stage of liver fibrosis in the patient with hepatitis B.
3. A use of the diagnostic marker for liver fibrosis in a patient with hepatitis B according to claim 1 in preparation of a reagent or a kit for diagnosing a stage of liver fibrosis in a patient with hepatitis B.
4. The use according to claim 3, wherein the reagent or kit comprises RRM2.
5. A use of the diagnostic marker for liver fibrosis in a patient with hepatitis B according to claim 1 in preparation of a drug for preventing or treating liver fibrosis in a patient with chronic hepatitis B (CHB).
6. The use according to claim 5, wherein the drug comprises RRM2.
LU504821A 2023-04-19 2023-07-27 Diagnostic marker for liver fibrosis in patient with hepatitis b, and method and use thereof LU504821B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310417189.3A CN117778552A (en) 2023-04-19 2023-04-19 Diagnostic marker, method and application of hepatic fibrosis of hepatitis B patient

Publications (1)

Publication Number Publication Date
LU504821B1 true LU504821B1 (en) 2024-01-29

Family

ID=89808359

Family Applications (1)

Application Number Title Priority Date Filing Date
LU504821A LU504821B1 (en) 2023-04-19 2023-07-27 Diagnostic marker for liver fibrosis in patient with hepatitis b, and method and use thereof

Country Status (2)

Country Link
CN (1) CN117778552A (en)
LU (1) LU504821B1 (en)

Also Published As

Publication number Publication date
CN117778552A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
Tayob et al. The performance of AFP, AFP-3, DCP as biomarkers for detection of hepatocellular carcinoma (HCC): a phase 3 biomarker study in the United States
Xu et al. Model based on γ-glutamyltransferase and alkaline phosphatase for hepatocellular carcinoma prognosis
Li et al. Circulating soluble programmed death-1 levels may differentiate immune-tolerant phase from other phases and hepatocellular carcinoma from other clinical diseases in chronic hepatitis B virus infection
CN105092855A (en) Kit for detecting liver fibration and liver cirrhosis
CN104450901A (en) Nucleic acid marker for rapidly diagnosing kawasaki disease and kit of nucleic acid marker
Wang et al. Predictors for advanced liver fibrosis in chronic hepatitis B virus infection with persistently normal or mildly elevated alanine aminotransferase
Chimparlee et al. Diagnostic and prognostic roles of serum osteopontin and osteopontin promoter polymorphisms in hepatitis B-related hepatocellular carcinoma
US20180044733A1 (en) Circulatory MicroRNAs (miRNAs) as Biomarkers for Diabetic Retinopathy (DR) and Age-Related Macular Degeneration
Zhao et al. Hepatitis E virus superinfection impairs long-term outcome in hospitalized patients with hepatitis B virus-related decompensated liver cirrhosis
LU504821B1 (en) Diagnostic marker for liver fibrosis in patient with hepatitis b, and method and use thereof
CN105021827A (en) Application of substance for detecting content of serum angiopoetin-like protein 2 in preparation of product for detecting hepatitis and fibrosis degree
RU2709507C1 (en) Method for diagnosing hepatic fibrosis in patients with chronic viral hepatitis c
CN111289749B (en) Application of C-type 1-type Niemann-Pickerin detection substance in preparation of hepatocellular carcinoma screening product
CN112695088A (en) Marker, detection reagent, detection product, and diagnostic system
CN112680514A (en) Marker for liver cancer diagnosis and application thereof
CN112553332A (en) Combined application of multiple genes in liver cancer diagnosis
CN111304319A (en) Diagnostic marker for diseases and application
US20240175071A1 (en) Methods for assessing cellular or tissue injury using mitochondrial and/or nuclear cell-free dna
Pan et al. Diagnostic Significance of Serum Long Noncoding HOX Antisense Intergenic Ribonucleic Acid in Patients with Hepatitis B Virus Related Hepatocellular Carcinoma
WO2017011929A1 (en) Use of substance detecting content of angiopoietin-like protein 2 in serum for preparing products for detecting inflammation and degree of fibrosis of liver
WO2011059649A1 (en) Method for diagnosing liver fibrosis
CN106153923A (en) Prediction glutamate pyruvate transaminase is less than the system of the Patients with Chronic Hepatitis B inflammation degree of two times of upper limits of normal
Inoue et al. Noninvasive assessments of liver disease severity based on biomarkers
CN116042809A (en) Application of X-linked apoptosis inhibitor protein in diagnosis of chronic kidney disease
El Garem et al. Noninvasive prediction of hepatitis C-associated hepatocellular carcinoma using circulating apolipoproteins