KR970010337B1 - Deacidification method of ultra fine silica powder - Google Patents

Deacidification method of ultra fine silica powder Download PDF

Info

Publication number
KR970010337B1
KR970010337B1 KR1019940012879A KR19940012879A KR970010337B1 KR 970010337 B1 KR970010337 B1 KR 970010337B1 KR 1019940012879 A KR1019940012879 A KR 1019940012879A KR 19940012879 A KR19940012879 A KR 19940012879A KR 970010337 B1 KR970010337 B1 KR 970010337B1
Authority
KR
South Korea
Prior art keywords
fine powder
fluidized bed
powder silica
deoxidation
silica
Prior art date
Application number
KR1019940012879A
Other languages
Korean (ko)
Other versions
KR960000769A (en
Inventor
김홍경
양우영
Original Assignee
한국비료공업 주식회사
유경종
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국비료공업 주식회사, 유경종 filed Critical 한국비료공업 주식회사
Priority to KR1019940012879A priority Critical patent/KR970010337B1/en
Publication of KR960000769A publication Critical patent/KR960000769A/en
Application granted granted Critical
Publication of KR970010337B1 publication Critical patent/KR970010337B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A deacidification process of fumed silica comprises the first step of eliminating acidic component by contacting with moist air in the fluidized bed and the second step of cooling by using dry air. In the first step, non iron metals such as Al, Ti, Zr, Ni or their alloy is used as material of deacidification equipment to prevent pollution by metal and to consider manipulation at high temperature. In the second step, a dilute fluidized bed is used to prevent friction among particles.

Description

미세분말 실리카의 탈산 방법Deoxidation Method of Fine Powder Silica

제1도는 본 발명에 사용되는 탈산장치의 구성도.1 is a block diagram of a deoxidizer used in the present invention.

제2도는 교반조형 탈산장치의 구성도.2 is a block diagram of a stirring tank deoxidation device.

제3도는 회전 킬른형 탈산장치의 구성도이다.3 is a block diagram of a rotary kiln type deoxidizer.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

A : 유동상형장치 B : 교반 조형탈산기A: fluid bed type device B: stirred mold deoxidizer

C : 회전킬른형 탈산기 H : 가습공기가열기C: rotary kiln type deoxidizer H: humidifier air heater

P : 하단부가림판P: Lower part board

본 발명은 미세분말 실리카의 탈산방법, 보다 상세하게는 유동상형 탈산장치에 의해 미세분말 실리카를 탈산시키는 방법에 관한 것이다.The present invention relates to a method for deoxidizing fine powder silica, and more particularly, to a method for deoxidizing fine powder silica by a fluidized bed deoxidizer.

미세분말 실리카는 건식실리카 또는 FUMED SILICA라 불리우는, 화학품으로, 그 용도는 실리콘수지 또는 고무, 폴리에스테르수지, 도료 등의 분야에 다량 소비되고 있는 중요한 기능성 분체의 하나이다. 미세분말 실리카는 일반적으로 염소화 규소 화합물의 수소불꽃에 의한 가수분해 반응으로 제조하며 이때 염화수소 또는 염소가 부생한다. 반응기로부터 유출되는 미세분말 실리카에는 염화수소 또는 염소 등의 산성분이 함유되어 있고 이를 제품화하려면 이 산성분을 제거하고 냉각하는 것이 필요하다.Fine powder silica is a chemical product called dry silica or FUMED SILICA, and its use is one of important functional powders consumed in large amounts in the fields of silicone resin or rubber, polyester resin, paint and the like. Fine powder silica is generally produced by the hydrolysis reaction of a silicon chlorinated compound by hydrogen flame, at which time hydrogen chloride or chlorine is by-produced. The fine powder silica flowing out of the reactor contains an acid component such as hydrogen chloride or chlorine, and to commercialize it, it is necessary to remove and cool the acid component.

종래의 미세분말 실리카의 탈산방법은 하기의 방법들이 제안되어 있다.Conventional deoxidation methods of fine powder silica have been proposed.

1) 미세분말 실리카를 기계적으로 혼합, 교반하면서 가열하여 탈산하는 방법,1) fine powder silica is mechanically mixed, heated and deoxidized by stirring,

2) 미세분말 실리카를 회전식 가연로(Kiln형)에 주입하여 로내의 버너에 의해 가열하는 내부가열관 방식과 또는 외부가열 방식으로 미세분말 실리카를 회전 혼합, 교반하면서 가열하여 탈산하는 방법.2) A method of injecting fine powder silica into a rotary combustion furnace (Kiln type) and heating and deoxidizing the fine powder silica by rotating mixing and stirring while heating by an internal burner or external heating.

상기 종래의 기술은 다음의 단점이 있다.The prior art has the following disadvantages.

1) 의 방법은 기계적으로 혼합, 교반하면서 가열하는 탈산방법은 교반기계에 의해 미세분말 실리카의 분말이 격렬히 혼합 교반되고 탈산후의 미세분말 실리카의 물성, 특히 실리카를 폴리에스테르에 분산시킬 때 은이 점도와 요변성(Thixotropy) 지수의 두물성이 극단적으로 저하된다.The deoxidation method in which the method of 1) is mechanically mixed and heated while stirring is carried out that the powder of fine powder silica is vigorously mixed and stirred by a stirring machine, and the physical properties of the fine powder silica after deoxidation, in particular, when the silica is dispersed in polyester, And physical properties of the Thixotropy index are extremely degraded.

2) 의 방법은 혼합, 교반이 상기 1)방법 만큼 격렬하지 않으나 분체끼리의 마찰력이 있어 1)의 경우와 같이 점도 또는 요변성 지수가 크지 않고 역시 저하된다.In the method of 2), mixing and stirring are not as intense as the method 1) above, but there is friction between the powders, so that the viscosity or thixotropy index is not large as in the case of 1) and is also lowered.

본 발명은 종래기술의 문제점을 극복하기 위해 기계적 혼합 교반을 하지않고 분체끼리의 마찰이 없는 미세분말 실리카의 탈산기술을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a deoxidation technology of fine powder silica without mechanical mixing agitation without friction between powders in order to overcome the problems of the prior art.

위와 같은 목적을 달성하기 위해 본 발명에서는 탈산방식과 냉각방법 모두 희박 유동상을 채용하고 또 탈산가스로는 습윤공기를, 냉각가스로는 건조공기를 이용함으로써, 미세분말 실리카의 탈산방법의 개발에 성공하고 기술을 확립하였다.In order to achieve the above object, in the present invention, both the deoxidation method and the cooling method adopt a lean fluidized bed, and use the wet air as the deoxidation gas and the dry air as the cooling gas, thereby successfully developing the deoxidation method of fine powder silica. Technology was established.

본 발명에서는, 미세분말 실리카의 분체를 습윤공기 또는 건조공기로 유동시키는 희박 유동상을 형성한다. 이처럼 희박 유동상을 형성함으로써 혼합, 교반에 따른 분체 상호간의 마찰이 없이 미세분말 실리카를 탈산하고 냉각하는 것이 가능케 된다.In the present invention, a lean fluidized bed in which powder of fine powder silica is flowed into wet or dry air is formed. By forming the lean fluidized phase as described above, it is possible to deoxidize and cool the fine powder silica without friction between powders due to mixing and stirring.

유동상의 유동에는 농후상유동관 희박유동이 있는데, 농후상유동은 역시 분체끼리의 마찰문제가 있으므로, 희박유동을 채택하였다.In the fluidized bed flow, there is a rich-bed tube lean flow. The rich-phase flow also adopts a lean flow because of the friction problem between the powders.

탈산유동상에 의해 염화수소 또는 염소를 제거하는데 있어, 탈산 유동상의 온도는 200℃~500℃가 보다 좋다. 또 압력은 대기압에서도 가능하며 대기압 ±1,000mmH20의 범위가 좋다. 또한 장치의 재질은 제품의 철등 금속에 의한 오염을 방지하기 위해 미세분말 실리카와 접촉하는 부분의 재질은 비철금속이 좋으며 그 장치가 고온에서 조작되는 것을 고려하여 내열 알루미늄합금, 지르코늄, 티탄, 니켈 또는 고니켈합금 등이 특히 좋다.In removing hydrogen chloride or chlorine by the deoxidized fluidized bed, the deoxidized fluidized bed is more preferably 200 ° C to 500 ° C. Pressure can also be at atmospheric pressure, with a range of atmospheric pressure ± 1,000mmH20. In addition, the material of the device is a non-ferrous metal is good for the material in contact with the fine powder silica in order to prevent contamination by metal such as iron of the product, considering that the device is operated at high temperature, heat-resistant aluminum alloy, zirconium, titanium, nickel or high Nickel alloys are particularly preferred.

탈산된 미세분말 실리카는 고온이므로 냉각유동상 장치에 이송되어 냉각된다.Since the deoxidized fine powder silica is hot, it is transferred to a cooling fluidized bed apparatus and cooled.

냉각유동상 출구의 미세분말 실리카 온도는 상온이 좋고 냉각유동상의 압력도 대기압 근방이 좋으며 대기압 ±1,000mmH20의 범위가 바람직하다.The fine powder silica temperature at the exit of the cooling fluidized bed has a good room temperature, the pressure of the cooling fluidized bed is also good at about atmospheric pressure, and the atmospheric pressure is preferably in the range of ± 1000 mmH20.

냉각장치의 재질에 있어 탈산유동상 장치와 동일한 이유로 미세분말 실리카와 접촉하는 부분의 재질은 알루미늄, 지르코늄, 니켈 등의 비철금속이 좋은 비교적 저온에서 조작되므로 특히 알루미늄을 이용하는 것이 좋다.For the same material as the deoxidized fluidized bed device in the cooling device, the material in contact with the fine powder silica is particularly preferable to use aluminum because nonferrous metals such as aluminum, zirconium and nickel are operated at relatively low temperatures.

본 발명에서는 미세분말 실리카를 탈산하고 냉각함에 있어 희박유동상 방식을 이용함으로써, 기계적 혼합, 교반에 의한 분체끼리의 마찰로 인한 제품의 특성저하를 방지할 수 있다.In the present invention, by using the lean fluidized bed method in deoxidizing and cooling the fine powder silica, it is possible to prevent the deterioration of the characteristics of the product due to friction between the powders by mechanical mixing and stirring.

이하, 본 발명을 실시예와 비교예에 의해 첨부도면을 참고로 하여 설명한다.Hereinafter, the present invention will be described with reference to the accompanying drawings by way of examples and comparative examples.

[실시예 1]Example 1

염화수소 1wt%와 염소 0.2wt%를 갖는 미세분말 실리카를 개구비 1.5%의 다공판으로 된 하단부 가림판(p)을 갖춘 내경 300mm×직선부 높이 2m 의 티탄재질의 유동상 장치(A)에 투입하여 대기압 +500mmH20의 압력하에 회분조작을 실시하였다. 미세분말 실리카 150그램을 유동상 장치(A)에 넣고 수분 15wt%를 함유한 습윤공기를 가습공기 가열기(H)에 의해 450℃로 가열하여 100m3/h로 유동상 장치의 하부에 공급하여 희박유동중 높이를 1~1.3m로 하고 탈산을 진행시켰다. 유동상 장치중의 실리카의 산성분이 0.01wt% 이하에 이르는 것을 확인한 후 고온가습 공기를 이슬점 -40℃의 상온의 건조공기 8m3/h로 바꾸어 냉각했다.Fine powder silica having 1 wt% hydrogen chloride and 0.2 wt% chlorine was introduced into a titanium fluidized bed apparatus (A) having an inner diameter of 300 mm x a straight line height of 2 m with a bottom cover plate (p) of a porous plate having an opening ratio of 1.5%. Was carried out under a pressure of atmospheric pressure + 500mmH20. 150 grams of fine powder silica was put in the fluidized bed apparatus (A), and the wet air containing 15 wt% of moisture was heated to 450 ° C. by a humidified air heater (H), and then supplied to the lower part of the fluidized bed apparatus at 100 m 3 / h. The deoxidation was advanced with the height of 1-1.3m. After confirming that the acid component of silica in the fluidized bed apparatus reached 0.01 wt% or less, the hot humidified air was changed to 8 m3 / h of dry air at room temperature of dew point -40 占 폚 and cooled.

냉각후 실리카 제품의 분석결과 산성분이 50wt ppm이하였다. 이렇게 탈산된 미세분말 실리카를 또 폴리에스테르에 2wt% 첨가하고 분산시켜서, BL형 회전 점도계를 이용 점도 및 요변성 지수를 측정하였다. 그 결과 60rpm에 그 점도가 25poise, 요변성지수(점도 6 rpm)이 6이었다.After cooling, the analysis of the silica product showed that the acid component was less than 50wt ppm. The deoxidized fine powder silica was further added to 2 wt% of polyester and dispersed, and the viscosity and thixotropy index were measured using a BL rotational viscometer. As a result, the viscosity was 25 poise at 60 rpm and the thixotropic index (viscosity 6 rpm) was 6.

[실시예 2]Example 2

유동상 장치(A)의 재질을 지르코늄으로하고 탈산용 고온가습 공기의 온도는 350℃, 대기압 -500mmH20의 조작압력 이외는 실시예 1과 동일한 원료, 장치사이즈, 조작방법과 분석법을 실시하였다. 분석결과 실리카중의 잔존 성분은 100rpm 이고 점도 및 요변성 지수는 실시예 1과 동일한 결과였다.The material of the fluidized bed apparatus A was zirconium, and the same raw materials, apparatus sizes, operating methods, and analytical methods as in Example 1 were carried out except that the temperature of the high-temperature humidifying air for deoxidation was 350 ° C and an operating pressure of -500 mmH20 of atmospheric pressure. As a result of analysis, the residual component in silica was 100 rpm and the viscosity and thixotropy index were the same as in Example 1.

[실시예 3]Example 3

유동상 장치의 재질이 인코넬(inconel)인 것외에 실시예 1과 동일한 원료, 장치 사이즈, 조작방법과 분석 방법을 실시하였다. 분석결과 실리카중 잔존산성분이 40rpm이고 점도 및 요변성 지수는 실시예 1, 2와 동일한 결과였다.The same raw material, device size, operation method and analysis method as in Example 1 were carried out except that the material of the fluidized bed device was Inconel. As a result of analysis, the residual acid component in silica was 40 rpm, and the viscosity and thixotropic index were the same as in Examples 1 and 2.

[비교예1]Comparative Example 1

내경 10cm이고 직선부 높이 20cm의 순니켈제 원통형 용기에 모터(M)부착 교반익을 갖는 교반조형 탈산기(B)에서, 실시예 1과 동일한 원료를 같은 양으로 탈산작업을 실시하였다.In the stirring vessel type deoxidizer (B) having a stirring blade with a motor (M) in a cylindrical container made of pure nickel having a inner diameter of 10 cm and a linear height of 20 cm, the same raw material as in Example 1 was deoxidized in the same amount.

교반익의 회전수는 120rpm, 용기내 온도를 외부전열 히타(E)로 450℃로 유지하였고 대기압 하에서 회분조작을 실시하였다. 약 30분간 탈산조작을 실시하였고 냉각후 실리카를 분석한 결과 산성분이 0.05% 점도 13poise, 요변성 지수가 4였다.The rotation speed of the stirring blade was 120rpm, the temperature in the vessel was maintained at 450 ℃ by an external heat heater (E) and the ash operation was performed under atmospheric pressure. Deoxidation was performed for about 30 minutes. After cooling, the silica was analyzed. The acid content was 0.05%, the viscosity was 13 poise, and the thixotropic index was 4.

[비교예2]Comparative Example 2

내경 10cm이고 회전 킬른형 탈산기(C)에 직선부 길이 50cm의 하스탈로이(Hastaloy) C 재질의 회전식 원통형 용기에 수소불꽃 버너(F)를 설치한 실시예 1과 동일한 원료를 동일한 량으로 투입하여 회전시키면서 탈산작업을 실시하였다.The same amount of raw material as in Example 1 in which a hydrogen flame burner (F) was installed in a rotary cylindrical container of Hastalloy C material having a straight line length of 50 cm in a rotary kiln type deoxidizer (C) with an inner diameter of 10 cm was added. The deoxidation work was performed while rotating.

회전용기의 회전수는 120rpm, 용기내부가 평균 450℃되도록 수소불꽃버너(F)를 조절하였고 대기압 하에서 회분조작을 실시하였다.The rotation speed of the rotating vessel was adjusted to 120rpm, the inner flame of the hydrogen flame burner (F) was adjusted to an average of 450 ℃ and the ash operation was carried out under atmospheric pressure.

약 30분간 탈산조작을 실시후 냉각후 실리카를 분석한 결과 산성분이 0.01% 점도 22poise, 요변성 지수가 5.5였다.After deoxidation operation for about 30 minutes, the silica was analyzed after cooling, and the acid component was 22% in viscosity, 22 poise, and thixotropic index was 5.5.

이상 설명한 바와 같이 본 발명은 종래법에 비교하여 탈산효과가 매우 높을 뿐 아니라 탈산후의 미세분말 실리카의 물성저하를 방지함으로써 요번성지수가 높게 유지되며 특히 폴리에스테르에 본 제품을 적용하였을때 점도가 높은 등 매우 효과적인 발명이다.As described above, the present invention not only has a very high deoxidation effect compared to the conventional method, but also maintains a high lubricity index by preventing the deterioration of physical properties of the fine powder silica after deoxidation, and especially when the product is applied to polyester, the viscosity is high. Etc. It is a very effective invention.

위에서 본 발명을 실시예와 비교예에 의해 설명하였으나, 본 발명의 범위는 위의 실시예에 한정되지 않으며 미세분말 실리카의 접촉부분의 재질의 변경등 본 발명의 범위내에서 여러가지 변형과 변경이 가능함은 물론이다.Although the present invention has been described above by way of examples and comparative examples, the scope of the present invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the present invention, such as a change in the material of the contact portion of the fine powder silica. Of course.

Claims (3)

미세분말 실리카를 유동상으로 하여 습한공기와 접촉시키는 단계와, 상기 습한 공기와 접촉된 미세분말 실리카를 건조공기에 의하여 냉각하는 냉각단계로 이루어진 미세분말 실리카의 탈산방법.A method for deoxidation of fine powder silica comprising a step of contacting the fine powder silica with the wet air as a fluidized bed and a cooling step of cooling the fine powder silica in contact with the wet air by dry air. 제1항에 있어서, 유동상이 희박유동상인 것을 특징으로 하는 미세분말 실리카의 탈산방법.The method for deoxidation of fine powder silica according to claim 1, wherein the fluidized bed is a lean fluidized bed. 제1항 또는 제2항에 있어서, 유동상 미세분말 실리카가 접촉하는 탈산장치의 재질이 알루미늄, 티탄, 지르코늄, 니켈 또는 그들의 합금인 것을 특징으로 하는 미세분말 실리카의 탈산방법.The deoxidation method of fine powder silica according to claim 1 or 2, wherein a material of the deoxidation device in which the fluidized bed fine powder silica is in contact is aluminum, titanium, zirconium, nickel or an alloy thereof.
KR1019940012879A 1994-06-08 1994-06-08 Deacidification method of ultra fine silica powder KR970010337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940012879A KR970010337B1 (en) 1994-06-08 1994-06-08 Deacidification method of ultra fine silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940012879A KR970010337B1 (en) 1994-06-08 1994-06-08 Deacidification method of ultra fine silica powder

Publications (2)

Publication Number Publication Date
KR960000769A KR960000769A (en) 1996-01-25
KR970010337B1 true KR970010337B1 (en) 1997-06-25

Family

ID=19384902

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940012879A KR970010337B1 (en) 1994-06-08 1994-06-08 Deacidification method of ultra fine silica powder

Country Status (1)

Country Link
KR (1) KR970010337B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431955C (en) * 2006-09-04 2008-11-12 上海氯碱化工股份有限公司 Apparatus and method of synthesizing acidic material on SiO2 surface by eliminating gas phase method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087840A (en) 2018-01-17 2019-07-25 이승석 Temporary building with variable space
CN116081631B (en) * 2022-12-30 2024-05-31 浙江工程设计有限公司 Deacidification method for gas-phase white carbon black

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431955C (en) * 2006-09-04 2008-11-12 上海氯碱化工股份有限公司 Apparatus and method of synthesizing acidic material on SiO2 surface by eliminating gas phase method

Also Published As

Publication number Publication date
KR960000769A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
Hsieh et al. Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter
US7132005B2 (en) Molybdenum metal
JP2000103628A (en) Treatment of silica granule using porous graphite crucible
JP3935870B2 (en) Liquid alkali metal in which nano-sized ultrafine particles such as metals are dispersed
KR970010337B1 (en) Deacidification method of ultra fine silica powder
CN107162600A (en) It is a kind of for high-purity aluminium nitride powder material of ceramic substrate and preparation method thereof
Liu et al. Effect of TiO2 on viscosity and sulfide capacity of blast furnace slag containing barium
US3416890A (en) Process of producing oxides of metals and metalloids
US2573057A (en) Process of preparing white finely divided amorphous silica
Hagan et al. Fundamentals of Glass‐to‐Metal Bonding: VI, Reaction Between Metallic Iron and Molten Sodium Disilicate
US2082134A (en) Production of calcium hydride
CN109099709A (en) A kind of reduction experiment furnace
US4080430A (en) Decomposition of cupric oxide using a reducing scavenger
JPH09278422A (en) Production of silicon sulfide
US2512341A (en) Process for heating titanium tetrachloride
US5035742A (en) Reduced chromium-ore bearing powder and method for producing the same
US5645655A (en) Process to anneal steel strips in an annealing furnace without generating carbon black
EP0508011A1 (en) A method and apparatus to continuously manufacture red lead
US2181094A (en) Metallurgical process
US2217569A (en) Process for the production of metallic iron powder
US1796241A (en) Process of producing sodium peroxide
CN1021462C (en) Agitator for atomosphere reforming in continuous heat-treating furnace
JPS6172630A (en) Preparation of iron oxide powder for magnetic material
KR0143493B1 (en) Combustion supporting composition for the analysis of carbon & sulphur in molten metal
JPS60155531A (en) Production of high-purity tin dioxide fine powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040107

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee