LT5983B - Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma - Google Patents
Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma Download PDFInfo
- Publication number
- LT5983B LT5983B LT2012026A LT2012026A LT5983B LT 5983 B LT5983 B LT 5983B LT 2012026 A LT2012026 A LT 2012026A LT 2012026 A LT2012026 A LT 2012026A LT 5983 B LT5983 B LT 5983B
- Authority
- LT
- Lithuania
- Prior art keywords
- hydrogen
- water
- metal
- plasma
- metals
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/08—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Fuel Cell (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
Išradimas skirtas vandenilio gavybai iš vandens būdui, konkrečiau vandenilio išskyrimui (gavybai) iš vandens, panaudojant vandens sąveiką su aktyvuotais plazmoje metalų ir jų lydinių paviršiais, kai sąveikos metu formuojasi metalų hidroksidai ir vandenilis. Šiame išradime pasiūlytas būdas kaip regeneruoti susidarantį hidroksidą atgal į metalą ir kartoti vandenilio gavybos chemines reakcijas.The present invention relates to a process for the production of hydrogen from water, more particularly the recovery (recovery) of hydrogen from water by the interaction of water with activated plasma surfaces of metals and their alloys to form metal hydroxides and hydrogen during the interaction. The present invention provides a method for recovering the resulting hydroxide back to the metal and repeating the chemical reactions of hydrogen production.
TECHNIKOS LYGISTECHNICAL LEVEL
Dabartiniu metu vandenilis pramonėje gaunamas panaudojant labai įvairias technologijas:Currently, hydrogen is produced in the industry using a variety of technologies:
1. Vandenilis gaunamas iš gamtinių dujų, naftos produktų ir kitų angliavandenilių (reformingo procesas);1. Hydrogen is obtained from natural gas, petroleum products and other hydrocarbons (reforming process);
2. Vandenilis gaunamas kaip šalutinis produktas chloro-natrio gamyboje;2. Hydrogen is obtained as a by-product of chlorine-sodium production;
3. Vandenilis gaunamas, panaudojant vandens elektrolizę:3. Hydrogen is obtained by water electrolysis:
3.1. Panaudojant energiją iš bet kurių atsinaujinančių šaltinių (vėjo, saulės, vandens ir t.t.);3.1. Using energy from any renewable sources (wind, solar, water, etc.);
3.2. Panaudojant branduolinę energiją (aukštatemperatūriniai reaktoriai). Tai technologija, kuri labiausiai tinka didelio masto centralizuotai vandenilio gamybai;3.2. Using nuclear power (high temperature reactors). This is the technology most suitable for large-scale centralized hydrogen production;
4. Eksperimentiniai vandenilio gavimo metodai, esantys intensyvių tyrimų stadijoje:4. Experimental methods for the production of hydrogen at the stage of intensive research:
4.1. Vandenilio gamyba mikroorganizmų pagalba;4.1. Production of hydrogen by micro-organisms;
4.2. Vandenilio gamyba, vandenį skaidant aukštatemperatūrinėje plazmoje;4.2. Production of hydrogen by decomposition of water in high-temperature plasma;
4.3. Fotodializės metodas.4.3. Photodialysis method.
Visos išvardintos technologijos (išskyrus reformingo procesus ir vandens elektrolizę) yra dar tik fundamentinių tyrimų stadijoje. Jų energetinis efektyvumas yra gana žemas. Todėl praeis dar daug laiko, kol bus sukurta vandenilio ekonomika, galinti konkuruoti su tradicine organiniu kuru paremta ekonomika. Šios srities ekspertų nuomone, vandenilis pradės užimti ryškesnę vietą energetikoje ir transporte tik tuo atveju, jei prasidės aiškus iškastinio organinio kuro stygius ir jo kaina kelis kartus viršys dabartinę kainą. Todėl mažai tikėtina, kad šios perspektyvios technologijos paplistų per artimiausius 20 metų, išskyrus labai specifinius atvejus ir įvairius demonstracinius projektus. Šis scenarijus gali ženkliai pasikeisti, tik atradus naujas, pigesnes ir ženkliai geresnių technologinių parametrų medžiagas šiuo metu priimtai vandenilio energetikos koncepcijai: vandenilio gamyba-vandenilio saugojimas ir transportavimas-kuro elementai, generuojant elektrą iš vandenilio, arba vidaus degimo variklis, kuriame, deginant vandenilį išsiskiria šiluma, kuri tiesiogiai konvertuojama į elektrą arba mechaninę energiją, arba pasiūlius visiškai naują, pažangesnę vandenilio energetikos koncepciją.All of the above technologies (except reforming processes and water electrolysis) are still at the fundamental research stage. Their energy efficiency is quite low. Therefore, it will take a long time before a hydrogen economy can be created that can compete with the conventional organic fuel based economy. Experts in the field believe that hydrogen will only become more prominent in energy and transport if there is a clear scarcity of fossil organic fuels at several times the current price. Therefore, except for very specific cases and various demonstration projects, these promising technologies are unlikely to proliferate in the next 20 years. This scenario can change dramatically only with the discovery of new, cheaper and significantly improved materials for the currently accepted concept of hydrogen energy: hydrogen production-hydrogen storage and transportation-fuel cells generating electricity from hydrogen, or an internal combustion engine that emits hydrogen heat that is directly converted into electricity or mechanical energy, or by offering a whole new, more advanced concept of hydrogen energy.
Kaip jau buvo minėta, gamtinės dujos, nafta, anglis šiuo metu yra pagrindiniai vandenilio gamybos šaltiniai reformingo procesuose. Angliavandenilių suskaidymui dažniausiai taikomi šie trys termocheminiai būdai: katalitinis reformingas vandens garu, dalinė oksidacija ir autoterminis reformingas.As mentioned above, natural gas, oil, coal are currently the main sources of hydrogen production in the reform process. The following three thermochemical methods are commonly used for the decomposition of hydrocarbons: catalytic reforming with water vapor, partial oxidation and autothermal reforming.
Reformingas, panaudojant garą, yra efektyviausia ir geriausiai įsisavinta technologija, pasižyminti aukštu konversijos laipsniu. Tačiau endoterminėms reformingo reakcijoms yra reikalinga papildoma energija. Dalinės oksidacijos reakcijose išsiskiria šiluma, todėl papildomos energijos vandenilio išskyrimui šiuo būdu reikia nedaug. Tačiau jo efektyvumas yra mažesnis už angliavandenilių reformingą garu. Autoterminiame reforminge siekiama sujungti abu šiuos būdus taip, kad dalinės oksidacijos šiluma būtų panaudojama reformingo garu reakcijoms palaikyti. Ši vandenilio išskyrimo technologija buvo sėkmingai išbandyta, skaidant gamtines dujas, metanolį, šviesius naftos produktus. Tačiau lieka neišspręsti svarbūs uždaviniai, pritaikant ją vandenilio gamybai iš didesnę anglies dalį turinčių ir sunkiau įsisavinamų angliavandenilių išteklių - biokuro, naftos perdirbimo atliekų - mazuto, naftos produktų atliekų - naudotos alyvos, panaudotų padangų ir pan. Angliavandenilių skaidymo procesas turi būti organizuotas taip, kad jo palaikymui reikalinga šiluma būtų gaunama kaip galima daugiau iš anglies oksidacijos, o vandenilis liktų produktuose, kurie galutinėje stadijoje yra lengviau suskaidomi ir atskiriami.Steam reforming is the most efficient and well-absorbed technology with a high conversion rate. However, endothermic reforming reactions require additional energy. In partial oxidation reactions, heat is released, so little additional energy is needed to release hydrogen in this way. However, its efficiency is lower than the hydrocarbon reforming steam. Autothermal reforming seeks to combine both of these techniques so that the heat of partial oxidation is used to support the reforming steam reactions. This hydrogen release technology has been successfully tested in the decomposition of natural gas, methanol and light petroleum products. However, major challenges remain in adapting it to hydrogen production from hydrocarbon-rich and more difficult hydrocarbon resources - biofuels, refinery waste - fuel oil, petroleum waste - used oil, used tires, etc. The process of decomposition of hydrocarbons must be organized in such a way as to obtain as much of the heat needed for its maintenance as possible from the oxidation of the carbon and to retain the hydrogen in products which are more easily broken down and separated in the final stage.
Šis išradimas yra susijęs su vandenilio gavyba, vykstant vandens reakcijai su metalais, kurie turi negatyvesnį redokso potencialą vandens atžvilgiu nei vandenilis:The present invention relates to the production of hydrogen by reaction of water with metals which have a more negative redox potential with respect to water:
M + xH20 -> MOx + XH2 M + xH 2 0 -> MOx + XH 2
M + 2xH20 -+ M(OH)2x +xH2 kur M - metalas arba metalų lydiniai (šaltinis - Solid statė hydrogen storage:M + 2xH 2 0 - + M (OH) 2 x + xH 2 where M is metal or metal alloys (source - Solid state hydrogen storage:
Materials and chemistry, Gavin VValker, VVoodhead publishing limited (2008), psl. 317).Materials and Chemistry, Gavin Valker, Voodhead publishing limited (2008), p. 317).
Egzistuoja visa eilė, darbų, kuriuose parodoma, kad šios reakcijos puikiai tinka vandenilio gavybai ir šiuose reakcijoje pagrinde yra naudojamas aliuminis, nanokristalinis aliuminis ir aliuminio-galio ir kiti aliuminio junginiai (JA V patentas Nr. 4358291; Kravchenco O.V., Semenenko K.N., Bulychev B.M. ir Kalmykov K.B. (2005), J. Alloys and Compounds, 404, psl. 637-642; Lluis Soler, Jorge Macanas, Maria Munoz, Juan Casado, Journal of Power Sources 169 (2007) psl. 144-149; Masao VVatanabe, Journal of Physics and Chemistry of Solids 71 (2010) psl. 12511258). Deja, nėra siūloma pigaus ir technologiškai paprasto būdo redukuoti susi darančius metalų oksidus ar metalų hidroksidus atgal į metalus ir kartoti vandenilio gavybos reakcijas daugiau nei 100 kartų. Šiame išradime yra siūlomas naujas metalų oksidų ar hidroksidu redukavimo atgal į metalus būdas, panaudojant plazmines technologijas ir vandenilio gavybos reakcijų kartojimas daugiau nei 100 ciklų. Siūlomas būdas yra susijęs su nauja vandenilio energetikos koncepcija: nanomiltelių gamyba - cheminės reakcijos: vanduo + nanomilteliai, kurių pasėkoje išsiskiria vandenilis ir metalų hidroksidai -vandenilio panaudojimas kuro elementuose ar vidaus degimo varikliuose - metalų hidridų regeneracija plazmoje - ir ciklo kartojimas ne mažiau kaip 100 kartų. Panaudojant šj būdą, yra galima išvengti vandenilio saugojimo ir transportavimo poreikio. Vietoje vandenilio šioje technologijoje saugomi aktyvuoti metalai. Automobilių transporte ši technologija gali būti panaudota sekančiai: automobilyje yra talpa, kurioje talpinami metalų ar jų lydinių nanomilteliai. Į kitą talpą yra pripilama vandens. Esant vandenilio poreikiui, milteliai ir vanduo paduodami į reakcijos zoną, išsiskiria vandenilis ir metalų hidroksidai. Metalų hidroksidus galima redukuoti į grynus metalus automobilyje arba išėmus, panaudojant plazmines technologijas, ir vėl paduoti j reakcijos zoną su vandeniu, kartojant vandenilio gamybos ciklą.There are a number of works which demonstrate that these reactions are well suited for hydrogen production and are mainly based on aluminum, nanocrystalline aluminum and aluminum-gallium and other aluminum compounds (JA V Patent No. 4358291; Kravchenco OV, Semenenko KN, Bulychev BM and Kalmykov KB (2005), J. Alloys and Compounds, 404, pp. 637-642; Lluis Soler, Jorge Macanas, Maria Munoz, Juan Casado, Journal of Power Sources 169 (2007), pp. 144-149; Journal of Physics and Chemistry of Solids 71 (2010) pp. 12511258). Unfortunately, there is no cheap and technologically easy way to reduce the forming metal oxides or metal hydroxides back to the metals and repeat the hydrogen extraction reactions more than 100 times. The present invention provides a novel method of reducing metal oxides or hydroxides back to metals using plasma technology and repeating hydrogen production reactions for more than 100 cycles. The proposed method relates to a new hydrogen energy concept: nano-powder production - chemical reactions: water + nano-powder resulting in hydrogen and metal hydroxides - use of hydrogen in fuel cells or internal combustion engines - plasma hydride recovery in plasma - and at least 100 iterations . This method avoids the need to store and transport hydrogen. Instead of hydrogen, this technology stores activated metals. In automotive transport, this technology can be used as follows: The car has a tank that holds nano-powders of metals or their alloys. The other tank is filled with water. When hydrogen is needed, the powder and water are fed into the reaction zone, producing hydrogen and metal hydroxides. Metal hydroxides can be reduced to pure metals in the car or removed using plasma technology and re-introduced into the reaction zone with water, repeating the hydrogen production cycle.
IŠRADIMO ESMĖTHE SUBSTANCE OF THE INVENTION
Šio išradimo tikslas - pasiūlyti naują vandenilio gavybos technologiją, panaudojant metalų ir jų lydinių reakciją su vandeniu, kurios metu susidaro metalų hidroksidai ir vandenilis. Šiame išradime metalų hidroksidu dekompozicijai yra siūloma panaudoti plazmines technologijas, kurios leidžia atlikti hidroksidu skaidymą ir metalų ir jų lydinių paviršiuje hidroksidai skyla į metalus ir OH grupes, kurios yra rezorbuojamos nuo paviršiaus. Susiformavęs, aktyvintas metalinis paviršius vėl gali būti sėkmingai panaudotas vandenilio gavybos tikslams. Šiame išradime pasiūlytu būdu vandenilio gavyba gali būti realizuota ne mažiau nei 100 kartų reakcijose: reakcija: metalai + vanduo -» gaunamas vandenilis ir hidroksidai; hidroksidų dekompozicija; reakcija: metalai + vanduo -+ gaunamas vandenilis ir hidroksidai. Vandenilio gavybos metu galima panaudoti metalų drožles, metalo miltelius ir nanomiltelius. Geriausi vandenilio gavybos rezultatai (pagaminto vandenilio kiekis ir reakcijų kinetika) bus gauti, naudojant didžiausio efektyvaus paviršiaus ploto nanomiltelius.It is an object of the present invention to provide a new technology for the production of hydrogen by reacting metals and their alloys with water to form metal hydroxides and hydrogen. The present invention provides for the use of plasma technology for hydroxide decomposition of metals, which allows hydroxide decomposition and, on the surface of metals and their alloys, the hydroxides decompose to metals and OH groups that are absorbed from the surface. Once formed, the activated metal surface can again be successfully used for hydrogen production purposes. In the process of the present invention, hydrogen extraction can be carried out at least 100 times in the following reactions: Reaction: Metals + Water - Hydrogen and Hydroxides; hydroxide decomposition; reaction: metals + water - + hydrogen and hydroxides are obtained. Metal shavings, metal powders and nanomaterials can be used in hydrogen production. The best hydrogen yields (hydrogen production and reaction kinetics) will be obtained using nano-powders with the highest effective surface area.
BRĖŽINIŲ FIGŪRŲ APRAŠYMASDESCRIPTION OF THE DRAWING FIGURES
Toliau išradimas bus aprašytas su nuoroda į jį paaiškinančius brėžinius, kuriuose:The invention will now be described with reference to the accompanying drawings, in which:
Fig. 1 pateikta šio išradimo proceso schematinė eiga;FIG. 1 is a schematic diagram of the process of the present invention;
Fig. 2 yra hidroksido dekompozicijos kamera;FIG. 2 is a hydroxide decomposition chamber;
Fig. 3 pateiktas eksperimentinis XRD rezultatas, įrodantis, kad sąveikoje vanduo + Mg pagrindo nanomilteliai formuojasi Mg(OH)2, ir, patalpinus hidroksido turinčius miltelius į plazmą, plazmoje vyksta hidroksido dekompozicija.FIG. Figure 3 shows an experimental XRD result demonstrating that water + Mg-based nano-powders form Mg (OH) 2 , and that hydroxide-decomposition occurs when plasma is added to the plasma.
IŠRADIMO REALIZAVIMO APRAŠYMASDESCRIPTION OF THE INVENTION
Išradimo koncepcijos algoritmas yra pateiktas fig. 1. Detalus proceso eigos aprašas:The concept algorithm of the invention is presented in FIG. 1. Detailed description of the process:
1. Imame bent kokius metalus ir jų lydinius (pvz. Mg, Mg-Ni, Mg-AI, Ti ir t.t.) drožlių ar miltelių ar nanomiltelių pavidalu ir talpiname į H2 ar Ar+H2 ar vandens pagrindo (H20 garai, Ar+H20; H2+H20 ir t.t.) plazmą vakuume (slėgyje iki 1-5 Pa) ir išlaikome nuo 1 min. iki 180 min. (priklausomai nuo aktyvavimo laipsnio poreikio);1. We take at least any metals and their alloys (eg Mg, Mg-Ni, Mg-AI, Ti, etc.) in the form of chips or powders or nano-powders and place them on H 2 or Ar + H 2 or water based (H 2 0 vapors) , Ar + H 2 0; H 2 + H 2 0, etc.) in vacuo (pressure up to 1-5 Pa) and maintained for 1 min. up to 180 minutes (depending on the degree of activation required);
2. Įmerkiame gautas aktyvuotas nanomedžiagas į vandenį. Vyksta cheminė reakcija, kurios metu metalo paviršius oksiduojasi arba susiformuoja hidroksidai ir reakcijos metu išsiskiria vandenilis:2. Immerse the resulting activated nanomaterials in water. A chemical reaction occurs whereby the metal surface is oxidized or hydroxides are formed and hydrogen is released during the reaction:
M + xH20 -» MOx + xH2 M + xH 2 0 - »MOx + xH 2
M + 2xH20 M(OH)2x +xH2MeOx M + 2xH 2 0 M (OH) 2 x + xH 2 MeO x
3. Miltelius išimame iš vandens ir nusausiname. Gautą medžiagą su pasyviu hidroksiduotu paviršiumi talpiname į H2 ar Ar+hh ar vandens pagrindo (H2O garai, Ar+H20; H2+H20 ir t.t.) plazmą vakuume (slėgyje iki 1-5 Pa) ir išlaikome nuo 1 min. iki 180 min (priklausomai nuo aktyvavimo laipsnio poreikio). Eksperimentinė schema pateikta fig. 2;3. Remove the powder from the water and drain. The resulting material with a passive hydroxidised surface is placed in H2 or Ar + hh or water-based (H2O vapor, Ar + H 2 0; H 2 + H 2 0, etc.) plasma under vacuum (pressure up to 1-5 Pa) and maintained for 1 min. . up to 180 min (depending on the degree of activation required). An experimental scheme is shown in FIG. 2;
4. Išimame gautą medžiagą iš plazmos j orą arba išlaikome inertinėje aplinkoje ir įmerkiame j vandenį. Kartojasi 1 punkte aprašyta reakcija ir išsiskiria vandenilis. Miltelius išlaikome vandenyje tol, kol jie būna aktyvūs (stebimas vandenilio išsiskyrimas burbuliukų formoje);4. We remove the resulting material from plasma to air or store it in an inert environment and immerse it in water. The reaction described in point 1 is repeated and hydrogen is released. We keep the powder in the water for as long as it is active (hydrogen evolution in the form of bubbles is observed);
5. Po pilno medžiagų paviršiaus pasyvinimo vandenyje, miltelius nusausiname ir vėl talpiname j 3 punkte aprašytas sąlygas plazmoje;5. After complete passivation of the surface of the materials in the water, the powder is drained and resuspended in the plasma conditions described in point 3;
6. Po atliktos aktyvacijos plazmoje miltelius vėl pilame j vandenį ir stebime vandenilio išsiskyrimo reakciją;6. After the plasma activation, the powder is refilled with water and the reaction of hydrogen evolution is monitored;
7. Procesą galima pakartoti ne mažiau kaip 100 kartų. Geriausi rezultatai didžiausias išsiskiriančio vandenilio kiekis ir reakcijų kinetika - gaunami, naudojant nanomiltelius. Hidroksidų redukcijos patvirtinimas pateiktas fig. 3, kur pateikti rentgeno difrakcijos eksperimentai, naudojant Bruker D8 Discover difraktometrą, esant 28 kampui tarp 20°-70°, naudojant Cu katodo Ka spinduliavimą ir matavimų žingsnį 0,01°. Pikų identifikavimas atliktas, panaudojant PDF-2 duomenų bazę iš International Centre for Diffraction Data (ICDD). Analizuojant matome, kad išeities nanomilteliai (Mg_BM_4h) yra sudaryti iš gryno Mg ir MgO, nes rutulinis malimas buvo atliktas oro aplinkoje. NanoMg2 _2 bandinys išlaikytas vandenyje iki stadijos, kada vandenilio išsiskyrimas praktiškai nebevyko. Stebime aiškiai susiformavusius Mg(OH)2 pikus ties 38°, 51°, 58,5°, kurie išnyksta po poveikio plazmoje - bandinys nanoMg2_3.7. The process can be repeated at least 100 times. The best results are obtained with the highest amount of hydrogen released and reaction kinetics - using nanomaterials. Confirmation of hydroxide reduction is given in FIG. 3, where X-ray diffraction experiments using a Bruker D8 Discover diffractometer at 28 between 20 ° and 70 ° using Cu cathode Ka radiation and a step of 0.01 ° are shown. Peak identification was performed using a PDF-2 database from the International Center for Diffraction Data (ICDD). The analysis shows that the starting nanomaterial (Mg_BM_4h) is made up of pure Mg and MgO, because ball milling was carried out in an air environment. The NanoMg2 _2 sample was kept in water until the hydrogen evolution was practically non-existent. We observe clearly formed Mg (OH) 2 peaks at 38 °, 51 °, 58.5 °, which disappear after plasma exposure - sample nanoMg2_3.
IŠRADIMO APIBRĖŽTISDEFINITION OF INVENTION
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2012026A LT5983B (en) | 2012-04-03 | 2012-04-03 | Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma |
PCT/LT2012/000009 WO2013151408A1 (en) | 2012-04-03 | 2012-12-28 | Method of hydrogen extraction from water, employing water interaction with the surfaces of metals or their alloys activated in plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2012026A LT5983B (en) | 2012-04-03 | 2012-04-03 | Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma |
Publications (2)
Publication Number | Publication Date |
---|---|
LT2012026A LT2012026A (en) | 2013-10-25 |
LT5983B true LT5983B (en) | 2013-12-27 |
Family
ID=47666452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LT2012026A LT5983B (en) | 2012-04-03 | 2012-04-03 | Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma |
Country Status (2)
Country | Link |
---|---|
LT (1) | LT5983B (en) |
WO (1) | WO2013151408A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358291A (en) | 1980-12-31 | 1982-11-09 | International Business Machines Corporation | Solid state renewable energy supply |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006100915A1 (en) * | 2005-03-18 | 2006-09-28 | Tokyo Institute Of Technology | Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system |
JP2010163332A (en) * | 2009-01-19 | 2010-07-29 | Japan Ae Power Systems Corp | Method for generating hydrogen using magnesium, and apparatus therefor |
WO2010137567A1 (en) * | 2009-05-25 | 2010-12-02 | 独立行政法人物質・材料研究機構 | Hydrogen generating material, method for producing same, method for producing hydrogen, and apparatus for producing hydrogen |
-
2012
- 2012-04-03 LT LT2012026A patent/LT5983B/en not_active IP Right Cessation
- 2012-12-28 WO PCT/LT2012/000009 patent/WO2013151408A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358291A (en) | 1980-12-31 | 1982-11-09 | International Business Machines Corporation | Solid state renewable energy supply |
Non-Patent Citations (1)
Title |
---|
WATANABE M.: "Chemical reactions in cracks of aluminum crystals: Generation of hydrogen from water", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, pages 1251 - 1258 |
Also Published As
Publication number | Publication date |
---|---|
WO2013151408A8 (en) | 2014-01-16 |
LT2012026A (en) | 2013-10-25 |
WO2013151408A1 (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Abdalla et al. | Hydrogen production, storage, transportation and key challenges with applications: A review | |
Kojima | Hydrogen storage materials for hydrogen and energy carriers | |
Singh et al. | Material-based generation, storage, and utilisation of hydrogen | |
Santos et al. | Sodium borohydride as a fuel for the future | |
Züttel et al. | Hydrogen: the future energy carrier | |
Kumar et al. | An overview on activation of aluminium-water reaction for enhanced hydrogen production | |
Lee et al. | Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation | |
Zou et al. | Hydrogen production by hydrolysis of aluminum | |
Yang et al. | Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature | |
JPWO2008136087A1 (en) | Energy supply system | |
Panigrahi et al. | Potential Benefits, Challenges and Perspectives of Various Methods and Materials Used for Hydrogen Storage | |
Congwen et al. | Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism | |
Wang et al. | Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review | |
Gai et al. | Hydrogen generation from Al‐water reaction catalyzed by Fe/AlOOH composite | |
Sharma et al. | Alkali-metal-mediated reversible chemical hydrogen storage using seawater | |
Dubey et al. | Impacts, Barriers, and Future Prospective of Metal Hydride‐Based Thermochemical Energy Storage System for High‐Temperature Applications: A Comprehensive Review | |
Zhu et al. | Facile regeneration of lithium borohydride from anhydrous lithium metaborate using magnesium hydride | |
JP2022060865A (en) | Hydrogen generator | |
Züttel et al. | Hydrogen storage | |
LT5983B (en) | Method of hydrogen extraction from water using water interaction with the surfaces of metals or their alloys activated in plasma | |
Das et al. | Simulation, modelling and design of hydrogen storage materials | |
Hagenah | Synthesis of the Mg-Fe-H system from different Fe sources | |
Kochański et al. | The technical and economical perspectives for the production and storage of hydrogen in Poland | |
WO2014062833A1 (en) | Hydrogen production catalysts and associated systems and methods | |
Ghomri et al. | Global nucleophilicity as electronic property for the study of Hydrogen storage materials capacities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BB1A | Patent application published |
Effective date: 20131025 |
|
FG9A | Patent granted |
Effective date: 20131227 |
|
MM9A | Lapsed patents |
Effective date: 20140403 |