LT4115B - A differential method for measuring of a heat - Google Patents

A differential method for measuring of a heat Download PDF

Info

Publication number
LT4115B
LT4115B LT95-022A LT95022A LT4115B LT 4115 B LT4115 B LT 4115B LT 95022 A LT95022 A LT 95022A LT 4115 B LT4115 B LT 4115B
Authority
LT
Lithuania
Prior art keywords
heat
differential
measuring element
measuring
supplied
Prior art date
Application number
LT95-022A
Other languages
Lithuanian (lt)
Other versions
LT95022A (en
Inventor
Alfredas Dulskis
Original Assignee
Alfredas Dulskis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfredas Dulskis filed Critical Alfredas Dulskis
Priority to LT95-022A priority Critical patent/LT4115B/en
Publication of LT95022A publication Critical patent/LT95022A/en
Publication of LT4115B publication Critical patent/LT4115B/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Invention belongs to the domain of heat metering. Using this differential heat metering method, the quantity of consumed heat is defined according to the differential between the heat supplied to the customer and that returned from the customer. The main point of the invention is that the differential between the supplied heat and returning heat is determined by temperature differences in different points of the conductor. The heat conductor is a rod with an equal cross-section. One end of this rod is heated with the supplied heat and the other end is heated with the returning heat. Basically the conditions of heat transfer to the heat conductor are the same in the both heated ends. The constant coefficient of the measuring method is derived using experimental or mathematical method. This coefficient is multiplied by the metered temperature difference. The product is integrated. The integrator indicates the amount of the consumed heat.

Description

Išradimas priskiriamas šilumos matavimo technikos sričiai.The invention relates to the field of heat measuring technique.

Žinomas išradimo analogas yra išradimas “Termokompensacinis šilumos matavimo būdas” (LT patentas Nr. 3169), kuriame aprašomas šilumos ėmiklio sunaudojamos šilumos kiekio matavimo būdas.A known analog of the invention is the invention "Thermal Compensation Heat Measurement Method" (LT Patent No. 3169), which describes a method for measuring the amount of heat consumed by a heat sink.

Išradimo analogo ir aprašomo išradimo bendri požymiai yra šie:The general features of the analog of the invention and the present invention are as follows:

1. Matavimams panaudojama žinoma bendros šilumos srauto dalis.1. A known proportion of the total heat flux shall be used for the measurements.

2. Matavimo rezultatas gaunamas naudojant žinomą dauginimo 10 koeficientą.2. The result of the measurement shall be obtained by using a known multiplication factor of 10.

Išradimo analoge rezultatas gaunamas žinomą iš šilumos ėmiklio grįžtančios šilumos dalį kompensaciniu būdu pašildant iki paduodamos į šilumos ėmiklį žinomos tokios pačios dalies šilumos dydžio. Pagal išmatuotą kompensacinės energijos kiekį, padauginus jį iš žinomo koeficiento, sprendžiama apie šilumos ėmiklio sunaudotą šilumos kiekį. Matavimo tikslams naudojamas papildomas elektros energijos šaltinis.In the analog of the invention, the result is obtained by compensating a known part of the heat returning from the heat sink to the amount of heat of the same part known to the heat sink. The amount of compensated energy measured, multiplied by a known factor, determines the amount of heat consumed by the heat sink. An additional source of electricity is used for measurement purposes.

Aprašomu išradimu siekiama atskleisti naują šilumos ėmiklio sunaudojamos šilumos matavimo būdą. Išradimo įdiegimas supaprastins šilumomačių gamybą ir sumažins pagal šį išradimą gaminamų prietaisų kainą.The present invention seeks to disclose a new way of measuring heat consumption by a heat sink. The implementation of the invention will simplify the production of heat meters and reduce the cost of devices manufactured according to the invention.

Aprašomo išradimo esminiai ir visais atvejais pakankami požymiai:The essential and, in all cases, sufficient features of the present invention are as follows:

1. Matavimo tikslams panaudojama žinoma paduodamos į šilumos ėmiklį šilumos srauto dalis ir grįžtančios iš šilumos ėmiklio šilumos srauto tokia pati dalis.1. For measurement purposes, a known fraction of the heat flow to and from the heat exchanger shall be used.

2. Šiomis išskirtomis šilumos srauto dalimis veikiamas matavimo elementas, kuriuo nustatomas šių dalių šilumos skirtumas.2. These isolated parts of the heat flux are subjected to a measuring element to determine the difference in heat of these parts.

3. Matavimo elementu gali būti šilumai laidus strypas, jungiantis paduodamo ir grįžtančio šilumnešio vamzdžius.3. The measuring element may be a heat-conducting rod connecting the feed and return heat transfer tubes.

Kitą matavimo elemento variantą sudaro sistema iš dviejų indų, sujungtų uždaru kontūru. Sistema užpildoma matavimo sistemos šilumnešiu. Indai montuojami ant paduodamo ir grįžtančio šilumnešio vamzdžių. Matavimo sistemos šilumnešio judėjimo greitis charakterizuoja šilumos ėmiklio sunaudojamos šilumos kiekį.Another variant of the measuring element consists of a system of two vessels connected by a closed loop. The system is filled with the heat transfer medium of the measuring system. The vessels are mounted on the supply and return heat transfer pipes. The heat transfer rate of the measuring system describes the amount of heat consumed by the heat sink.

4. Gautas šilumos skirtumas dauginamas iš žinomo koeficiento ir gaunamas ėmiklio sunaudotos šilumos kiekis.4. The heat difference obtained shall be multiplied by the known factor and the heat consumption of the sampler shall be obtained.

Nuo žinomo analogo aprašomas išradimas skiriasi tuo, kad:The present invention differs from the known analog in that:

1. Panaudota abiejų šilumos srautų (paduodamo ir grįžtamo) nešama šiluma.1. The heat carried by both heat flows (supply and return) is used.

2. Panaudotas matavimo elementas, nereikalaujantis papildomo energijos šaltinio.2. A measuring element that does not require an additional power source is used.

3. Matavimas atliekamas tiesiogiai ant matavimo elemento ir nereikalauja kompensacinės energijos matavimo.3. The measurement shall be made directly on the measuring element and shall not require the measurement of compensating energy.

Paduodamos šilumos srautas Qp (žiūr. schemą) iš šilumos šaltinio 1 vamzdyje 4 pasiskirsto į du srautus: šilumos srautas Qj perduodamas į šilumos ėmiklį 3 ir šilumos srautas qi perduodamas į matavimo elementą 2. Šilumos ėmiklio 3 sunaudojamas šilumos kiekis Qo. Iš šilumos ėmiklio išeinantis šilumos srautas Ch pasiskirsto į du srautus: šilumos srautas q2 perduodamas į matavimo elementą 2 ir šilumos srautas Qg vamzdžiu 5 grąžinamas į šilumos šaltinį 1.The supplied heat flux Q p (see diagram) from heat source 1 in pipe 4 is divided into two streams: heat flux Qj is transmitted to heat sampler 3 and heat flux qi is transmitted to measuring element 2. The amount of heat Q o consumed by heat sampler 3. The heat flux Ch from the heat sink is divided into two flows: the heat flux q2 is transmitted to the measuring element 2 and the heat flux Q g is returned to the heat source 1 by the pipe 5.

Tarp aukščiau minėtų šilumos srautų egzistuoja šie matematiniai ryšiai:The following mathematical relationships exist between the above heat flows:

QP = Qi + qiQ P = Qi + qi (i) (i) Qg = Qz - q2 Qg = Qz - q2 (2) (2) Qo = Qi ~ Q2 Qo = Qi ~ Q2 (3) (3) Qs= QP - QgQs = Q P - Qg (4) (4)

kurwhere

Qp - iš šilumos šaltinio išeinantis šilumos srautas;Q p - heat flow from heat source;

Qg - į šilumos šaltinį grįžtantis šilumos srautas;Q g - heat flow back to the heat source;

Qo - šilumos ėmiklio sunaudotas šilumos kiekis;Q o is the amount of heat consumed by the heat sink;

Qs - sistemoje “šilumos ėmiklis plius matavimo elementas” naudotos šilumos kiekis;Q s is the amount of heat used in the system "heat sink plus measuring element";

qi, q2 - matavimo elementui perteikti šilumos kiekiai.qi, q 2 - heat quantities transmitted to the measuring element.

Parenkama tokia matavimo elemento konstrukcija, kad būtų išlaikyta sąlyga;The design of the measuring element shall be such as to maintain the condition;

Qi/qi = Q2/q2 = K, kurQi / qi = Q2 / q2 = K, where

K - šilumos perdavimo koeficientas.K - heat transfer coefficient.

Tuomet:Then:

Qi=Kqi (5)Qi = K qi (5)

Q? = Kq2 (6)Q? = Kq 2 (6)

Įstačius reikšmes (5) ir (6) į lygtį (4), gaunamaAdding the values (5) and (6) to equation (4) gives

Qs = K qi + qi - (K q2 - q2) =(K -1) (qt - q2) (7)Q s = K qi + qi - (K q 2 - q 2 ) = (K -1) (qt - q 2 ) (7)

Jeigu matavimo elementas yra šilumai laidus vienodo skerspjūvio per visą ilgį strypas, tai dydžius qi ir q2 galima išreikšti taip:If the measuring element is a heat-conductive rod of uniform cross-section throughout its length, the values qi and q 2 may be expressed as follows:

qi = c m (tp - ta) (8) q2 = c m (tg - ta) (9) kur c - matavimo elemento šilumos imlumas, m - matavimo elemento masė, ta - matavimo elemento aplinkos temperatūra, tp - matavimo elemento temperatūra taške P, tg - matavimo elemento temperatūra taške G.qi = cm (t p - t a ) (8) q 2 = cm (t g - t a ) (9) where c is the heat capacity of the measuring element, m is the mass of the measuring element, t a is the ambient temperature of the measuring element, t p is the temperature of the measuring element at point P, t g is the temperature of the measuring element at point G.

Įstačius reikšmes (8) ir (9) į lygtį (7), gaunamaAdding the values (8) and (9) to equation (7) gives

Qs = (K -1) c m (tp - tg) (10)Q s = (K -1) cm (t p - t g ) (10)

Paduodamo ir grįžtančio šilumnešio poveikio į matavimo elemento galus temperatūrų skirtumas neviršija 60 laipsnių pagal C.The difference in temperature between the supply and return of the heat transfer medium to the ends of the measuring cell shall not exceed 60 degrees C.

Parinkus atitinkamą matavimo elemento medžiagą (aliuminis, vario lydiniai, mažai legiruoti plienai) galima pasiekti, kad šilumos perdavimo koeficiento K ir šilumos imlumo C pokytis nuo temperatūros pasirinktai medžiagai neviršytų 2%. Matavimo elemento masė yra pastovus dydis. Tokiu būdu, galima priimti, kad sandauga (K -1) c m yra pastovus dydis C su paklaida neviršijančia 2%.By selecting the appropriate material for the measuring element (aluminum, copper alloys, low-alloy steels), the change in the heat transfer coefficient K and the heat absorption C from the temperature of the selected material does not exceed 2%. The mass of the measuring element is a constant. Thus, it can be assumed that the product (K -1) c m is a constant value C with an error not exceeding 2%.

C = (K-l)cm (11)C = (K-1) cm (11)

Tokiu būduThis way

Qs — C (tp - tg) (12)Q s - C (t p - t g ) (12)

Dydį C galima išskaičiuoti arba nustatyti eksperimentiniu būdu.Size C can be calculated or determined experimentally.

Dydžiai tp ir tg sudaro matavimo elemento matuojamąją dalį.The quantities t p and t g form the measuring part of the measuring element.

Claims (1)

IŠRADIMO APIBRĖŽTISDEFINITION OF INVENTION Diferencialinis šilumos matavimo būdas matavimui naudoja dalį 5 ėmikliui tiekiamos šilumos ir matavimo rezultatas gaunamas, naudojant žinomą dauginimo koeficientą, besiskiriantis tuo, kad paduodamo ir grįžtančio šilumnešio nešamo šilumos srauto žinomais šilumos kiekiais pašildo matavimo elementą, kurio įšilimas skirtingose matavimo elemento dalyse charakterizuoja šilumos ėmiklio sunaudotą šilumos kiekį.The differential heat measurement method uses a portion of the heat supplied to the sampler 5 and the measurement result is obtained using a known multiplication factor, characterized in that the heat flow carried by the feed and return heat carrier heats the measuring element quantity.
LT95-022A 1995-03-03 1995-03-03 A differential method for measuring of a heat LT4115B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LT95-022A LT4115B (en) 1995-03-03 1995-03-03 A differential method for measuring of a heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LT95-022A LT4115B (en) 1995-03-03 1995-03-03 A differential method for measuring of a heat

Publications (2)

Publication Number Publication Date
LT95022A LT95022A (en) 1996-09-25
LT4115B true LT4115B (en) 1997-02-25

Family

ID=19721614

Family Applications (1)

Application Number Title Priority Date Filing Date
LT95-022A LT4115B (en) 1995-03-03 1995-03-03 A differential method for measuring of a heat

Country Status (1)

Country Link
LT (1) LT4115B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3169B (en) 1992-12-16 1995-02-27 Alfredas Dulskis Thermocompensing method of measuring quantity of heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3169B (en) 1992-12-16 1995-02-27 Alfredas Dulskis Thermocompensing method of measuring quantity of heat

Also Published As

Publication number Publication date
LT95022A (en) 1996-09-25

Similar Documents

Publication Publication Date Title
JP4831879B2 (en) Mass flow meter
NO803528L (en) PROCEDURE AND MEASURES FOR MEASURING HEAT QUANTITIES
JP6042449B2 (en) Apparatus and method for measuring fluid mass flow
CA2250816A1 (en) Liquid metering
Agostini et al. Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation
Eagle et al. On the coefficient of heat transfer from the internal surface of tube walls
US4085613A (en) Thermal energy flowmeter
US4036051A (en) Heat meters
SK17392002A3 (en) Gas meter
Kays et al. Laminar flow heat transfer to a gas with large temperature differences
Kim et al. Study on the steady-state characteristics of the sensor tube of a thermal mass flow meter
Bougrine et al. Highly sensitive method for simultaneous measurements of thermal conductivity and thermoelectric power: Fe and Al examples
LT4115B (en) A differential method for measuring of a heat
Dirac Dissociation under a temperature gradient
Bates et al. The cooling capabilities of C2F6/C3F8 saturated fluorocarbon blends for the ATLAS silicon tracker
EP1718938A1 (en) Method for measuring mass flow of a multi-component gas
FI62188B (en) FOER FARING FOR OVER MAINTENANCE OF CONVERTIBLE OILS
EP0019480B1 (en) Method and apparatus for measuring the temperature of hot gases
Ryšavý et al. Optimisation of metastable supercooled liquid phase change material for long-term heat energy accumulation
RU2124187C1 (en) Heat meter
Rivera et al. Heat transfer coefficients in two-phase flow for mixtures used in solar absorption refrigeration systems
Doubek et al. Measurement of heat transfer coefficient in two phase flows of radiation-resistant zeotropic C2F6/C3F8 blends
Smith et al. Calorimetric emissivities for solar-selective coatings on flat sheet
US4704904A (en) High temperature gas flow meter
Cygan HNPF Cold Trap Evaluation

Legal Events

Date Code Title Description
MM9A Lapsed patents

Effective date: 19970303