KR970008735B1 - Process for the preparation of burned material using slug - Google Patents

Process for the preparation of burned material using slug Download PDF

Info

Publication number
KR970008735B1
KR970008735B1 KR1019940038256A KR19940038256A KR970008735B1 KR 970008735 B1 KR970008735 B1 KR 970008735B1 KR 1019940038256 A KR1019940038256 A KR 1019940038256A KR 19940038256 A KR19940038256 A KR 19940038256A KR 970008735 B1 KR970008735 B1 KR 970008735B1
Authority
KR
South Korea
Prior art keywords
weight
glass
slag
raw material
bentonite
Prior art date
Application number
KR1019940038256A
Other languages
Korean (ko)
Other versions
KR960022349A (en
Inventor
이현
한기현
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김만제
Priority to KR1019940038256A priority Critical patent/KR970008735B1/en
Publication of KR960022349A publication Critical patent/KR960022349A/en
Application granted granted Critical
Publication of KR970008735B1 publication Critical patent/KR970008735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/104Bentonite, e.g. montmorillonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Employing Water granulation slag, which is by-product produced from shaft furnace operation in a steel manufacture process, bentonite and water glass as raw materials, high-strength sintered body is formed that is useful as construction materials and ceramic materials. 50 to 70 wt% of water granulation slag and 30 to 50 wt% of bentonite are pulverized such that passing portions under 200 mesh sieve are not less than 95%, and dried. Water glass comprising 35 to 38 wt% of silica, 17 to 18 wt% of sodium oxide and the remainder water added thereto in an amount of from 10 to 15 wt% as based on total green body, pressed, and sintered at a temperature of 1050 to 1200 deg. C to produce the high-strength sintered body.

Description

수쇄슬래그를 이용한 고강도 소성체 제조방법High strength fired body manufacturing method using crushed slag

본 발명은 건축재료 및 요업재료로 사용되는 소성체 제조방법에 관한 것으로, 보다 상세하게는 제철 공정에서 고로 조업시 발생되는 부산물인 수쇄슬래그와 벤토나이트 및 물유리를 원료로 하여 고강도 소성체를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a fired body used as a building material and a ceramics material, and more particularly, a method for manufacturing a high-strength fired body by using crushed slag, bentonite and water glass as by-products generated during blast furnace operation in a steelmaking process It is about.

통상 고로 조업시 발생되는 고로 슬래그는 특성에 따라 시멘트 첨가제, 파쇄골재등을 제한적으로 사용되어 왔으나, 최근에는 건축재료, 단열재등의 요업재료로 활용되고 있다. 고로 수쇄슬래그는 용융슬래그를 물로 급냉시켜 만든 것으로 작은 온도 변화에도 물성이 쉽게 변화하고 비결정질상이기 때문에 안정적 구조를 이루려는 표면에너지가 큰 슬래그이다.In general, blast furnace slag generated during blast furnace operation has been used with limited additives such as cement additives, crushed aggregates, etc., but recently, it has been used as a ceramic material such as building materials and insulation materials. Blast furnace slag is made by quenching molten slag with water, and it is a slag with large surface energy to achieve stable structure because its physical property is easily changed even in small temperature change and it is amorphous.

한편, 상기의 요업 재료용 소성체를 제조하기 위해서는 재료의 선택과 조성이 중요하며, 통상적으로 규회석, 활석 및 투회석등이 사용되는데, 이러한 재료를 사용하는 이유는 소지의 특성이 직선적인 열팽창성, 낮은 수화팽창성과 적은 감열 감량을 지니고, 또한 소지를 건조시에도 수축성이 적고, 소성시에는 수축성이 거의 없으면 열충격에 대한 안전성이 매우 크기 때문이다.On the other hand, in order to manufacture the fired body for the ceramic material, the selection and composition of the material is important, and conventionally, wollastonite, talc and dialysis are used. The reason for using such a material is that the properties of the base are linearly thermally expandable. This is because it is very safe against thermal shock if it has low hydration expandability and low heat loss, and also has low shrinkage even when the base is dried and hardly shrinkage when firing.

상기 소성체 제조방법으로는 종래 고로 수쇄슬래그를 미분쇄하고 20~50%의 점토를 첨가하는 타일 원료 제조방법(일본 특허공개번호 소 57-179068), 점토 95~70중량%에 80~250메쉬의 고로 슬래그를 5~30중량%로 혼련하여 제조하는 방법(일본 특허공개 번호 소 53-133210) 및 고로 슬래그를 주재로 하고 조재로 점결제를 첨가하여 타일등의 요업재료를 제조함에 있어 수쇄슬래그의 경우에 열처리 고정을 거쳐서 결정질로 한 것을 이용하거나 괴재 슬래그를 이용하는 방법(일본특허공개번호 소 50-43110)등이 개시되어 있다.As a method for producing the fired body, a tile raw material manufacturing method (Japanese Patent Laid-Open No. 57-179068) which finely grinds blast furnace slag and adds 20 to 50% of clay, 80 to 250 mesh to 95 to 70% by weight of clay Blast furnace slag is kneaded at 5 to 30% by weight (Japanese Patent Laid-Open No. 53-133210) and blast furnace slag is predominantly prepared by adding caking additives to produce ceramic materials such as tiles. In this case, there is disclosed a method using a crystalline or heat-treated slag (Japanese Patent Laid-Open No. 50-43110) through heat treatment and fixing.

한편, 본 발명자들은 제철공장에서 발생되는 고로 수쇄슬래그를 활용하기 위해 연구 및 실험을 통해 본 발명을 제한하게 된 것으로, 본 발명의 목적은 수쇄슬래그를 이용하여 표면외관이 우수한 고강도 소성체 제조방법을 제공하는 것이다.On the other hand, the inventors of the present invention to limit the present invention through research and experiment in order to utilize the blast furnace slag generated in the steel mill, the object of the present invention is to use a method of producing a high-strength plastic body having excellent surface appearance by using the hydrous slag To provide.

본 발명에 의하면, 수쇄슬래그, 벤토나이트 및 뮬유리를 원료로 하여 소성체를 제조함에 있어서, 상기 수쇄슬래그 50~70중량%와 벤토나이트 30~50중량%로 이루어진 원료를 200메쉬 통과분이 95%이상이 되도록 분쇄한 다음 건조시켜 원료용 소지를 제조하는 단계; 뮬유리를 함유하는 전체 소지의 중량 기준으로 상기 소지에 뮬유리 10-15중량%를 첨가 혼합한 다음 통상의 가압 성형법으로 성형체를 제조하는 단계; 및 상기 성형체를 1050~1200℃의 온도에서 가열하여 소성하는 단계;로 구성됨을 특징으로 하는 수쇄슬래그를 이용한 고강도 소성체 제조방법이 제공된다.According to the present invention, in the production of a fired body using hydrolyzed slag, bentonite, and mulle glass as raw materials, 95% or more of the raw material comprising 50 to 70 wt% of the hydrolyzed slag and 30 to 50 wt% of bentonite is 95% or more. Grinding to dry and then preparing a raw material for raw materials; Adding 15-15% by weight of mule glass to the substrate, based on the weight of the entire body containing mulle glass, and then preparing a molded body by a conventional pressure molding method; And firing the molded body by heating at a temperature of 1050 to 1200 ° C .;

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기 본 발명의 원료로 사용되는 수쇄슬래그 및 벤토나이트는 통상적인 것으로 하기 <표 1>과 같은 화학조성을 갖는다.The hydrolyzed slag and bentonite used as raw materials of the present invention are conventional and have a chemical composition as shown in Table 1 below.

[표 1]TABLE 1

상기 소성체의 원료로 사용된 성분중 수쇄슬래그는 표면 에너지가 큼으로 적은 온도변화에도 물성이 변하는 불안정한 상태로 된 비정질상으로 반응성이 매우 크다.Among the components used as a raw material of the fired body, the hydrous slag has a high surface energy and is highly reactive as an amorphous phase in an unstable state in which physical properties change even at a small temperature change.

즉, 확산에 의해 소결이 촉진되는 점을 고강도 소성체 제조에 적용한 것이다.That is, the point where sintering is accelerated | stimulated by diffusion is applied to manufacture high strength sintered compact.

또한 상기 벤토나이트 성분에 함유되어 있는 Na2O 및 K2O성분에 의해 실체 소성시소결온도가 낮아지고 소결이 촉진되어 강도가 개선되며, 저온 신속소성이 가능하게 된다.In addition, by the Na 2 O and K 2 O components contained in the bentonite component, the sintering temperature is lowered at the time of solid firing, the sintering is promoted, the strength is improved, and the low temperature rapid firing is possible.

상기 수쇄슬래그와 혼합되는 벤토나이트의 첨가량이 30중량%이하인 경우에는 성형한 후에 취급 가능한 정도의 생강도를 유지하기가 어렵고, 고강도의 소성체 제조가 어렵게 되며, 첨가량이 50중량%이상인 경우에는 소성수축율이 증대되어 치밀한 소성체가 제조되지만 부분적인 휨과 변형현상이 발생되어 소지의 색상이 짙은 갈색으로 되어 소지의 백색도가 저하됨으로 벤토나이트 30~50중량%와 수쇄슬래그 50~70중량%를 혼합하는 것이 바람직하다.When the added amount of bentonite mixed with the hydrolyzed slag is 30% by weight or less, it is difficult to maintain a degree of ginger that can be handled after molding, and it becomes difficult to manufacture a high-strength plastic body, and when the added amount is 50% by weight or more, the plastic shrinkage rate It is preferable to mix 30-50% by weight of bentonite and 50-70% by weight of slag slag due to the increase in the density of the compacted plastic body, but partial warpage and deformation occur, and the color of the body becomes dark brown. Do.

한편, 상기 수쇄슬래그와 벤토나이트로 조성된 원료를 건조시켜 원료용 소지를 제조하는 경우, 조성된 원료의 입도가 크게 되면 상기 수쇄슬래그 및 벤토나이트가 균일하게 혼합되지 못하고, 성형성이 떨어지며, 소성시 균열되며, 제조제품 역시 균열이 발생될 수 있음으로서 상기 혼합 원료를 200메쉬 통과분이 95%이상 되도록 분쇄한 다음 건조시켜 원료용 소지를 제조하는 것이 바람직하다.On the other hand, when manufacturing the raw material for drying the raw material composed of the hydrolyzed slag and bentonite, when the particle size of the raw material is made large, the hydrolyzed slag and bentonite are not uniformly mixed, the moldability is poor, cracking during firing In addition, the manufactured product may also be cracked, so that the mixed raw material is pulverized so that the content of the passage of 200 mesh is 95% or more, it is preferable to prepare the raw material for the raw material.

건조된 원료소지에 뮬유리를 첨가함으로써, 뮬유리는 가열소성시 벤토나이트와 수쇄슬래그의 소결을 촉진시키는 역할을 함으로 고강도의 소성체를 제조할 수 있다.By adding mule glass to the dried raw material, the mule glass serves to promote the sintering of bentonite and crushed slag during heating and firing to produce a high-strength calcined body.

뮬유리를 함유하는 전체 소지중량기준으로 상기 소지에 대한 뮬유리의 첨가량이 10중량%이하인 경우에는 큰 효과를 얻을 수 없으며, 15중량% 이상인 경우, 소성체의 강도는 개선되나 과소성이 일어남으로 형상이 변형되거나 휨현상이 발생됨으로서 상기 소지에 뮬유리를 10~15중량%로 첨가하는 것이 바람직하다.If the added amount of mul glass to the base material based on the total body weight containing mulle glass is less than 10% by weight, it is not possible to obtain a great effect, when the weight of more than 15% by weight, the strength of the fired body is improved but the underfiring occurs Since the shape is deformed or warped, it is preferable to add 10-15% by weight of mule glass to the substrate.

발명에 사용된 상기 뮬유리는 SiO235~38중량%, Na2O 17-18% 및 잔부 H2O로 조성되어 있으며, 뮬유리 농도가 너무 낮은 경우에는 성형하기 어려우며, 농도가 진한 경우에는 상기 원료 소지와 뮬유리를 혼합하기 어려우므로 상기 조성으로 된 겔상이 뮬유리 20중량%와 뮬 80중량%로 이루어진 저농도 뮬유리(이하, "뮬유리(20%)"라 한다)가 사용된다.Mule glass used in the invention is composed of 35 to 38% by weight of SiO 2 , 17-18% Na 2 O and the balance H 2 O, it is difficult to mold when the concentration of the mul glass is too low, when the concentration is thick Since it is difficult to mix the raw material material and the mul glass, a low concentration mul glass (hereinafter referred to as "mule glass (20%)") is used, in which the gel phase composed of the composition is composed of 20% by weight of mule glass and 80% by weight of mule.

그후 상기한 바와 같이 뮬유리가 첨가된 소지를 통상의 가성성형법으로 성형하여 성형체를 제조하게 된다.Thereafter, as described above, the glass to which the mul glass is added is molded by a conventional caustic molding method to produce a molded body.

즉, 상기 수쇄슬래그와 벤토나이트 원료를 상기 조성으로 배합하고 불밀에 장입한 다음 장시간 혼합 및 분쇄하여 각각의 소지용 원료를 제조한다. 이때 원료의 입도는 200메쉬 통과분이 95중량% 이상되도록 한다. 그후 이를 건조시켜 원료소지를 제조한 다음 뮬유리(20%)를 첨가, 혼합한 후 통상의 가압 성형법으로 성형체를 제조한다.That is, the crushed slag and bentonite raw materials are blended in the above composition, charged in an indel, and mixed and pulverized for a long time to prepare respective raw materials for holding. At this time, the particle size of the raw material is to be passed through 200 mesh 95% by weight or more. Thereafter, the raw material is dried to prepare a raw material, followed by addition and mixing of mulberry (20%), and then a molded product is manufactured by a conventional pressure molding method.

상기한 바와 같이 성형체를 제조한 다음 1050~1200℃의 온도에서 가열하여 소성함으로서 소성체를 제조한다. 상기, 소성온도가 1050℃이하인 경우에는 고강도의 곡강도를 지닌 소성체가 형성되지 않으며, 1200℃이상인 경우에는 고강도 소성체는 제조할 수 있지만 불균일한 소성수축으로 인한 변형 및 휨현상으로 원래의 현상을 유지하기 어려우며 원하는 형상을 제조하는 것이 불가능하다. 따라서 1050~1200℃에서 소성하는 것이 바람직하다.As described above, the molded body is prepared and then calcined by heating at a temperature of 1050-1200 ° C. to produce a fired body. In the case where the firing temperature is 1050 ° C. or less, a plastic body having a high strength bending strength is not formed. When the firing temperature is 1200 ° C. or more, a high strength plastic body may be manufactured, but the original phenomenon may be maintained due to deformation and bending due to uneven plastic shrinkage. It is difficult and impossible to produce the desired shape. Therefore, it is preferable to bake at 1050-1200 degreeC.

이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.

실시예 1Example 1

본 실시예에서는 수쇄슬래그, 벤토나이트와 뮬유리(20%)를 이용한 고강도 소성체 제조시험을 하기 위한 것으로, 조성물의 저나체 중량 기준으로 수쇄슬래그와 벤토나이트의 조성을 하기 <표 2>와 같이 변화되어 비교예 1,2 및 발명예 1~3의 소성체 제조용 원료를 배합하고 불밀을 사용하여 200메쉬 통과분이 95%이상이 되도록 분쇄한 후 건조시켜 소성체 원료 소지를 제조하였으며 하기 <표 2>에 그 조성을 나타냈다.In this embodiment, to test the production of high-strength calcined slag using hydroslag slag, bentonite and mule glass (20%), the composition of hydroslag slag and bentonite is changed as shown in Table 2 based on the low weight of the composition. The raw materials for the production of the fired bodies of Examples 1 and 2 and Inventive Examples 1 to 3 were blended and pulverized to 200% or more by passing through 200 mesh, and dried to prepare fired body raw materials. The composition was shown.

[표 2]TABLE 2

건조한 소성체 원료소지에 뮬유리(20%)를 10%첨가하여 가압성형한 다음 건조기에서 110℃로 건조하였다. 소성온도 1100℃에서 가열처리한 후 냉각하여 시편을 제조하였다. 3점 곡강도 시험으로 상기 각 시편의 곡강도를 측정하고 휨과 변형상태를 육안관찰하여 그 결과를 하기 <표 3>에 나타냈다.Mule glass (20%) was added to the dried calcined raw material by pressing 10% and dried at 110 ° C. in a dryer. After the heat treatment at a firing temperature of 1100 ℃ and cooled to prepare a specimen. The bending strength of each specimen was measured by a three-point bending test, and the bending and deformation states were visually observed and the results are shown in Table 3 below.

[표 3]TABLE 3

상기 <표 3>에 나타낸 바와 같이 비교예 1의 경우에는 360kgf/㎠로 고강도는 우수하지만 과소성으로 인한 휨 발생으로 제품으로서의 가치를 지니지 못하며 비교예 2의 경우에는 유리를 제외한 원료 소지의 80%가 수쇄슬래그로 정상적인 형상은 양호하게 유지되지만 고강도 특성인 300kgf/㎠이상이 곡강도를 나타내지 못하였다. 이에 반하여 발명에 1,2,3의 경우에는 외관이 양호할 뿐만 아니라 300kgf/㎠이상의 곡강도를 나타내었다.As shown in Table 3, the comparative example 1 has a high strength of 360kgf / ㎠, but does not have a value as a product due to the warpage caused by the underfiring, in the case of the comparative example 2 80% of the base material except glass Although the normal shape is maintained well as the hydrous slag, the high strength property of more than 300kgf / cm 2 did not show the bending strength. On the contrary, in the case of the inventions 1, 2 and 3, not only the appearance was good but also the bending strength of 300 kgf / cm 2 or more.

실시예 2Example 2

본 실시예는 뮬유리(20%)의 첨가량 변화에 대한 강도 및 외관변화를 측정한 것으로 발명예 1,2,3의 원료소지 조성물에 각각 5%, 10%, 20%의 뮬유리를 첨가하고 가압성형하여 성형체를 제조하였다. 그후 상기 성형체를 건조기를 이용하여 110℃로 건조한후 1100℃의 소성온도에서 열처리한 다음 냉각하여 시편을 제조하였다. 각 시편에 대하여 실시예 1과 같은 방법으로 곡강도 및 외관검사를 행하였으며 그 결과를 하기 <표 4>에 나타냈다.This example is to measure the change in strength and appearance of the addition amount of the mule glass (20%) by adding 5%, 10%, 20% of mule glass to the raw material composition of Examples 1, 2 and 3, respectively, The molded article was produced by pressing. Thereafter, the molded body was dried at 110 ° C. using a drier, heat treated at a firing temperature of 1100 ° C., and cooled to prepare a specimen. Each specimen was tested for bending strength and appearance in the same manner as in Example 1, and the results are shown in Table 4 below.

[표 4]TABLE 4

상기 <표 4>에 나타낸 바와 같이 발명예 1,2,3에 해당하는 원료소지에 5중량% 뮬유리가 첨가된 경우에는 외관은 양호하지만 3경우 모두 300kgf/㎠ 이하의 저강도를 나타냈으며, 뮬유리가 20중량% 첨가된 경우는 뮬유리 5중량%의 경우에 비해 곡강도는 370kgf/㎠이상으로 고강도의 소성체가 제조되지만 소성시의 불균일한 수축으로 인하여 형상이 변형되어 정상적인 제품으로 가치를 나타내지 못하는 불량품이 된다. 이에 반하여 뮬유리가 각각 10,15중량% 첨가된 경우에는 외관이 양호할 뿐만 아니라 곡강도 300kgf/㎠이상이 고강도를 나타내었다.As shown in Table 4, when 5% by weight of mulberry glass was added to the raw material of the invention examples 1,2,3, the appearance was good, but in all three cases, the low strength was less than 300kgf / cm2. When 20% by weight of mul glass is added, a high strength plastic body is manufactured with a bending strength of 370 kgf / cm2 or more compared to 5% by weight of mul glass, but the shape is deformed due to uneven shrinkage during firing, thereby indicating a value as a normal product. It becomes a defective product. On the contrary, when 10 and 15% by weight of each glass was added, not only the appearance was good but the bending strength of 300 kgf / cm 2 or more showed high strength.

따라서 본 발명의 실시예에 따라서 형상이 양호하면서 고강도의 곡강도를 유지하는 소성체를 제조하기 위해서는 본 발명의 원료소지에 뮬유리를 10-15중량%로 한정하여 첨가하는 것이 바람직하다.Therefore, according to the embodiment of the present invention, in order to manufacture a fired body having a good shape and maintaining high strength, it is preferable to add to the raw material holder of the present invention limited to 10-15% by weight.

실시예 3Example 3

본 실시예는 소성온도조건 변화에 따른 외관 및 강도변화를 측정한 것으로 발명예 1,2,3의 원료소지 조성물에 뮬유리(20%) 10중량%를 첨가하고 가압성형으로 성형체를 제조한 다음 각각 1000℃, 1050℃, 1100℃, 1150℃, 1200℃, 1250℃의 소성온도로 열처리하여 소성체를 제조하였다. 각 소성체에 대하여 실시예 1과 같은 방법으로 곡강도 및 외관검사를 행하였으며 그 결과를 하기 <표 5>에 나타냈다.This Example is to measure the change in appearance and strength according to the changes in the firing temperature conditions 10% by weight of mul glass (20%) was added to the raw material composition of the invention examples 1,2,3, and the molded article was produced by pressing The fired bodies were prepared by heat treatment at firing temperatures of 1000 ° C., 1050 ° C., 1100 ° C., 1150 ° C., 1200 ° C., and 1250 ° C., respectively. Each fired body was subjected to bending strength and appearance inspection in the same manner as in Example 1, and the results are shown in Table 5 below.

[표 5]TABLE 5

상기 <표 5>에 나타낸 바와 같이 1000℃에서 소성한 경우 외관은 양호하지만 소성체의 강도가 저조하며, 1250℃에서 소성한 경우에는 곡강도가 380kgf/㎠이상인 고강도의 소성체가 제조되지만 소성시의 불균일한 수축으로 인해 형상의 변형되어 정상적이 제품이 아닌 불량품이 된다. 이에 반하여 1050, 1100, 1150 및 1200℃에서 소성한 경우에는 외관이 양호할 뿐만 아니라 모두 곡강도 300kgf/㎠이상의 고강도를 나타냈다.As shown in <Table 5>, when fired at 1000 ° C., the appearance is good but the strength of the fired body is low. When fired at 1250 ° C., a high-strength fired body having a bending strength of 380 kgf / cm 2 or more is produced, but is uneven during firing. One shrinkage deforms the shape, resulting in a defective product rather than a normal product. On the other hand, when fired at 1050, 1100, 1150 and 1200 ℃, not only the appearance was good but also all showed a high strength of more than 300kgf / ㎠.

본 실시예의 결과에서 알 수 있듯이 형상이 양호함과 동시에 고강도의 곡강도를 유지하는 소성체를 제조하기 위해서는 본 발명의 발명에의 원료소지에 뮬유리를 10-15중량%로 첨가하고 1050-1200℃ 온도에서 가열하여 소성하는 것이 바람직하다.As can be seen from the results of this embodiment, in order to manufacture a fired body having good shape and high strength bending strength, 10-15% by weight of mul glass was added to the raw material of the invention of the present invention, and 1050-1200 ° C. It is preferable to bake by heating at a temperature.

상기한 바와 같이 본 발명의 방법으로 성형체를 제조하는 경우, 건축용재료 및 요업재료등 다양한 산업에 이용되는 외관이 우수하며 강도가 보다 개선된 성형체를 제조할 수 있을 뿐만 아니라 제철공정에서 부산물로 발생되는 고로슬래그를 활용할 수 있고 또한 부가가지가 높은 것이다.As described above, when the molded article is manufactured by the method of the present invention, the molded article having excellent appearance and improved strength, which is used in various industries such as building materials and ceramic materials, can be produced as well as by-products generated in the steelmaking process. The blast furnace slag can be utilized and the additional branches are high.

Claims (2)

수쇄슬래그, 벤토나이트 및 뮬유리를 원료로 하여 소성체를 제조함에 있어서, 상기 수쇄슬래그 50~70중량%와 벤토나이트 30~50중량%로 이루어진 원료를 200메쉬 통과분이 95%이상이 되도록 분쇄한 다음 건조시켜 원료용 소지를 제조하는 단계; 뮬유리를 함유하는 전체 소지의 중량기준으로 상기 소지에 뮬유리 10-15중량%를 첨가, 혼합한 다음 통상의 가압 성형법으로 성형체를 제조하는 단계; 및 상기 성형체를 1050~1200℃의 온도에서 가열하여 소성하는 단계; 로 구성됨을 특징으로 하는 수쇄슬래그를 이용한 고강도 소성체 제조방법.In manufacturing a fired body using hydrolyzed slag, bentonite and mulle glass as raw materials, the raw material consisting of 50 to 70 wt% of the hydrolyzed slag and 30 to 50 wt% of bentonite is pulverized so that the passage amount of 200 mesh is 95% or more and then dried. To prepare a raw material for the raw material; Adding 15-15% by weight of mule glass to the substrate, based on the weight of the entire body containing mullet, followed by mixing to prepare a molded body by a conventional pressure molding method; And firing the molded body by heating at a temperature of 1050 ~ 1200 ℃; High-strength plastic body manufacturing method using a hydroslag slag characterized in that consisting of. 1항에 있어서, 상기 뮬유리는 SiO235~38중량%, Na2O 17-18%중량 및 잔부 H2O로 조성된 뮬유리 20중량%와 뮬 80중량%로 조성된 저농도의 뮬유리임을 특징으로 하는 수쇄 슬래그를 이용한 고강도 소성체 제조방법.According to claim 1, The mul glass is a low concentration of mule glass composed of 20% by weight and 80% by weight of mule glass composed of 35 to 38% by weight of SiO 2 , 17-18% by weight of Na 2 O and the balance H 2 O A method for producing a high strength fired body using crushed slag, characterized in that.
KR1019940038256A 1994-12-28 1994-12-28 Process for the preparation of burned material using slug KR970008735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940038256A KR970008735B1 (en) 1994-12-28 1994-12-28 Process for the preparation of burned material using slug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940038256A KR970008735B1 (en) 1994-12-28 1994-12-28 Process for the preparation of burned material using slug

Publications (2)

Publication Number Publication Date
KR960022349A KR960022349A (en) 1996-07-18
KR970008735B1 true KR970008735B1 (en) 1997-05-28

Family

ID=19404518

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940038256A KR970008735B1 (en) 1994-12-28 1994-12-28 Process for the preparation of burned material using slug

Country Status (1)

Country Link
KR (1) KR970008735B1 (en)

Also Published As

Publication number Publication date
KR960022349A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
Abyzov Lightweight refractory concrete based on aluminum-magnesium-phosphate binder
JPS5964567A (en) Ceramic formed body, manufacture and structural member
CN103641503B (en) Anti-erosion mullite brick for blast furnace and preparation method thereof
CN107619267A (en) A kind of SiC reinforcement cordierite-mullite ceramic composite and preparation method thereof
CN109336575A (en) One kind re-sintering electric cast mullite brick and preparation method thereof containing zirconium
CN104944979A (en) Preparation method of firebrick used for rotary kiln
RU2269501C2 (en) Ceramic material and method for its preparing
CN112457031A (en) Low-creep high-alumina brick and preparation method thereof
JP7197654B1 (en) Sintering aid for producing silica brick, composite silica brick and method for producing the same
CN110526698A (en) A kind of cordierite heat resisting porcelain of highly thermally conductive highly heatproof and shockproof and preparation method thereof
US3008842A (en) Basic refractory insulating shapes
KR20110076107A (en) Method for preparation of clay brick
KR970008735B1 (en) Process for the preparation of burned material using slug
KR930011260B1 (en) Method of firebrick use with fly ash
KR20040091802A (en) Method for producing a brick and a bottom material comprising coal powders as a heat source for sintering
CN112573932A (en) Homogeneous body re-sintered fused zirconia mullite brick and preparation method thereof
CN109231961B (en) Deformation-resistant rapid-fired fine pottery blank and preparation and application method thereof
CN112521135A (en) Low-temperature sintered Al2O3Microwave dielectric material
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
JPH06144951A (en) Ceramic foam and production thereof
KR100310050B1 (en) method for forming canbon brick with fire resistance and corrosion resestance
KR930011261B1 (en) Process for preparation of firing ceramics
Suzdal'tsev et al. Intensified sintering of lithium aluminosilicate ceramics
CN117142877B (en) Preparation method of light silica brick and light silica brick obtained by preparation method
JPS5919073B2 (en) Method for manufacturing sintered compacts

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030902

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee