LU102120B1 - Code Division Multiple Access Communication Method based on Harmonic Modulation Technology - Google Patents

Code Division Multiple Access Communication Method based on Harmonic Modulation Technology Download PDF

Info

Publication number
LU102120B1
LU102120B1 LU102120A LU102120A LU102120B1 LU 102120 B1 LU102120 B1 LU 102120B1 LU 102120 A LU102120 A LU 102120A LU 102120 A LU102120 A LU 102120A LU 102120 B1 LU102120 B1 LU 102120B1
Authority
LU
Luxembourg
Prior art keywords
harmonic
signal
information
different
transmission
Prior art date
Application number
LU102120A
Other languages
German (de)
Inventor
Shaohua Zhou
Jianguo Ma
Original Assignee
Univ Guangdong Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Guangdong Technology filed Critical Univ Guangdong Technology
Application granted granted Critical
Publication of LU102120B1 publication Critical patent/LU102120B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/28Systems using multi-frequency codes with simultaneous transmission of different frequencies each representing one code element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • H04L5/026Multiplexing of multicarrier modulation signals using code division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The present invention discloses a code division multiple access communication method based on a harmonic modulation technology, wherein user signals are divided by using mutually orthogonal address code sequences, information transmission between users is forwarded and controlled by a base station, and duplex communication is performed by using one frequency each for forward transmission and reverse transmission; and the duplex communication uses a fundamental frequency and harmonics for information transmission. A process of the information transmission is as follows: different information is firstly modulated and then is separately loaded on different harmonic components or component combinations, and finally fundamental frequency and harmonic information received by a receiving end is demodulated to obtain all the information transmitted. The present invention makes full use of the ability of harmonics to transmit information, greatly improving the utilization rate of the frequency spectrum, and also greatly increasing the capacity of communication users under the same carrier frequency simultaneously.

Description

CE. BL-5167 CODE DIVISION MULTIPLE ACCESS COMMUNICATION METHOD BASED ON F100
HARMONIC MODULATION TECHNOLOGY Technical field The present invention relates to the technical field of communications, and in particular, to a code division multiple access communication method based on harmonic modulation technology. Technical background The frequency band allocation in China js an administrative division, which is different from the comparative market dominance. In Europe and the United States, the frequency band is used for auction. For example, in the 3G era, three major operators in China have already administratively divided for the corresponding frequency bands. The rest are to compete by their services, and European and American operators are not so happy. They first have to take licenses for this frequency band. For example, UK's 3G frequency spectrum auctioned 22 billion pounds, and Germany's 3G frequency spectrum auctioned 45 billion dollars. It can be called as a sky-high price. Why is the frequency spectrum so expensive? This is because the currently available frequency spectrum resources are limited. It is known that signals are transmitted in the form of waves. Then, the wavelength is related to the speed of light and the frequency. High frequencies have a strong ability to penetrate the atmosphere, but their diffraction ability (that is, the ability to bypass obstacles during transmission) is relatively weak. However, in the process of wave transmission, in the absence of obstacles, namely, the air being a medium, the waves must have sufficient penetration ability. In addition, if the frequency is too high, the corresponding diffraction ability is insufficient. In high-rise cities, it is difficult to prevent signal degradation and others. Thus, the available frequency bands are not many themselves in wireless signal transmission. A ——
TEEN 2 BL-5167 LU102120 In addition, satellites, radios, and televisions all need to be transmitted in the form of waves. Of course, they also occupy certain frequency bands. Naturally available frequency bands are even scarcer. Therefore, each country appears to be very “parsimonious” in treating the scarce frequency spectrum. Thus, how to make more Users use the limited frequency spectrum resources becomes an important subject of communication research. However, in a conventional CDMA communication method as shown in Fig. 1, the division of user signals is implemented by using mutually orthogonal address code sequences. There are as many orthogonal code sequences in the address code set as there are users who can communicate on one carrier at the same time. In this way, a great waste of frequency spectrum resources will be undoubtedly caused. This is because in the conventional CDMA communication method, only the fundamental frequency is used for communication, and the function of harmonic components is ignored. In real life, harmonic components can also be used to transmit information, especially under the circumstances that the frequency spectrum resources are so tight today and it is even more important to make full use of harmonic components so that the frequency spectrum resources can exert their maximum effectiveness.
Summary of the invention An objective of the present invention is to overcome the shortcomings of the prior art and provide a code division multiple access communication method based on harmonic modulation technology with high frequency spectrum utilization. In order to achieve the above objective, the technical solution provided by the present invention is: A code division multiple access communication method based on a harmonic modulation technology, wherein user signals are divided by using mutually Dee
BL-5167 LU102120 orthogonal address code sequences, information transmission between users is forwarded and controlled by a base Station, and duplex communication is performed by using one frequency each for forward transmission and reverse transmission; and the duplex communication uses a fundamental frequency and harmonics for information transmission. Further, a process of the information transmission is as follows: different | information is firstly modulated and then is separately loaded on different harmonic components, and finally fundamental frequency and harmonic information received by a receiving end is demodulated to obtain all the information transmitted. Further, before the information transmission, a fixed harmonic mode is stored in advance and a given harmonic component is used to calculate all the different signals, thereby demodulating a desired signal from other signals.
Further, based on the fixed harmonic mode stored in advance, a given harmonic component is used to calculate all two different signals, so that a specific process of demodulating a desired signal from other signals is as follows: assuming that all harmonic modes are known: Vout = Aofo + A2f2 + A3f3 + asfy + asfs + + Anfn (1) where a, represents a n-th harmonic coefficient, n = 0, 2, 3, 4, … fo represents the fundamental frequency; fn represents a m-th harmonic component, and m = 2, 3,4, ...; at this time, both a first signal and a second signal are loaded on even and odd harmonics for transmission, respectively, and the following can be obtained: Sn
BL-5167 LU102120 Voie = ao” fo + a7 fo + auP fo + A6P fo + agPfy ++ (2) Vout = ao’ fo + A3” f3 + As” f5 + A7”f7 + Ac” fo + +" (3)
finally, a mixed signal of the first signal and the second signal received simultaneously at the signal receiving end is: Vout = A0” fo + A0? fo + A2P F2 + A2” f5 + A4P fu + as”? fs + A6Pf6 + a," f, + agP fa + as’fo + (4)
it can be known from (1) and (4) that: ao” fo + ao? fo = aofo (5) a,Pfz = arf 04? fa = Ayfsz agP fo = aefe; agP fa = agfs: + (6) a3” f3 = Azfz; as” fs = asfs; a," f; = ar fri ag”fa = Aofo: + (7) | since the fundamental frequency used when transmitting the first signal and the second signal is the same, only the harmonic components are different, and it can be known from (5) that: 1 ao’fo = aoPfo = 7 @ofo (8) therefore, according to formulas (6)-(8), the receiving end can demodulate both the first signal and the second signal.
Further, when the different information is modulated and then is separately loaded on different harmonic components for information transmission, different
BL-5167 combinations of harmonic components may be selected for transmission of signals 10108160 as needed. Compared with the prior art, the principle and advantages of the present solution 5 are as follows: The present solution uses the harmonic modulation technology to load information separately on different harmonic components or component combinations, uses harmonics to transmit information, and achieves communication with N different users through each harmonic component or component combination (where N is the number of orthogonal code sequences), making full use of the ability of harmonics to transmit information, greatly improving the utilization rate of the frequency spectrum, and also greatly increasing the capacity of communication users at the same carrier frequency simultaneously.
Brief description of the drawings In order to more clearly illustrate the technical solutions in embodiments of the present invention or the prior art, the accompanying drawings needed to be used in the description of the embodiments or the prior art will be briefly described below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention, and other accompanying drawings can be obtained by those of ordinary skill in the art from these without creative efforts. | Fig. 1 is a schematic diagram of a working principle of a conventional code division multiple access communication method; Fig. 2 is a working schematic diagram of a code division multiple access communication method based on a harmonic modulation technology; and Fig. 3 is a harmonic modulation circuit diagram. Detailed description of the embodiments |
BL-5167 LU102120 The present invention will be further described below in conjunction with specific embodiments: Think about the natural communication between humans. For 7 billion people, its frequency bandwidth is only 20 Hz - 20 kHz! Noise, animals, wind, trees and other natural sounds only occupy this bandwidth. However, the humans can easily identify them. For example, in a concert, many different instruments play the same melody, but people can identify each instrument. The reason is that every instrument is playing the same pitch (the same fundamental frequency), but the modes of the harmonics are different. This shows that, in fact, harmonics can also carry information, and not only the fundamental frequency currently in common use can carry information.
Based on this, as shown in Fig. 2, the present embodiment sets forth a code division multiple access communication method based on a harmonic modulation technology, which is specifically as follows: User signals are divided by using mutually orthogonal address code sequences, information transmission between users is forwarded and controlled by a base station, and duplex communication is performed by using one frequency each for forward transmission and reverse transmission; and the duplex communication uses a fundamental frequency and harmonics for information transmission.
Specifically, a process of the information transmission is as follows: Different information is firstly modulated and then is separately loaded on different harmonic components, and finally fundamental frequency and harmonic information received by a receiving end is demodulated to obtain all the information transmitted.
Herein, a harmonic modulation circuit is as shown in Figure 3. An output of the
BL-5167 harmonic modulation circuit is a sum of all input voltages. For inputs with the same LU102120 fundamental frequency and different harmonic components, the outputs are different. Before the information transmission, a fixed harmonic mode needs to be stored in advance so that a given harmonic component can be used to calculate all different signals, thereby demodulating a desired signal from other signals. For a better understanding, it is assumed that all harmonic modes are known (two signals need to be calculated): Vout = Aofo + a2f2 + asfz + Agfa + asfs ++ Anfm (1) where a, represents a n-th harmonic coefficient, n = 0, 2, 3,4,.. fo represents the fundamental frequency; fn represents a m-th harmonic component, and m = 2, 3, 4, … at this time, both a first signal and a second signal are loaded on even and odd harmonies for transmission, respectively, and the following can be obtained: VP, = a0Pfo + aff + Aa” fa + ac” fe + As? fa ++ (2) Vlr =a fot a3” fs + as” fs +a fr + Ag” fa + (3) finally, a mixed signal of the first signal and the second signal received simultaneously at the signal receiving end is: Vout = ao” fo + aoP fo + A2Pf2 + as’ fa + asl fa + As” fs + asPfo + a7” f7 + Ag” fe + a9” fo ++ (A) it can be known from (1) and (4) that: ag’fo + A0” fo = Aofo (5) af, = a2f2 ad fa = anfai ae” fo = aefe; as” fs = agfg: tt (6)
IS
| BL-5167 a3” fz = azfz; as” fs = asfs; a7” f7 = ar fz; Ag” fa = Aofg: +" (7) LU102120 since the fundamental frequency used when transmitting the first signal and the second signal is the same, only the harmonic components are different, and it can be known from (5) that: ao” fo = ac fo = = aof0 (8) therefore, according to formulas (6)-(8), the receiving end can demodulate both the first signal and the second signal. In addition to the above, different combinations can be used to transmit the first signal and the second signal. For example, the first signal is loaded with the second and third harmonic components, and the second signal is loaded with the fourth harmonic component. When in actual use, different combinations of harmonic components can be selected for transmitting the signals as needed.
The present embodiment loads information separately on different harmonic components or component combinations, uses harmonics to transmit information, and achieves communication with N different users through each harmonic component or component combination (where N is the number of orthogonal code sequences), so that the number of communicable users increases sharply, effectively reducing the situation of fewer communication channels and tight frequency spectrum resources. It is foreseeable that in the 5G era, mobile data traffic will show an explosive growth, and the amount of frequency spectrum required will also far exceed the sum of previous generations of mobile communication technologies. Therefore, the significance of the CDMA communication method based on the harmonic modulation technology is self-evident.
The embodiments described above are only preferred embodiments of the present invention, and do not limit the scope of implementation of the present invention.
——————————"""""—""—""""""""""""""
BL-5167 Therefore, any changes made according to the shape and principle of the present LV102120 invention should be covered by the scope of protection of the present application. |

Claims (5)

BL-5167 CLAIMS LU102120
1. A code division multiple access communication method based on a harmonic modulation technology, characterized in that user signals are divided by using > mutually orthogonal address code sequences, wherein information transmission between users is forwarded and controlled by a base station, and duplex communication is performed by using one frequency each for forward transmission and reverse transmission; and wherein the duplex communication uses a fundamental frequency and harmonics for information transmission. 10
2 The code division multiple access communication method based on the harmonic modulation technology according to claim 1, characterized in that a process of the information transmission is as follows: different information is firstly modulated and then is separately loaded on different harmonic components, and | 15 finally fundamental frequency and harmonic information received by a receiving end is demodulated to obtain all the information transmitted.
3 The code division multiple access communication method based on the harmonic modulation technology according to claim 2, characterized in that, before 50 the information transmission, a fixed harmonic mode is stored in advance and a given harmonic component is used to calculate all different signals, thereby demodulating a desired signal from other signals.
4 The code division multiple access communication method based on the harmonic modulation technology according to claim 3, characterized in that, based on the fixed harmonic mode stored in advance, a given harmonic component is used to calculate all two different signals, so that a specific process of demodulating a desired signal from other signals is as follows: assuming that all harmonic modes are known: ee ————
BL-5167 LU102120 Vout = aofo + zfs + Asfs + Aafa + Asfs ++ Anfm (1) where a, represents a n-th harmonic coefficient, n = 0, 2, 3, 4, ...; fo represents the fundamental frequency; fm represents a m-th harmonic component, and m = 2, 3, 4, … at this time, both a first signal and a second signal are loaded on even and odd harmonics for transmission, respectively, and the following can be obtained:
VP, = aoP fo + alfa + 04" fa + ac” fe + Ag” fg + (2) | Vie = A0” fo + as’ fs + As" f5 + a; f7 + do" fg ++ (3) finally, a mixed signal of the first signal and the second signal received simultaneously at the signal receiving end is: Vout = ao” fo + ao” fo + A2? fo + A3" f3 + auP fa + as” fs + ag fo + ar fr + Ag? fe + a9” fo +o (4) it can be known from (1) and (4) that: ao” fo + ao’ fo = aofo (5) a,’ fr = azfz; ad’ fa = dafai as? fe = Asfe; ag’ fs = asfs: +" (6)
a3” fz = azfz; As” fs = Asfs; a7” fr = A7f7i a9 fo = Aofo: = (7) since the fundamental frequency used when transmitting the first signal and the _—__—————
BL-5167 second signal is the same, only the harmonic components are different, and it can 102120 be known from (5) that: ao’ fo =a’ fo = = aof0 (8) therefore, according to formulas (6)-(8), the receiving end can demodulate both the first signal and the second signal.
5. The code division multiple access communication method based on the harmonic modulation technology according to claim 2, characterized in that when the different information is modulated and then is separately loaded on different harmonic components for information transmission, different combinations of harmonic components may be selected for transmission of signals as needed.
LU102120A 2019-12-13 2020-10-12 Code Division Multiple Access Communication Method based on Harmonic Modulation Technology LU102120B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911279167.5A CN111030777A (en) 2019-12-13 2019-12-13 CDMA communication method based on harmonic modulation technology

Publications (1)

Publication Number Publication Date
LU102120B1 true LU102120B1 (en) 2021-04-14

Family

ID=70208431

Family Applications (1)

Application Number Title Priority Date Filing Date
LU102120A LU102120B1 (en) 2019-12-13 2020-10-12 Code Division Multiple Access Communication Method based on Harmonic Modulation Technology

Country Status (3)

Country Link
CN (1) CN111030777A (en)
LU (1) LU102120B1 (en)
NL (1) NL2026742B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698187A (en) 2019-12-13 2020-09-22 广东工业大学 Frequency division multiple access communication method based on harmonic modulation technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563906A (en) * 1995-03-20 1996-10-08 General Electric Company Method of geometric harmonic modulation (GHM)
CN103338176B (en) * 2013-06-13 2016-08-24 上海理工大学 A kind of implementation method of waveform reuse modulator-demodulator

Also Published As

Publication number Publication date
NL2026742A (en) 2021-08-17
CN111030777A (en) 2020-04-17
NL2026742B1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
EP0643494B1 (en) Radio receiver
US7983617B2 (en) Method and system for transmitting multiple channels on FM bands
JPH10163924A (en) Direct conversion receiver for delay correlation reference transmission spread spectrum signal system
LU102120B1 (en) Code Division Multiple Access Communication Method based on Harmonic Modulation Technology
JPH088983A (en) Inter-device digital signal transmitting method, digital signal transmitter/receiver, digital signal transmitter and digital signal receiver
US11902077B2 (en) Frequency division multiple access communication method based on harmonic modulation technology
LU102121B1 (en) Time Division Multiple Access Communication Method based on Harmonic Modulation Technology
LU102119B1 (en) Space division multiple access communication method based on harmonic modulation technology
Bateman et al. Speech and data communications over 942 MHz TAB and TTIB single sideband mobile radio systems incorporating feed-forward signal regeneration
CN1037057C (en) Circuit for removing random FM noise
JP3150956B2 (en) Transmitter for spread spectrum communication system
CN208241663U (en) A kind of shortwave frequency hopping digital transmission communication system
Lusignan Use of amplitude compandored SSB in the mobile radio bands
KR0145866B1 (en) Common rf circuit and multi-channel radio communication apparatus
Al-Raweshidy et al. Spread spectrum technique to improve the performance of radio over fibre for microcellular GSM networks
KR100606310B1 (en) Digital quadrature discriminator for demodulation of frequency-modulated information
JP2540962B2 (en) Spread spectrum wireless communication equipment
CN86100008A (en) The device of signals such as broadcasting additional channel transmitting electric load control
Yam et al. An innovative AM broadcasting system for voice and data information
JP3160031B2 (en) Audio signal modulation method
JPH0644255U (en) Compensation filter circuit and spread spectrum transmitter / receiver
Inoue et al. 30/20 GHz band fixed earth station
Susans A fixed-tuned medium-wave receiver suitable for a road traffic information service
Filippi Baseband performance degradation due to interference in the fixed-satellite service
JPH09200084A (en) Transmitter for spread spectrum communication

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20210414