LT6517B - Method for selective metallization of polymeric article - Google Patents
Method for selective metallization of polymeric article Download PDFInfo
- Publication number
- LT6517B LT6517B LT2016513A LT2016513A LT6517B LT 6517 B LT6517 B LT 6517B LT 2016513 A LT2016513 A LT 2016513A LT 2016513 A LT2016513 A LT 2016513A LT 6517 B LT6517 B LT 6517B
- Authority
- LT
- Lithuania
- Prior art keywords
- metallization
- laser
- solution
- polymeric
- article
- Prior art date
Links
- 238000001465 metallisation Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- 239000000654 additive Substances 0.000 claims abstract description 21
- 229920000642 polymer Polymers 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 19
- 238000007747 plating Methods 0.000 claims abstract description 16
- 230000000996 additive effect Effects 0.000 claims abstract description 11
- 230000003197 catalytic effect Effects 0.000 claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 63
- 230000005855 radiation Effects 0.000 claims description 28
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 23
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 17
- 239000003446 ligand Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 239000011734 sodium Substances 0.000 claims description 12
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 6
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 4
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 claims description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- 101710134784 Agnoprotein Proteins 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- 238000003776 cleavage reaction Methods 0.000 claims description 2
- 230000007017 scission Effects 0.000 claims description 2
- 235000019256 formaldehyde Nutrition 0.000 claims 2
- 230000003139 buffering effect Effects 0.000 claims 1
- 238000001994 activation Methods 0.000 abstract description 22
- 230000004913 activation Effects 0.000 abstract description 20
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract description 2
- 230000008021 deposition Effects 0.000 abstract description 2
- 150000001721 carbon Chemical class 0.000 abstract 1
- 238000007772 electroless plating Methods 0.000 abstract 1
- 230000009466 transformation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 16
- 235000011121 sodium hydroxide Nutrition 0.000 description 15
- 239000006229 carbon black Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical compound C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000007431 microscopic evaluation Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 2
- 239000001476 sodium potassium tartrate Substances 0.000 description 2
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1612—Process or apparatus coating on selected surface areas by direct patterning through irradiation means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/204—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
- C23C18/405—Formaldehyde
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/10—Using electric, magnetic and electromagnetic fields; Using laser light
- H05K2203/107—Using laser light
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
TECHNIKOS SRITISTECHNICAL FIELD
Išradimas siejamas su elektrai laidžių sričių formavimu ant polimerinio gaminio paviršiaus, panaudojant numatytų metalizuoti sričių selektyvų aktyvavimą, apšvitinant jas lazerio spinduliuote, o po to šių sričių padengimą metalu. Išradimas gali būti panaudotas, gaminant elektronikos ir elektros prietaisus, integruotuose sudėtingos geometrinės formos gaminiuose, išlietose iš polimerų.The invention relates to the formation of electrically conductive regions on the surface of a polymeric product by the selective activation of the intended metallized regions by laser irradiation followed by metal plating. The invention can be used in the manufacture of electronic and electrical devices in integrated products of complex geometric shape, molded from polymers.
TECHNIKOS LYGISTECHNICAL LEVEL
EP 1975276 (2007 03 30) aprašytas selektyvus polimerinio gaminio paviršiaus metalizavimo būdas, apimantis minėto gaminio panardinimą į pirmąjį skystį, panardinto gaminio pasirinktų sričių apšvitinimą lazerio spinduliuote, suformuojant sritis, ant kurių bus nusodinamas metalas. Toliau gaminys panardinamas į aktyvuojantį skystį, iš kurio ant lazerio spinduliuote suformuotų minėtų sričių nusėda metalo dalelės, kur metalo dalelės yra paladžio dalelės, o aktyvuojantis skystis apima paladžio druskos ir alavo druskos koloidinį tirpalą. Po aktyvavimo etapo gaminys yra nuplaunamas ir pamerkiamas į cheminio metalizavimo skystį, kur vyksta lazeriu suformuotų aktyvuotų sričių padengimas metalu.EP 1975276 (30.03.2007) discloses a selective method for metallizing a surface of a polymeric article comprising immersing said article in a first liquid, irradiating selected areas of the submerged article with laser radiation to form the areas on which the metal will be deposited. The product is further immersed in an activating liquid from which metal particles are deposited on said areas formed by laser radiation, wherein the metal particles are palladium particles and the activating liquid comprises a colloidal solution of palladium salt and tin salt. After the activation step, the article is rinsed and immersed in a chemical metallization fluid, where the metal formed by the laser-formed activated regions is coated.
Žinomo būdo trūkumas yra tas, jog apšvitinimas lazerine spinduliuote vyksta skystyje, todėl sudėtinga suformuoti elektrai laidžius takelius ant sudėtingos geometrinės formos 3D paviršių. Be to lazeriu apšvitintų sričių aktyvavimui naudojamas brangus metalas paladis.The disadvantage of the known method is that laser irradiation takes place in a liquid, which makes it difficult to form electrically conductive paths on complex 3D geometric surfaces. In addition, an expensive metal palladium is used to activate the laser irradiated areas.
US2004026254 (2004-02-12) aprašytas dielektrinės medžiagos selektyvus metalizavimo būdas, kur atitinkama dielektrinė medžiaga yra padengiama aktyvuojančiu sluoksniu, susidedančiu iš elektrai laidžios medžiagos. Aktyvuojantis sluoksnis yra struktūrizuojamas (nugarinamas), apšvitinant jį lazerio spinduliuote taip, kad susiformuotų reikiamos konfigūracijos laidžios struktūros, kurios vėliau yra metalizuojamos. Kaip dielektrinė medžiaga yra naudojama plastikas arba keramika. Padengiamas minėtas aktyvuojantis sluoksnis yra iš elektrai laidaus polimero, kuris gali būti parinktas iš pirolo, furano, tiofeno arba jų darinių taip pat iš poli-3,4-etilendioksithiofeno, taip pat gali būti metalo sulfidas arba metalo polisulfidas, arba plonas metalo sluoksnis. Metalizavimas vykdomas galvaninio nusodinimo būdu.US2004026254 (12-02-2004) describes a selective metallization process for a dielectric material, wherein the respective dielectric material is coated with an activating layer consisting of an electrically conductive material. The activating layer is structured (evaporated) by irradiation with laser radiation to form conductive structures of the required configuration, which are then metallized. Plastic or ceramic is used as dielectric material. The coating of said activating layer is of an electrically conductive polymer which may be selected from pyrrole, furan, thiophene or derivatives thereof, as well as poly-3,4-ethylenedioxythiophene, may also be a metal sulfide or a metal polysulfide or a thin metal layer. The metallization is carried out by electroplating.
Žinomo būdo trūkumas yra tas, jog reikalingi papildomi proceso etapai susiję su pradinio elektrai laidaus sluoksnio dengimu visame paviršiuje, o tai komplikuojaThe disadvantage of the known technique is that the additional process steps required to cover the initial electrically conductive layer over the entire surface, which complicates
3D polimerinių paviršių selektyvų metalizavimą, kadangi sluoksnį reikia padengti ant kreivo paviršiaus.Selective metallization of 3D polymeric surfaces, as the layer has to be applied on a curved surface.
EP 2311048 (2009-08-07) aprašytas tam tikros konfigūracijos polimerinio gaminio paviršiaus selektyvus metalizavimo būdas, apimantis šią operacijų seką: a) polimerinis gaminys suformuojamas iš bent vienos polimerinės fazės ir anglies nanovamzdelių (CNT) mišinio, tam polimero granulės yra maišomos su anglies vamzdeliais, kurių koncentracija siekia 1-10 % pagal masę; b) atliekamas polimerinio gaminio paviršiaus numatytų metalizuoti sričių selektyvus terminis apdorojimas, pavyzdžiui, apšvitinant lazerio spinduliuote, tuo padidinant apšvitintų sričių elektrinį laidumą; c) suformuotų padidinto elektrinio laidumo sričių metalizavimas galvaninio padengimo būdu, nusodinant metalo jonus, pavyzdžiui, vario jonus.EP 2311048 (08-07-2009) discloses a process for selective metallization of a surface of a polymer product of a particular configuration, comprising the following sequence of operations: a) the polymer product is formed from a mixture of at least one polymeric phase and tubes containing 1-10% by weight; b) selectively heat treating the metallized areas of the polymeric surface of the product, for example by laser irradiation, thereby increasing the electrical conductivity of the irradiated areas; (c) electroplating of formed electric conductivity regions by deposition of metal ions such as copper ions.
Žinomo būdo trūkumas, brangi technologija, nes naudojami brangūs anglies nanovamzdeliai, todėl šis priedas žymiai padidina polimerinio gaminio kainą. Taip pat patente kalbama tik apie galvaninį metalų nusodinimą.Lack of known technique, expensive technology due to the use of expensive carbon nanotubes, this additive significantly increases the cost of the polymer product. Also, the patent only deals with galvanic metal deposition.
US2003031803/US6743345 (2003-02-13) aprašytas polimerų selektyvaus metalizavimo būdas, apimantis šiuos etapus: gaminio iš polimero padengimą pradiniu kompozitinės medžiagos aktyvaciniu sluoksniu, susidedančiu iš kito polimero, į kurį įmaišoma fotoredukcinės medžiagos dielektrinių dalelių. Minėto gaminio numatytas metalizuoti sritis apšvitina lazerio spinduliuote, po to apšvitintą dalį panardina į autokatalitinę vonią, turinčią metalų jonų, nusodinant juos sluoksniu ant apšvitintų paviršiaus sričių. Minėtų dielektrinių dalelių dydis yra mažesnis arba lygus 0,5 mikrometro. Minėtos dielektrinės dalelės yra oksidai, parinkti iš ZnO, T1O2, ZrO2, AI2O3 ir CeC>2. Kompozitinės medžiagos sluoksnio storis yra apie 1 mikrometrą. Minėtas gaminys yra iš polimerinės medžiagos, o minėtas kompozitinės medžiagos aktyvuojantis sluoksnis yra užnešamas ant minėto gaminio arba jo dalies lazerinio dengimo būdu.US2003031803 / US6743345 (2003-02-13) discloses a process for selective metallization of polymers comprising the steps of: coating an article of polymer with an active layer of a composite material consisting of another polymer into which dielectric particles of the photoreductive material are incorporated. The intended metalization of said product is irradiated with laser radiation and then immersed in an autocatalytic bath containing metal ions, deposited in a layer over the irradiated surface areas. Said dielectric particles have a size less than or equal to 0.5 micrometer. Said dielectric particles are oxides selected from ZnO, T1O2, ZrO2, Al2O3 and CeC> 2. The thickness of the composite material layer is about 1 micrometer. Said article is made of a polymeric material and said activating layer of the composite material is deposited on said article or a portion thereof by laser coating.
Žinomo būdo trūkumas yra tai, kad, taikant šį metodą, reikia padengti labai ploną, apie 1 pm storio aktyvuojantį sluoksnį, kas komplikuoja būdo taikymą 3D paviršiams, todėl būdas gali būti taikomas tik plokščių paviršių selektyviam metalizavimui. Taip pat šį metalizavimo būdą sudaro didesnis etapų skaičius todėl sudėtingėja gamybos procesas.The disadvantage of the known method is that this method requires the application of a very thin activating layer, about 1 µm thick, which complicates the application of the method to 3D surfaces, so that the method can only be applied to the selective metallization of flat surfaces. Also, this type of metallization involves a greater number of stages, which complicates the production process.
SPRENDŽIAMA TECHNINĖ PROBLEMAA TECHNICAL PROBLEM IS SOLVED
Išradimu siekiama sukurti ekonomiškai perspektyvų elektroninių grandynų laidžių takelių formavimo būdą, praplėsti jo panaudojimo sritį, sudarant galimybę laidžius takelius formuoti ant 3D polimerinių paviršių, ir pagreitinti gamybos procesą bei pagerinti formuojamų elektrai laidžių takelių kokybę.The purpose of the invention is to provide an economically viable method for forming conductive paths for electronic circuits, to extend its field of application by enabling conductive paths to be formed on 3D polymeric surfaces, to accelerate the manufacturing process and to improve the quality of electrically conductive paths.
Uždavinio sprendimo esmė pagal pasiūlytą išradimą yra ta, kad selektyviame polimerinio gaminio paviršiaus metalizavimo būde, kur polimerinis gaminys yra padarytas iš kompozitinės medžiagos, sudarytos iš polimero ir priedo mišinio, apimančiame polimerinio gaminio numatytų metalizuoti paviršiaus sričių apšvitinimą lazerio spinduliuote, aktyvuojant šias sritis, bei aktyvuotų sričių padengimą metalu, panardinant minėtą polimerinį gaminį į metalizavimo tirpalą, polimerinio gaminio minėtame mišinyje esantis priedas yra kristalinės anglies dalelės, kurių dydis yra nuo 10 nm iki 1 pm, o jų koncentracija yra nuo 0,05 iki 20 % minėto mišinio pagal masę, o apšvitinimui naudojama lazerio spinduliuotė yra impulsinė arba nuolatinės veikos lazerio spinduliuotė, kurios bangos ilgis apima infraraudonąją arba matomąją arba ultravioletinę sritis, o spinduliuotės apšvitos dozė yra nuo 0,1 iki 15 J/cm2, kuri parenkama taip, kad pakistų anglies priedų kristalinė struktūra ir minėto gaminio apšvitintos sritys būtų taip aktyvuotos, kad galėtų vykti katalitinis besrovis aktyvuotų sričių dengimas metalu, panardinus polimerinį gaminį po apšvitinimo į metalizavimo tirpalą, kurio sudėtyje yra dengimui pasirinkto metalo jonai, ligandas, reduktorius ir buferuojanti medžiaga.SUMMARY OF THE INVENTION According to the present invention, a method of selective surface metallization of a polymeric article, wherein the polymeric article is made of a composite material comprising a mixture of a polymer and an additive comprising laser irradiation and activation of by coating the metal regions by immersing said polymeric article in a metallization solution, the additive in said mixture of said polymeric article is crystalline carbon particles having a size of 10 nm to 1 µm and a concentration of 0.05 to 20% by weight of said mixture. laser radiation used for irradiation is pulsed or continuous laser radiation with an infrared or visible or ultraviolet wavelength and a radiation dose in the range of 0.1 to 15 J / cm 2 , which is selected to alter carbon additives the crystalline structure and the irradiated areas of said article being activated so as to undergo catalytic, uncoated metal plating of the activated regions by immersion of the polymeric article after irradiation in a metalization solution containing the selected metal ions, ligand, reducing agent and buffering agent.
Kristalinės anglies dalelės, kaip minėto polimerinio mišinio priedas yra parinktas iš: Furnance black: N110; N220; N330, Acetylene black, Vulcan XC 72 ar Vulcan XC 72R, kurių dydis yra nuo 10 nm iki 1 pm, o jų koncentracija yra ribose nuo 1 iki 8 % minėtos kompozitinės medžiagos pagal masę.The crystalline carbon particles as an additive to said polymeric mixture are selected from: Furnance black: N110; N220; N330, Acetylene black, Vulcan XC 72 or Vulcan XC 72R, in the size range of 10 nm to 1 µm and in a concentration ranging from 1 to 8% by weight of said composite material.
Dengiamas metalas yra varis, sidabras, nikelis, kobaltas, auksas arba platina.The metal to be coated is copper, silver, nickel, cobalt, gold or platinum.
Metalizavimo tirpalą sudaro 0,05-0,25 M koncentracijos vario sulfatas (CuSO4), ); 0,15-6 M formaldehidas (CH2O), kaip reduktorius; 0,05-0,6 M koncentracijos natrio karbonatas (Na2C0s) ir 0,1-2 M koncentracijos natrio hidroksidas (NaOH), kaip buferuojanti terpė; ir 0,05-0,75 M koncentracijos ligandai, kaip hidroksikarboksirūgštys (citrinų rūgštis, vyno rūgštis ir kt.), arba aminopolikarboksirūgštys (EDTA, arba DTPA, arba CDTA ir kt.) polihidroksiliniai junginiai (glicerolis, sacharozė ir kt.), poliamipolihidroksiliniai junginiai (kvadrolas [CH3CH(OH)CH2]2NCH2CH2N[CH2CH(OH)CH3]2 ir kt.) kur tirpalo temperatūra metalizavimo metu yra palaikoma nuo 10 iki 70 °C, ir tirpalo pH vertė - nuo 12 iki 13,3.The metallization solution consists of 0,05-0,25 M copper sulphate (CuSO 4 )); 0.15-6 M formaldehyde (CH 2 O) as reducing agent; 0.05-0.6 M sodium carbonate (Na 2 CO 2 ) and 0.1-2 M sodium hydroxide (NaOH) as a buffer medium; and 0.05-0.75 M concentrations of ligands, such as hydroxycarboxylic acids (citric acid, tartaric acid, etc.) or aminopolycarboxylic acids (EDTA or DTPA or CDTA, etc.) polyhydroxyl compounds (glycerol, sucrose, etc.), poliamipolihidroksiliniai compounds (kvadrolas [CH3CH (OH) CH 2] 2NCH2CH 2 N [CH 2 CH (OH) CH 3] 2, etc.), wherein temperature of the solution metallization being kept in the range 10 to 70 ° C and the pH value: 12 - 13 , 3.
Cheminio metalizavimo tirpalą sudaro 0,001-0,1 M koncentracijos AgNC>3 sidabro(l) jonų šaltinis; 0,001-0,8 M koncentracijos CoSO4 - reduktorius; 0,005-0,6 M koncentracijos natrio karbonatas (Na2CO3) ir 0,001-2 M koncentracijos natrio hidroksidas (NaOH), kaip buferuojanti terpė; ir 0,1-1 M (NH4)2SO4 ir 0,1-5 M koncentracijos NH4OH - Ugandai, kur tirpalo temperatūra metalizavimo metu yra palaikoma 30 °C, ir tirpalo pH vertė - nuo 12,0 iki 13,5.The chemical metallization solution consists of a 0.001-0.1 M AgNC> 3 silver (l) ion source; 0,001-0,8 M CoSO 4 - Reducer; 0.005-0.6 M sodium carbonate (Na 2 CO 3) and 0.001-2 M sodium hydroxide (NaOH) as a buffer medium; and 0.1-1 M (NH 4 ) 2 SO 4 and 0.1-5 M NH 4 OH for Uganda, where the temperature of the solution is maintained at 30 ° C during metallization and the pH of the solution is between 12.0 and 13, 5.
Minėtą metalizavimo tirpalą sudaro 0,12 M koncentracijos vario sulfato (CuSO4), 0,25 M koncentracijos kvadrolo ([CH3CH(OH)CH2]2NCH2CH2N[CH2CH(OH)CH3]2, 1,25 M koncentracijos natrio hidroksido (NaOH), 0,3 M koncentracijos natrio karbonato (Na2CO3) ir 1,2 M koncentracijos formalino (CH2O) mišinys, tirpalo pH=12,7, temperatūra 40 °C.Metallizing the said solution contains 0.12 M concentration of copper sulphate (CuSO 4) at a concentration of 0.25 kvadrolo ([CH3CH (OH) CH 2] 2 2NCH2CH N [CH 2 CH (OH) CH 3] 2, 1.25 M sodium hydroxide (NaOH), 0.3 M sodium carbonate (Na 2 CO 3) and 1.2 M formalin (CH 2 O), pH 12.7, 40 ° C.
Numatytas metalizuoti paviršiaus sritis apšvitina impulsine lazerio spinduliuote, kurios impulsų trukmė yra ribose nuo 1 iki 100 ns, pasikartojimo dažnis yra ribose nuo 50 iki 200 kHz, bangos ilgis yra ribose nuo 532 iki 1064 nm, apšvitos dozė 1,4-3 J/cm2, spindulio transliavimo greitis gaminio paviršiuje 1-5 m/s, o sufokusuoto Gausimo lazerio pluošto diametras (1/e2 intensyvumo lygyje) ant polimerinio paviršiaus yra ribose 10-200 pm, o minėti spinduliuotės parametrai parenkami taip, kad lazeriu apšvitintose minėto gaminio paviršiaus srityse susiformuotų kristalinės anglies katalizatoriai tinkami cheminiam katalitiniam metalų dengimui tirpale.The intended metallised surface areas are irradiated with pulsed laser radiation with a pulse duration in the range of 1 to 100 ns, a repetition rate in the range of 50 to 200 kHz, a wavelength in the range of 532 to 1064 nm and an irradiation dose of 1.4-3 J / cm 2 , the beam transmission speed on the product surface is 1-5 m / s and the diameter of the focused gain laser beam (1 / e at intensity level 2 ) on the polymeric surface is within the range of 10-200 µm, and said radiation parameters are selected to laser irradiate said product. crystalline carbon catalysts formed on the surface are suitable for chemical catalytic coating of metals in solution.
Lazeriu apšviestose vietose katalizatoriai formuojasi, skylant, bet nutrūkstant cheminiams ryšiams, kristalinės anglies priedams, esantiems polimeriniame gaminyje.In laser-illuminated areas, catalysts are formed by cleavage but interruption of chemical bonds, crystalline carbon additives present in the polymer product.
Numatytas metalizuoti paviršiaus sritis apšvitina nuolatinės veikos CO2 lazerio spinduliuote kurios bangos ilgis 10,6 pm, o apšvitos dozė 35-100 J/cm2.The intended metallized surface area is irradiated with a continuous-mode CO 2 laser of 10.6 µm and a radiation dose of 35-100 J / cm 2 .
Metalizavimas atliekamas taip, kad metalizavimui parenka vieną iš tirpalų, tinkamų cheminiam variavimui, sidabravimui, nikeliavimui, kobaltavimui, auksavimui, platinavimui.Metallization is carried out in such a way that one of the solutions suitable for chemical variation, silver plating, nickel plating, cobalting, gold plating, platinum plating is selected for metallization.
IŠRADIMO NAUDINGUMASBENEFITS OF THE INVENTION
Panaudojimas kristalinės anglies dalelių kaip priedo polimerinio gaminio kompozitinėje medžiagoje leidžia nebrangiai ir kokybiškai formuoti laidžius takelius elektroniniams grandynams ant 3D polimerinių paviršių, taip sudarant galimybę kurti prietaisus, kuriems nereikia atskirų spausdintinių montažo plokščių, o elektroninė dalis yra integruota tiesiai ant prietaiso korpuso paviršiaus. Tokia technologija leidžia žymiai sumažinti prietaiso gabaritus ir svorį, nenaudojant brangių medžiagų prietaisui pagaminti, todėl yra ekonomiškai perspektyvi. Kompozitinė medžiaga, reikalinga gaminiui pagaminti, pabrangsta tik 5-20 %, lyginant su polimerinės žaliavos kainą, kai tuo tarpu, analogiški kompozitai, naudojantys paladžio junginius ar anglies nanovamzdelius, padidina medžiagos kainą nuo 3 iki 15 kartų. Kadangi šiame išradime siūlomu būdu paviršiaus aktyvavimo lazeriu procesas turi apšvitos lazerio spinduliuote slenkstį, todėl pagerėja erdvinė metalizavimo selektyvumo skyra ir galima labai tiksliai aktyvuoti ir vėliau metalizuoti pasirinktas paviršiaus sritis. Keičiant aktyvuojančio lazerio spindulio diametrą ir apšvitos dozę, galima pasiekti mažesnį nei 10 pm laidumo takelio plotį. Dėl mažos aktyvavimui reikalingos spinduliuotės dozės impulsiniam nanosekundinio lazerio pluoštui, galima pasiekti didelę lazerinio aktyvavimo spartą, greitai skenuojant lazerio spindulį parinktu kontūrų. Dėl lazerio poveikio ne tik yra atidengiamos anglies dalelės, bet ir pakeičiama jų kristalinė struktūra, sudarant elektrai laidžią būseną (nanokristalinė anglis). Naudojant impulsinę 1-100 ns trukmės spinduliuotę ir tinkamai parenkant didelį impulsų pasikartojimo dažnį, galima pasiekti aktyvavimą iki 5 m/s greičiu, skenuojant vieną kartą lazerio spinduliu gaminio paviršių. Analogiški metodai reikalauja didelio lazerio poveikio ir todėl yra kelis ar keliolika kartų lėtesni. Lazeriu aktyvuoti polimero priedai veikia kaip katalizatorius reduktoriaus (esančio metalizavimo tirpale) oksidacijai, o galutinis reakcijos rezultatas yra laisvi elektronai ant lazeriu aktyvuotos kristalinės anglies paviršiaus. Kai lazeriu yra veikiamas gaminio paviršius, anglies suodžių carbon black dalelės yra suskaldomos į mažesnius klasterius, todėl elektronų sankaupos ant katalizatoriaus yra mažos ir sukuria silpną elektrinį potencialą, kuris reikalingas vario redukcijos reakcijai. Kadangi tirpale vario jonai nėra laisvi, o egzistuoja kompleksiniuose junginiuose su ligandais, redukcijos procesų išeiga smarkiai priklauso ir nuo ligando savybių. Todėl čia reikšminga vaidmenį atlieka kvadrolo ligandas. Vario kvadrolo kompleksas turi stipresnę adheziją (lyginant su kitais ligandais) ant katalizatoriaus paviršiaus, taip padidindamas vario koncentraciją ant mažų katalizatoriaus klasterių. Tokiu būdu padidėja metalizavimo sparta ir kokybė.The use of crystalline carbon particles as an additive in the composite material of a polymer product allows low-cost, high-quality forming of conductive paths for electronic circuits on 3D polymeric surfaces, enabling devices that do not require separate PCBs to be integrated directly on the device body. This technology allows for a significant reduction in the size and weight of the device without the use of expensive materials to produce the device and is therefore economically viable. The price of composite material required to produce the product is only 5-20% higher than the price of the polymeric raw material, whereas analogous composites using palladium compounds or carbon nanotubes increase the price of the material by 3 to 15 times. Because the laser surface activation process in the method of the present invention has a laser irradiation threshold, the spatial resolution of metallization selectivity is improved and selected surface areas can be activated and subsequently metallized with great precision. By changing the diameter of the activating laser beam and the irradiation dose, a conductivity path width of less than 10 pm can be achieved. Due to the low dose of radiation required for activation of the pulsed nanosecond laser beam, a high laser activation rate can be achieved by rapidly scanning the laser beam in a selected contour. The effect of the laser not only exposes the carbon particles but also changes their crystalline structure to form an electrically conductive state (nanocrystalline carbon). Using pulsed radiation of 1-100 ns duration and proper selection of high pulse repetition rates, activation can be achieved at up to 5 m / s by scanning the product surface once with a laser beam. Analogous methods require high laser exposure and are therefore several or several times slower. Laser-activated polymer additives act as catalysts for the oxidation of the reducing agent (contained in the metalization solution), and the end result of the reaction is the free electrons on the surface of the laser-activated crystalline carbon. When exposed to a laser on a product surface, carbon black carbon black particles are split into smaller clusters, resulting in low electron deposits on the catalyst and creating the weak electrical potential required for the copper reduction reaction. Since copper ions are not free in solution, but exist in complexes with ligands, the yield of the reduction processes also strongly depends on the properties of the ligand. Therefore, the quadrol ligand plays a significant role here. The copper quadrol complex has a stronger adhesion (as compared to other ligands) on the catalyst surface, thus increasing the concentration of copper on small catalyst clusters. This increases the speed and quality of the metallization.
Išradimas detaliau paaiškinamas brėžiniais, kurie neriboja išradimo apimties ir kuriuose pavaizduota:The invention is explained in more detail by the drawings which do not limit the scope of the invention and which depict:
Fig. 1 pavaizduota polimero selektyvaus metalizavimo schema, kurFIG. Figure 1 is a schematic of selective metallization of a polymer, wherein
a) polimeras legiruotas kristalinės anglies dalelėmis;(a) the polymer is doped with crystalline carbon particles;
b) selektyvus paviršiaus aktyvavimas lazerio spinduliuote;(b) selective surface activation by laser irradiation;
c) besrovis padengimas metalu, panardinant į metalizavimo tirpalą;(c) metal-free immersion coating in immersion solution;
d) elektrai laidus metalinis takelis, suformuotas siūlomu būdu.(d) an electrically conductive metal track formed in the proposed manner.
Fig. 2 pavaizduota siūlomu būdu padengto vario sluoksnio varžos priklausomybė nuo lazerio spinduliuotės dozės, naudotos paviršiaus aktyvavimui.FIG. Fig. 2 shows the dependence of the resistance of the copper layer coated with the proposed method on the dose of laser radiation used for surface activation.
Fig. 3 pavaizduota padengta vario juosta ant polipropileno su acetileno suodžių užpildu.FIG. Figure 3 shows a coated copper strip on polypropylene with acetylene soot filler.
Fig. 4 pavaizduota Ramano spektras polipropileno su acetileno suodžių užpildu (a) prieš ir (b) po lazerinio aktyvavimo. Skenuojamos spinduliuotės parametrai (0,2 W, 0,2 m/s). Ramano sklaidos sužadinimui naudojamas 632,8 nm bangos ilgis. Pokyčiai Ramano spektre atsirado dėl anglies priedų kristalinės būsenos pakitimų, sukeltų lazerio spinduliuotės.FIG. Figure 4 is a Raman spectrum of polypropylene with acetylene carbon black filler (a) before and (b) after laser activation. Scanned radiation parameters (0.2 W, 0.2 m / s). A wavelength of 632.8 nm is used to excite the Raman scattering. The changes in the Raman spectrum were due to changes in the crystalline state of the carbon additives caused by laser radiation.
Išradimo realizavimo aprašymasDescription of the practice of the invention
Brėžiniuose nurodytų skaitmenų reikšmės yra šios: kristalinės anglies dalelės - 1, polimerinis gaminys - 2, lazerio spinduliuotė - 3, lazerio poveikio zona aktyvavimui - 4, aktyvuoti priedai - 5, metalizavimo tirpalas - 6, metalo sluoksnis - 7.The numerals indicated in the drawings are: crystalline carbon particles - 1, polymeric product - 2, laser radiation - 3, laser impact zone for activation - 4, activated additives - 5, metallization solution - 6, metal layer - 7.
Pasiūlyto išradimo technologinis procesas turi šiuos etapus:The process of the present invention has the following steps:
Pirmas etapas. Iš polimerinės medžiagos granulių ir kristalinės anglies dalelių priedo, pavyzdžiui anglies suodžių carbon black miltelių-granulių 1, paruošia kompozitinės medžiagos mišinį. Polimerinės medžiagos granulės sumaišomos su anglies suodžių carbon black milteliais ar granulėmis 1 mechaniniu būdu. Anglies suodžių carbon black - priedo koncentracija yra nuo 0,2 iki 15 % minėto mišinio pagal masę. Po sumaišymo mišinys liejamas j formas purškimo būdu, suformuojant atitinkamą polimerinį gaminį 2; kristalinės anglies dalelės, kaip minėto polimerinio mišinio priedas yra parinktas iš anglies suodžių: N110; N220; N330, acetileno suodžių, Vulcan XC 72 ar Vulcan XC 72R.First stage. From the polymeric material granules and the addition of crystalline carbon particles, for example carbon black carbon black powder-granules 1, a mixture of composite material is prepared. Granules of polymeric material are mixed with carbon black carbon black powder or granules 1 by mechanical means. Carbon black carbon black - The concentration of the additive is between 0.2 and 15% by weight of said mixture. After mixing, the mixture is spray-molded to form the corresponding polymeric article 2; the crystalline carbon particles as an additive to said polymeric mixture are selected from carbon black: N110; N220; N330, acetylene soot, Vulcan XC 72 or Vulcan XC 72R.
Antras etapas. Gauto polimerinio gaminio 2 paviršiaus selektyvus apšvitinimas lazerio spinduliuote 3, suformuojant aktyvuotas sritis 4. Norima metalizuoti vieta yra aktyvuojama lazerio pluoštu, skenuojant spindulį 3 galvanometriniu skeneriu. Skenavimo greičiai, priklausomai nuo medžiagos ir lazerio parametrų, gali siekti nuo 0,1 iki 5 m/s. Numatytos metalizuoti paviršiaus sritys apšvitinamos impulsine lazerio spinduliuote, kurios impulsų trukmė yra ribose nuo 1 iki 100 ns, impulsų pasikartojimo dažnis yra ribose nuo 50 iki 500 kHz, bangos ilgis yra ribose nuo 532 iki 1064 nm, o apšvitos dozė 1,4-3 J/cm2. Aktyvavimui parinkus impulsinę nanosekundinę spinduliuotę ribose 1-100 ns, aktyvavimas turi stipriai išreikštą spinduliuotės dozės slenkstį (2 pav.), todėl priklausomai nuo parinkto spinduliuotės diametro ant skenuojamo gaminio paviršiaus galima gauti labai gerą erdvinę lazerinio aktyvavimo o vėliau metalizavimo skyrą. Metalizuotos linijos plotis gali būti siauresnis nei 25 pm (3 pav.). Lazerio spinduliu paveiktas bandinys tampa aktyvus katalizatorius selektyviam besroviui autokatalitiniam metalų nusodinimui iš tirpalo. Lazeriu nepaveiktos vietos lieka neaktyvios metalizavimui ir metalas tose vietose nenusėda. Lazeriu veikiant bandinio paviršių, sugerta lazerio energija lokaliai pakelia polimero su anglies suodžių carbon black priedais temperatūrą ir dėl termocheminio poveikio nutraukia anglies molekulių ryšius, todėl atsiranda daugybė anglies struktūros klasterių su aktyviais katalizės reakcijai kraštais. Kitaip tariant, yra aktyvuojama anglies suodžių carbon black medžiaga, todėl ji tampa aktyvi katalitiniam metalo nusodinimui. Dėl termocheminio poveikio nutrauktų ryšių anglies klasteris ne tik skyla į mažesnius, bet taip pat kinta jo kristalinė sandara (struktūra). Iš 4 pav. pateiktų Ramano spektrų galima stebėti charakteringų anglies struktūrai D ir G juostų pokyčius po lazerinio poveikio. Po aktyvavimo atsiranda trys pagrindiniai pokyčiai: D ir G juostų siaurėjimas, jų tarpusavio santykinio intensyvumo didėjimas (D/G), bei G juostos poslinkis į trumpesnių bangų sritį. Visi šie pokyčiai byloja apie struktūrinių defektų mažėjimą kristalinėje būsenoje, klasterių formavimąsi, bei kraštinių defektų atsiradimą, kas lemia šių darinių katalizinį aktyvumą.Phase Two. Selective irradiation of the surface of the resulting polymeric article 2 with laser radiation 3 to form activated regions 4. The desired metallization site is activated by laser beam scanning a beam 3 with a galvanometric scanner. Scanning speeds can range from 0.1 to 5 m / s, depending on the material and laser parameters. The intended metallized surface areas are irradiated with pulsed laser radiation having a pulse duration in the range of 1 to 100 ns, a pulse repetition rate in the range of 50 to 500 kHz, a wavelength in the range of 532 to 1064 nm and an irradiation dose of 1.4-3 J / cm 2 . Activation with pulsed nanosecond irradiation in the range of 1-100 ns activates a highly pronounced radiation dose threshold (Fig. 2), which allows for a very good spatial resolution of laser activation followed by metallization depending on the chosen radiation diameter on the surface of the product being scanned. The width of the metallized line may be narrower than 25 pm (Fig. 3). The laser-exposed sample becomes an active catalyst for the selective free-flow autocatalytic precipitation of metals from solution. Laser-exposed areas remain inactive for metallization and do not deposit metal at these sites. By acting on the surface of the sample, the laser energy absorbed locally raises the temperature of the carbon black carbon polymer and interrupts the carbon molecule bond due to thermochemical effects, resulting in numerous carbon structure clusters with active catalytic reaction edges. In other words, carbon black carbon carbon is activated, making it active for catalytic metal deposition. Not only does the carbon cluster break down due to thermochemically broken bonds, but its crystalline structure (structure) also changes. From Figure 4. The Raman spectra given can be used to observe changes in the characteristic carbon structure D and G bands after laser exposure. After activation, three major changes occur: narrowing of the D and G bands, increasing their relative intensity (D / G), and shifting the G band to the shorter wave region. All these changes indicate the reduction of structural defects in the crystalline state, the formation of clusters, and the appearance of boundary defects, which determine the catalytic activity of these derivatives.
Trečias etapas. Selektyviai apšvitinto polimerinio sluoksnio panardinimas į metalizavimo tirpalą 5, turintį pasirinkto metalo jonų, Ugandą, reduktorių ir buferinę medžiagą, kuriame vyksta aktyvuotų sričių autokatalizinis dengimas metalu iš tirpalo. Besroviam autokataliziniam metalų dengimui gali būti naudojami įvairių metalų tirpalai: vario, nikelio, paladžio, sidabro, kobalto, aukso arba platinos. Variavimo tirpalo sudėtis gali būti parenkama: 0,05-0,25 M koncentracijos vario sulfatas (CuSO4), ); 0,15-6 M formaldehidas (CH2O), kaip reduktorius; 0,05-0,6 M koncentracijos natrio karbonatas (Na2CO3) ir 0,1-2 M koncentracijos natrio hidroksidas (NaOH), kaip buferinė terpė; ir 0,05-0,75 M koncentracijos ligandai, kaip hidroksikarboksirūgštys (citrinų rūgštis, vyno rūgštis ir kt.), arba aminopolikarboksirūgštys (EDTA, arba DTPA, arba CDTA ir kt.) polihidroksiliniai junginiai (glicerolis, sacharozė ir kt.), poliamipolihidroksiliniai junginiai (kvadratas [CH3CH(OH)CH2]2NCH2CH2N[CH2CH(OH)CH3]2 ir kt.) kur tirpalo temperatūra metalizavimo metu yra palaikoma nuo 10 iki 70 °C, ir tirpalo pH vertė - nuo 12 iki 13,3. Sidabravimo tirpalo sudėtis gali būti parenkama: 0,001 - 0,1 M koncentracijos AgNO3 -sidabro(l) jonų šaltinis; 0,001 - 0,8 M koncentracijos CoS04 - reduktorius; 0,005-0,6 M koncentracijos natrio karbonatas (Na2CO3) ir 0,001-2 M koncentracijos natrio hidroksidas (NaOH), kaip buferinė terpė; ir 0,1-1 M (NH4)2SO4 ir 0,1 - 5 M koncentracijos NH4OH - ligandai, kur tirpalo temperatūra metalizavimo metu yra palaikoma 30 °C, ir tirpalo pH vertė - nuo 12,0 iki 13,5. Padengimui variu buvo naudojamas variavimo tirpalas susidedantis iš vario 0,12 M koncentracijos vario sulfato (CuSO4), 0,25 M koncentracijos kvadrolo ([CH3CH(OH)CH2]2NCH2CH2N[CH2CH(OH)CH3]2), 1,25 M koncentracijos natrio hidroksido (NaOH), 0,3 M koncentracijos natrio karbonato (Na2CO3) ir 1,2 M koncentracijos formalino (CH2O) mišinys, tirpalo pH=12,7, temperatūra 40 °C. Variavimo vonelės temperatūra 10-70 °C.Stage Three. Immersion of the selectively irradiated polymeric layer in a metalization solution 5 containing selected metal ions, Uganda, a reducing agent and a buffer material, which undergoes autocatalytic metal plating of the activated regions from the solution. For the autocatalytic coating of metals, various metal solutions can be used: copper, nickel, palladium, silver, cobalt, gold or platinum. The composition of the variation solution can be selected from: 0.05-0.25 M copper sulphate (CuSO 4 ); 0.15-6 M formaldehyde (CH 2 O) as reducing agent; 0.05-0.6 M sodium carbonate (Na 2 CO 3 ) and 0.1-2 M sodium hydroxide (NaOH) as buffer; and 0.05-0.75 M concentrations of ligands, such as hydroxycarboxylic acids (citric acid, tartaric acid, etc.) or aminopolycarboxylic acids (EDTA or DTPA or CDTA, etc.) polyhydroxyl compounds (glycerol, sucrose, etc.), polyamipolihydroxyl compounds (square [CH 3 CH (OH) CH 2 ] 2 NCH 2 CH 2 N [CH 2 CH (OH) CH 3 ] 2 , etc.) wherein the temperature of the solution is maintained at 10 to 70 ° C during the metallization, and the pH of the solution is 12 to 13.3. The composition of the silver plating solution can be selected from: 0.001 to 0.1 M AgNO 3 -Silver (I) ion source; 0.001 - 0.8 M CoS0 4 - Reducer; 0.005-0.6 M sodium carbonate (Na 2 CO 3 ) and 0.001-2 M sodium hydroxide (NaOH) as buffer medium; and 0.1-1 M (NH 4 ) 2 SO 4 and 0.1-5 M NH 4 OH - ligands, where the temperature of the solution is maintained at 30 ° C during the metallization and the pH of the solution is from 12.0 to 13 , 5. A copper solution was used for copper plating consisting of 0.12 M copper sulphate (CuSO 4 ), 0.25 M quadrole ([CH 3 CH (OH) CH 2 ] 2 NCH 2 CH 2 N [CH 2 CH (OH) ) CH 3 ] 2 ), a mixture of 1,25 M sodium hydroxide (NaOH), 0,3 M sodium carbonate (Na 2 CO 3 ) and 1,2 M formalin (CH 2 O), pH = 12, 7, temperature 40 ° C. Variation bath temperature 10-70 ° C.
Besrovio autokatalizinio dengimo pradžioje vyksta anodinė formaldehido oksidacijos reakcija, kurios produktas yra laisvi elektronai ant katalizatoriaus paviršiaus. Toliau autokataliziniame procese vyksta katodinė vario redukcija elektronais ant katalizatoriaus paviršiaus. Kadangi tirpale vario jonai nėra laisvi, o egzistuoja kompleksiniuose junginiuose su ligandais, redukcijos procesų išeiga smarkiai priklauso nuo ligando savybių: tiek nuo jo ryšio su metalo jonu stiprumo, tiek nuo junginio adsorbcijos ant katalizatoriaus paviršiaus. Kai metalizavimui naudojamas variavimo tirpalas, anodinės reduktoriaus oksidacijos reakcijos metu susidariusios elektronų sankaupos ant katalizatoriaus paviršiaus veikia kaip elektrinis potencialas vario redukcijos reakcijai. Kadangi tirpale metalo jonai nėra laisvi, o egzistuoja kompleksiniuose junginiuose su ligandais, redukcijos procesų išeiga smarkiai priklauso ir nuo ligando savybių: tiek nuo jo ryšio su metalo jonu stiprumo, tiek nuo junginio adsorbcijos ant katalizatoriaus paviršiaus. Anodinės reduktoriaus oksidacijos reakcijos metu susidarę elektronai suteikia katalizatoriaus paviršiui neigiamą krūvį, palankų metalo jonų redukcijai. Variavimo atveju reikšminga vaidmenį atlieka kvadrolo ligandas. Vario(ll) kvadrolo kompleksas turi stipresnę adheziją (lyginant su kitais ligandais) su katalizatoriaus paviršiumi, taip padidindamas vario koncentraciją ant katalizatoriaus klasterių. Tokiu būdu padidėja metalizavimo sparta ir kokybė. Po metalizavimo etapo ant polimerinio gaminio paviršiaus gaunamas į polimerinį gaminį integruotas metalo sluoksnis 6.The anionic formaldehyde oxidation reaction, the product of which is free electrons on the surface of the catalyst, is carried out at the beginning of the flowless autocatalytic coating. Further in the autocatalytic process, the cathodic reduction of copper by electrons on the catalyst surface takes place. Since copper ions are not free in solution, but exist in complexed ligand compounds, the yield of the reduction processes strongly depends on the properties of the ligand: both its strength to the metal ion and the adsorption of the compound on the catalyst surface. When a propellant solution is used for metallization, the electron deposits on the catalyst surface formed during the anodic oxidation reaction of the reducer act as an electrical potential for the copper reduction reaction. Since the metal ions in the solution are not free but exist in complexes with the ligands, the yield of the reduction processes is also strongly dependent on the properties of the ligand: both its strength to the metal ion and the adsorption of the compound on the catalyst surface. The electrons formed during the anodic oxidation reaction of the reducing agent give the catalyst surface a negative charge favoring the reduction of the metal ions. In the case of variation, the quadrol ligand plays a significant role. The copper (II) quadrol complex has a stronger adhesion (as compared to other ligands) to the catalyst surface, thus increasing the concentration of copper on the catalyst clusters. This increases the speed and quality of the metallization. After the metallization step, a metal layer 6 is integrated into the polymeric article on the surface of the polymeric article.
Pavyzdys 1Example 1
Medžiaga: Šiame pavyzdyje kompozitinė medžiaga buvo paruošta iš polipropileno (PP Hostacom CR 1171 G1) granulių ir acetileno suodžių acetylene black miltelių nuo 1 iki 5 proc. pagal masę, kurie sumaišomi aukštoje temperatūroje. Maišymo talpoje yra palaikoma 170-180 °C temperatūra. Maišymo trukmė siekia 4-5 min. Toliau medžiaga išpurškiama į liejimo formą. Purškiamo kompozito temperatūra siekė 175-195 °C, o purškiamos medžiagos slėgis 20 barų.Material: In this example, the composite material was prepared from polypropylene (PP Hostacom CR 1171 G1) beads and acetylene carbon black powder containing 1 to 5 percent. by mass, which are mixed at high temperature. The mixing tank is maintained at 170-180 ° C. Mixing time is 4-5 minutes. The material is then sprayed into the mold. The temperature of the sprayed composite was 175-195 ° C and the pressure of the sprayed material was 20 bar.
Lazerinis aktyvavimas: Selektyviam lazeriniam paviršiaus aktyvavimui naudoja impulsinio nanosekundinio Nd:YAG lazerio (Baltic HP, EKSPLA) fundamentinės harmonikos (bangos ilgis: 1064 nm) spinduliuotė. Impulsų pasikartojimo dažnis parinktas ribose 50-100 kHz. Lazerinės spinduliuotės transliavimas buvo atliktas galvanometriniu skeneriu (SCANLAB), o fokusavimui buvo naudojamas 80 mm židinio nuotolio f-theta telecentrinis objektyvas. Skenuojamo Gausinio pluoštelio diametras ant bandinio paviršiaus (intensyvumo lygyje 1/e2) buvo 85 pm. Šiame pavyzdyje buvo aktyvuojami takeliai, kurių plotis: nuo vienos linijos iki kelių linijų su 40 pm linijų persiklojimu. Skenavimo greitis, esant impulsų pasikartojimo dažniui lygiam 50 kHz, siekė 1 m/s; o kai naudojamas impulsų pasikartojimo dažnis buvo lygus 100 kHz - 2 m/s.Laser Activation: Selective laser activation of the surface utilizes the fundamental harmonic (wavelength: 1064 nm) of a pulsed nanosecond Nd: YAG laser (Baltic HP, EKSPLA). The pulse repetition rate is selected in the range 50-100 kHz. Laser beam broadcasting was performed with a galvanometric scanner (SCANLAB) and an 80mm focal length f-theta telecentric lens was used for focusing. The diameter of the scanned Gaussian beam on the sample surface (at intensity level 1 / e 2 ) was 85 µm. In this example, tracks with a width ranging from single line to multiple lines with overlap of 40 pm lines were activated. The scan speed, at a pulse repetition frequency of 50 kHz, was 1 m / s; and at a pulse repetition rate of 100 kHz to 2 m / s.
Metalo nusodinimas: Po lazerinio aktyvavimo bandiniai buvo įmerkiami į variavimo tirpalą, kurį sudarė: 0,12 M CuSO4 (vario sulfatas) 0,35 M KNaC4H4O6-4H2O (natrio kalio tartratas) 1,25 M NaOH (natrio šarmas), 0,3 MMetal Deposition: After laser activation, the specimens were immersed in a spinning solution consisting of: 0.12 M CuSO 4 (copper sulfate) 0.35 M KNaC4H4O 6 -4H 2 O (sodium potassium tartrate) 1.25 M NaOH (caustic soda) , 0.3 M
Na2CC>3 (natrio karbonatas), 1,2 M CH2O (formalinas), tirpalo pH = 12,7. Buvo dengiama 60 min., 40 °C temperatūroje.Na 2 CO 3 (sodium carbonate), 1.2 M CH 2 O (formalin), pH = 12.7. Coating was carried out for 60 min at 40 ° C.
Rezultatai: Po vario nusodinimo procesų buvo atlikta variu padengtų linijų mikroskopinė analizė, kurios rezultatai parodė jog siauriausios linijos plotis (skenuojant linijas be persiklojimo) buvo 19,6 pm. Taip pat buvo matuojama paviršinė varža, naudojant daugiafunkcinį matuoklį Keithley 2002. Paviršinė varža buvo <RS> = 3Ί0'3 Ω/π. Adhezijai matuoti buvo atliktas lipnios juostos testas, po kurio visas padengtas metalo sluoksnis liko ant gaminio paviršiaus.Results: Following copper deposition processes, microscopic analysis of copper-plated lines was performed to show that the narrowest line width (scanning lines without overlap) was 19.6 pm. The surface impedance was also measured using the Keithley 2002 multifunctional gauge. The surface impedance was <R S > = 3Ί0 ′ 3 Ω / π. To measure adhesion, an adhesive tape test was performed, after which all the coated metal layer remained on the surface of the article.
Pavyzdys 2Example 2
Medžiaga: Šiame pavyzdyje kompozitinė medžiaga buvo paruošta iš polikarbonato ir akrilonitrilbutadienstireno (PC/ABS Bayblenb T65) granulių ir acetileno suodžių acetylene black (nurodyti dalelių dydžio ribas) miltelių (nuo 1 iki 5 proc. pagal masę), kuriuos sumaišo aukštoje temperatūroje su minėtomis granulėmis. Maišymo talpoje yra palaikoma 270-280 °C temperatūra. Maišymo trukmė siekia 4-5 min. Toliau medžiaga purškiama į liejimo formą. Purškiamo kompozito temperatūra siekė 280-290 °C, o purškiamos medžiagos slėgis 20 barų.Material: In this example, the composite material was prepared from polycarbonate and acrylonitrile butadiene styrene (PC / ABS Bayblenb T65) beads and acetylene carbon black (specify particle size limits) powder (1 to 5% by weight) mixed at high temperature with said beads. . The mixing vessel is maintained at a temperature of 270-280 ° C. Mixing time is 4-5 minutes. The material is then sprayed into the mold. The temperature of the sprayed composite was 280-290 ° C and the pressure of the sprayed material was 20 bar.
Lazerinis aktyvavimas: selektyviam lazeriniam paviršiaus aktyvavimui naudoja impulsinio nanosekundinio Nd:YAG lazerio (Baltic HP, EKSPLA) antros harmonikos (bangos ilgis: 532 nm) spinduliuotę, Impulsų pasikartojimo dažnis 50 kHz. Lazerinės spinduliuotės transliavimas atliktas galvanometriniu skeneriu (SCANLAB), o fokusavimui naudoja 80 mm židinio nuotolio telecentrinis F-Theta objektyvas. Skenuojamo gausinio pluoštelio diametras ant bandinio paviršiaus (intensyvumo lygyje 1/e2) buvo 95 pm. Šiame pavyzdyje buvo skenuojami takeliai, kurių plotis: nuo vienos linijos iki kelių linijų su 40 pm linijų persiklojimu. Skenavimo greitis prie 50 kHz siekė 1 m/s.Laser Activation: For selective laser surface activation uses second-harmonic (wavelength: 532 nm) pulse nanosecond Nd: YAG laser (Baltic HP, EKSPLA) pulse repetition frequency 50 kHz. The laser beam is broadcast using a galvanometric scanner (SCANLAB) and is focused by an 80mm F-Theta telecentric focal length lens. The diameter of the scavenging Gaussian beam on the sample surface (at intensity level 1 / e 2 ) was 95 µm. In this example, tracks with a width ranging from single line to multiple lines with overlap of 40 pm lines were scanned. The scanning speed at 50 kHz was 1 m / s.
Metalo nusodinimas: Po lazerinio aktyvavimo bandiniai buvo įmerkiami į variavimo tirpalą, kurį sudarė: 0,12 M CUSO4 (vario sulfatas), 0,35 M KNaC4H4O6-4H2O (natrio kalio tartratas), 1,25 M NaOH (natrio šarmas), 0,3 M Na2CO3 (natrio karbonatas), 3,4 M CH2O (formalinas), tirpalo pH = 12,7. Buvo dengiama 60 min., 30 °C temperatūroje.Metal Deposition: After activation of the laser samples were immersed in the electroless copper plating solution consisting of: 0.12 M CuSO 4 (copper sulfate) 0.35 4 M KNaC4H O6-4H 2 O (sodium potassium tartrate), 1.25 M NaOH (sodium alkaline), 0.3 M Na 2 CO 3 (sodium carbonate), 3.4 M CH 2 O (formalin), pH 12.7. Coating was carried out for 60 min at 30 ° C.
Rezultatai: Po vario dengimo procesų buvo daroma padengtų linijų mikroskopinė analizė, kurios rezultatai parodė jog siauriausios linijos plotis (skenuojant linijas be persiklojimo) buvo 20,1 pm. Taip pat buvo matuojama paviršinė varža, naudojant daugiafunkcinį matuoklį Keithley 2002. Paviršinė varža buvo <RS> = 8Ί0'3 Ω/π. Adhezijai matuoti buvo atliktas lipnios juostos testas, po kurio visas padengtas metalo sluoksnis liko ant gaminio paviršiaus.Results: Coating lines were followed by microscopic analysis of the coated lines, which showed that the narrowest line width (scanning lines without overlap) was 20.1 pm. The surface impedance was also measured using a Keithley 2002 multifunctional gauge. The surface impedance was <R S > = 8Ί0 ′ 3 Ω / π. To measure adhesion, an adhesive tape test was performed, after which all the coated metal layer remained on the surface of the article.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2016513A LT6517B (en) | 2016-09-13 | 2016-09-13 | Method for selective metallization of polymeric article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2016513A LT6517B (en) | 2016-09-13 | 2016-09-13 | Method for selective metallization of polymeric article |
Publications (2)
Publication Number | Publication Date |
---|---|
LT2016513A LT2016513A (en) | 2018-03-26 |
LT6517B true LT6517B (en) | 2018-04-25 |
Family
ID=57714640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LT2016513A LT6517B (en) | 2016-09-13 | 2016-09-13 | Method for selective metallization of polymeric article |
Country Status (1)
Country | Link |
---|---|
LT (1) | LT6517B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030031803A1 (en) | 2001-03-15 | 2003-02-13 | Christian Belouet | Method of metallizing a substrate part |
US20040026254A1 (en) | 2000-09-26 | 2004-02-12 | Jurgen Hupe | Method for selectively metalizing dieletric materials |
US20050164022A1 (en) * | 2004-01-27 | 2005-07-28 | Holger Kliesch | Single- or multilayer thermoplastic polymer film capable of structuring by means of electromagnetic radiation, process for its production, and its use |
EP1650249A1 (en) * | 2004-10-20 | 2006-04-26 | E.I.Du pont de nemours and company | Light activatable polyimide compositions for receiving selective metalization, and methods and compostions related thereto |
EP1975276A1 (en) | 2007-03-30 | 2008-10-01 | Danmarks Tekniske Universitet | Preparation of a polymer article for selective metallization |
US20100263919A1 (en) * | 2005-12-30 | 2010-10-21 | Yueh-Ling Lee | Substrates for Electronic Circuitry Type Applications |
EP2311048A1 (en) | 2008-08-08 | 2011-04-20 | pp-mid GmbH | Polymer molded bodies and printed circuit board arrangement and method for the production thereof |
US20140353543A1 (en) * | 2013-06-04 | 2014-12-04 | Sabic Global Technologies B.V. | Thermally conductive polymer compositions with laser direct structuring function |
-
2016
- 2016-09-13 LT LT2016513A patent/LT6517B/en not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040026254A1 (en) | 2000-09-26 | 2004-02-12 | Jurgen Hupe | Method for selectively metalizing dieletric materials |
US20030031803A1 (en) | 2001-03-15 | 2003-02-13 | Christian Belouet | Method of metallizing a substrate part |
US20050164022A1 (en) * | 2004-01-27 | 2005-07-28 | Holger Kliesch | Single- or multilayer thermoplastic polymer film capable of structuring by means of electromagnetic radiation, process for its production, and its use |
EP1650249A1 (en) * | 2004-10-20 | 2006-04-26 | E.I.Du pont de nemours and company | Light activatable polyimide compositions for receiving selective metalization, and methods and compostions related thereto |
US20100263919A1 (en) * | 2005-12-30 | 2010-10-21 | Yueh-Ling Lee | Substrates for Electronic Circuitry Type Applications |
EP1975276A1 (en) | 2007-03-30 | 2008-10-01 | Danmarks Tekniske Universitet | Preparation of a polymer article for selective metallization |
EP2311048A1 (en) | 2008-08-08 | 2011-04-20 | pp-mid GmbH | Polymer molded bodies and printed circuit board arrangement and method for the production thereof |
US20140353543A1 (en) * | 2013-06-04 | 2014-12-04 | Sabic Global Technologies B.V. | Thermally conductive polymer compositions with laser direct structuring function |
Also Published As
Publication number | Publication date |
---|---|
LT2016513A (en) | 2018-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10982328B2 (en) | Method for formation of electro-conductive traces on polymeric article surface | |
EP0913502B1 (en) | Method of electroplating nonconductive plastic molded product | |
JP5902853B2 (en) | Manufacturing method of plated parts | |
FR2459300A1 (en) | SOLUTION FOR THE ELECTROCHEMICAL METALLIZATION OF DIELECTRIC MATERIALS, METHOD FOR ELECTROCHEMICAL METALLIZATION OF DIELECTRIC MATERIALS USING THE SAME SOLUTION, AND DIELECTRIC MATERIALS TREATED IN ACCORDANCE WITH THE METHOD | |
JP2005336614A (en) | Method for metallizing plastic surface | |
JP6317090B2 (en) | Method for electroless plating and solution used therefor | |
US5059449A (en) | Method of selectively providing a metal from the liquid phase on a substrate by means of a laser | |
DE19510855C2 (en) | Process for the selective or partial electrolytic metallization of substrates made of non-conductive materials | |
EP2360294A1 (en) | Method for metallising objects with at least two different plastics on their surface | |
CN105543813A (en) | Method for producing precise metal circuit on plastic surface | |
Chu et al. | Local deposition of Ni‐P alloy on aluminum by laser irradiation and electroless plating | |
CN102543855B (en) | Manufacture method of three-dimensional integrated circuit structure and material | |
Wang et al. | Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film | |
Żenkiewicz et al. | Electroless metallization of polymers | |
LT6517B (en) | Method for selective metallization of polymeric article | |
DE69800056T2 (en) | Activating catalytic solution for electroless metallization and method for electroless metallization | |
JP2014031576A (en) | Method for producing printed circuit board | |
US20090301763A1 (en) | Ink, method of forming electrical traces using the same and circuit board | |
Rytlewski et al. | Laser-assisted electroless metallization of polymer materials: a critical review | |
CN115023059A (en) | Manufacturing method of conformal conductive circuit on surface of dielectric material | |
CN112921309A (en) | Method for preparing electrode based on laser | |
Ratautas et al. | Laser-induced selective metal plating on PP and PC/ABS polymers surface | |
Niidome et al. | Novel method for spatioselective electroless plating catalyzed by laser-deposited gold nanoparticles | |
JP2016138304A (en) | Production method of plated component, and plated component | |
JP2003013242A (en) | Electroless plating method using fine particles fixed by light as catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BB1A | Patent application published |
Effective date: 20180326 |
|
FG9A | Patent granted |
Effective date: 20180425 |
|
MM9A | Lapsed patents |
Effective date: 20230913 |