KR970005663B1 - Single crystal ferrite for magnetic head - Google Patents

Single crystal ferrite for magnetic head Download PDF

Info

Publication number
KR970005663B1
KR970005663B1 KR1019940005133A KR19940005133A KR970005663B1 KR 970005663 B1 KR970005663 B1 KR 970005663B1 KR 1019940005133 A KR1019940005133 A KR 1019940005133A KR 19940005133 A KR19940005133 A KR 19940005133A KR 970005663 B1 KR970005663 B1 KR 970005663B1
Authority
KR
South Korea
Prior art keywords
single crystal
crystal ferrite
magnetic flux
flux density
magnetic head
Prior art date
Application number
KR1019940005133A
Other languages
Korean (ko)
Other versions
KR950027683A (en
Inventor
윤정수
Original Assignee
엘지전자 주식회사
구자홍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 구자홍 filed Critical 엘지전자 주식회사
Priority to KR1019940005133A priority Critical patent/KR970005663B1/en
Publication of KR950027683A publication Critical patent/KR950027683A/en
Application granted granted Critical
Publication of KR970005663B1 publication Critical patent/KR970005663B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/133Structure or manufacture of heads, e.g. inductive with cores composed of particles, e.g. with dust cores, with ferrite cores with cores composed of isolated magnetic particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A single crystal ferrite being suitable to increase a saturated magnetic flux density and an intial permeability in a high frequency area is disclosed. Since the single crystal ferrite for a magnetic head includes Fe2O3, MnO, and ZnO as a single crystal ferrite mother composition and SnO2, V2O5, as an additive, the single crystal ferrite for a magnetic head has a good initial transmission coefficient and a high saturating magnetic flux intensity. The single crystal ferrite can be used for a high functional head.

Description

자기헤드용 단결정 페라이트Monocrystalline Ferrite for Magnetic Head

제1도는 단결정 페라이트를 이용한 자기헤드의 제조공정도.1 is a manufacturing process diagram of a magnetic head using single crystal ferrite.

제2도는 본 발명의 단결정 페라이트의 신규 조성영역을 나타낸 그래프 상태도.2 is a graph showing a novel composition region of the single crystal ferrite of the present invention.

본 발명은 자기헤드용 단결정 페라이트(ferrite)에 관한 것으로, 특히 단결정 페라이트의 조성을 신규 영역으로 설정함으로써 높은 포화자속밀도와 고주파 대역에서의 초기 투자율이 증대되는데 적합한 단결정 페라이트에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to single crystal ferrites for magnetic heads, and more particularly, to single crystal ferrites suitable for increasing the high saturation magnetic flux density and initial permeability in the high frequency band by setting the composition of the single crystal ferrites to a new region.

일반적으로 VCR영상용 자기헤드에 사용되는 Mn-Zn단결정 페라이트는 전기 비저항의 높고 초기투자율 값과 포화자속밀도가 크며 내마모성등의 기계가공성이 우수하여 현재까지 각광을 받고 있다. 상기한 종래의 단결정 페라이트는 〈표 1〉과 같이 몰비(mol%)로써, Fe2O3: 51∼54%, MnO : 27∼33%, ZnO : 16∼20%로 조성하여 제1도와 같은 공정을 통하여 이루어진다.In general, Mn-Zn single crystal ferrites used in magnetic heads for VCR images have been spotlighted because of their high electrical resistivity, high initial permeability, high saturation magnetic flux density, and excellent machinability such as wear resistance. The conventional single crystal ferrite as described in <Table 1> is composed of Fe 2 O 3 : 51 to 54%, MnO: 27 to 33%, and ZnO: 16 to 20%, as shown in FIG. It is through the process.

즉,〈표 1〉과 같은 조성물은 칭량, 혼합한후, 일반적인 분말야금법(제1도에서 S3∼S5으로 처리한다.That is, the composition as shown in <Table 1> is weighed and mixed, and then treated with a general powder metallurgy method (S 3 to S 5 in FIG. 1).

이렇게 처리하여 준비된 〈110〉방향을 갖는 종결점을 백금도가니내의 좁은 관속에 삽입시켜 700℃이상의 높은 온도에서 용융후 3㎜/hr속도로 성장시킨다. 이때 결정성장시 보충원료를 도가니 하강속도와 일치되도록 시간당 50∼70히 정도로 연속투입하여 단결정 화학조성의 균일성이 되도록 한다.The end point having the &lt; 110 &gt; direction thus prepared was inserted into a narrow tube in a platinum crucible and grown at a rate of 3 mm / hr after melting at a high temperature of 700 DEG C or higher. At this time, the supplementary raw material is continuously added at about 50 to 70 hrs per hour so as to match the crucible descent rate during crystal growth so that the uniformity of single crystal chemistry is achieved.

이렇게 결정성장된 잉곳(Ingot)에 대해서 -50℃/hr속도로 냉각(cooling)한 후, S7∼S11공정과 같이 이곳에 대해 선단 및 블록(Block)절단(cutting)하여 방위 측정하고, 화학분석 및 전자기 분석한후 헤드 제조하여 헤드 특성을 분석한다.After cooling at -50 ° C / hr on the crystal-grown ingot, the azimuth is measured by cutting the tip and block about the same as in the S 7 to S 11 process, After chemical analysis and electromagnetic analysis, the head is manufactured and analyzed.

〈표 1〉은 이에 대한 특성을 나타낸 것으로, 내경 5㎜, 외경 8㎜, 두께 0.5㎜로된 토로이달 샘플(Toroidal Sample)로 포화자속밀도(B10) 및 초기 투자율(μi)을 측정하였고, 60×16t디스크를 경면연마하여 백금 혼입수를 광학현미경으로 측정하였다. 이에 나타낸 바와같이 초기 투자율 값은 5MHz와 7MHz대역에서 각각 500∼650, 200∼350이고, 자장(magnetic field)이 10Oe(오메르 스테드)에서는 포화자속밀도(Bs) 값이 4200∼5000gauss(가우스) 정도이다. 상기 특성값은 종래의 헤드재로서 어느정도 만족할 수 있는 스팩(spec)이다.<Table 1> shows the characteristics thereof, and the saturation magnetic flux density (B 10 ) and initial permeability (μi) were measured using a toroidal sample having an inner diameter of 5 mm, an outer diameter of 8 mm, and a thickness of 0.5 mm. 60 × 16 t disks were mirror polished to measure platinum incorporation using an optical microscope. As shown in this figure, the initial permeability values are 500 to 650 and 200 to 350 in the 5 MHz and 7 MHz bands, respectively. It is enough. The characteristic value is a spec that can be satisfactorily satisfied as a conventional head material.

그 이유로는 종래 Tape는 Co-γ계 산화철 Tape이며 그 보자력은 600Oe(오메르 스테드) 정도로서 이에 대응가능한 Head특성은 Tape특성값 보자력에 적어도 7배 이상의 포화자속밀도값을 갖어야만이 양호한 화질을 제공할 수 있다. 즉 4200gauss이상의 Bs(헤드의 포화자속밀도값) 특성값을 획득해야 종래의 헤드재로서 사용가능하였다.The reason is that the conventional tape is Co-γ-based iron oxide tape and its coercive force is about 600Oe (Omersted), and the corresponding head characteristic should have a saturation magnetic flux density of at least 7 times the coercive force of the tape to provide good image quality. can do. That is, it was possible to use it as a conventional head material only when Bs (saturation magnetic flux density value) characteristic value of 4200gauss or more was obtained.

그러나, 이와같은 종래 기술에서는 사용주파수 대역으로 7∼8MHz를 갖는 고급형 하이파이(Hi-Fi)8㎜캠코더 및 SVHS(Super Video Home system)등의 메탈테이프(metal tape)에는 부적합하다.However, such a prior art is not suitable for metal tapes such as high-definition Hi-Fi 8 mm camcorders and Super Video Home systems (SVHS) having a 7 to 8 MHz frequency band.

그 부적합한 이유로 7∼9MHz의 주파수 대역에서 초기 투자율 값이 상당히 떨어지므로 테이프의 접동노이즈가 크기 때문에 결국 헤드로써의 기능이 저하하기 때문이다.The reason for this is that the initial permeability value drops considerably in the frequency band of 7 to 9 MHz because of the large sliding noise of the tape, which eventually degrades the function of the head.

이에 본출원인 상기한 문제점을 개선한 것으로 고주파 대역(7∼8MHz)에서 초기 투자율이 높으며 테이프 접동노이즈를 작게한 페라이트를 93-5291호로 국내에 특허출원(이하 “선출원”이라 함)한 바 있다(제2도의 좌측영역 : A∼E영역). 여기에서의 특성은 포화자속밀도를 유지하면서(4500∼4800),초기 투자율(7MHz에서 400∼550)을 크게 향상시켰다. 그러나 고밀도 기록을 제공해 줄 수 있는 메탈테이프의 보자력은 900Oe정도로서 적어도 6000gauss이상의 Bs값을 제공할 수 있는 헤드가 요청되고 있으나, 선출원기술은 초기투자율을 높이면서 동시에 높은 포화자속밀도를 동시에 충족하지 못하고 있다.As a result of improving the above-mentioned problems, ferrite, which has a high initial permeability in the high frequency band (7 to 8 MHz) and low tape sliding noise, has been patented in Korea (hereinafter referred to as “pre-application”) at 93-5291. Area on the left side of Fig. 2: area A to E). The characteristics here greatly improved the initial permeability (400 to 550 at 7 MHz) while maintaining the saturation magnetic flux density (4500 to 4800). However, the coercive force of metal tape that can provide high density recording is about 900Oe, and the head that can provide Bs value of at least 6000gauss is required, but the prior application technology does not satisfy the high saturation flux density at the same time while increasing the initial permeability. .

이에 본 발명은 상기한 종래 기술보다 초기 투자율은 물론 포화자속밀도가 월등히 높고, 또한, 선출원보다 초기 투자율이 크게 뒤떨어지지 않으면서도 높은 포화자속밀도를 갖는 단결정 페라이트를 제공하고자 하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a single crystal ferrite having a higher initial permeability as well as a saturation magnetic flux density, and a high saturation magnetic flux density without significantly inferior to the prior application.

이하에서 이와 같은 목적을 달성하기 위한 본 발명의 실시예를 첨부된 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention for achieving such an object will be described in detail by the accompanying drawings.

제2도는 본 발명의 단결정 페라이트의 신규모조성(母組成)영역을 설명하기 위한 것으로, Fe2O3, MnO, ZnO를 mol%로 좌표점을 갖는 A(65, 15, 20), B(70, 12, 18), C(65, 25, 10), D(70, 22, 8)로 각점을 설정한 후 직선를 각각 여결하여 모조성(母組成)영역이 결정되고, 이 모조성 영역에 V2O5를 0.22∼0.5중량%, SnO2를 0.5∼2.0mol% 첨가하여서 된 단결정 페라이트로 이루어진다.2 is for explaining the novel simulated region of the single crystal ferrite of the present invention, A (65, 15, 20), B (70) having coordinate points in mol% of Fe 2 O 3 , MnO, ZnO Straight line after setting each point with,, 12, 18), C (65, 25, 10), D (70, 22, 8) The crystalline regions were determined by quenching, respectively, and consisted of single crystal ferrite obtained by adding 0.22 to 0.5% by weight of V 2 O 5 and 0.5 to 2.0 mol% of SnO 2 to the simulated regions.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

실시예 1Example 1

본 실시예는〈표 2〉와 같은 조성물로 하였다(제2도에서 E점 설정).This Example was set as the composition shown in <Table 2> (the point E set in FIG. 2).

원료처리는 일반적인 분말야급법으로 동일하게 해주었다. Ingot Size는 본 발명과 종래 및 선출원재를 동일하게하여 (60ψ×450ι)성장을 시켰으나 성장온도점은 서로 상이하였다.Raw material processing was the same with the general powder feeding method. Ingot Size was grown (60ψ × 450ι) by making the present invention the same as the prior art, and the growth temperature was different from each other.

종래재의 성장온도점은 1690℃였고 본 발명은 1650℃에 성장이 가능하였다. 종래보다 낮은 온도에서도 성장이 가능했던 이유로서는 SnO2와 V2O5원소로 첨가해 주므로서 ferrite의 융점을 낮출 수 있었다.The growth temperature point of the conventional material was 1690 ° C and the present invention was able to grow at 1650 ° C. The reason why it was possible to grow at lower temperature than before was that the melting point of ferrite could be lowered by adding SnO 2 and V 2 O 5 elements.

결국 백금혼입량을 파격적으로 줄여줄 수 있었다. 특성측정방법은 획득한 Ingot을 wafering가공후 내경 4㎜, 외경 8㎜, 두께 0.5㎜의 Toroidal 초기 투자율값을 측정하였다.In the end, the platinum mix could be reduced dramatically. In the characteristic measurement method, the obtained ingot was measured by Toroidal initial permeability of 4mm, 8mm and 0.5mm thickness after wafering.

B10(포화자속밀도)측정은 내경 4㎜, 외경 8㎜, 두께 1㎜의 Torordal제작후 10Oc(오에르스테드)자계에서 측정하였다.B 10 (saturated magnetic flux density) was measured at 10c (Oersted) magnetic field after Torordal fabrication of 4mm inner diameter, 8mm outer diameter and 1mm thickness.

백금혼입량 측정은 1μm Diamond Slurry로 경면연마해준후 광학현미경으로 측정하였다.Platinum content was measured by mirror polishing with 1μm Diamond Slurry and measured by optical microscope.

결과들에 대해서는 하기〈표 2〉와 같이 나타났다.The results are shown in Table 2 below.

본 발명에 대한 상기 실시예는 포화자속밀도(B10)특성값이 6300gauss이상을 갖을 수 있는 대표적인 화학 모조성을 선정하여 SnO2와 V2O5를 첨가한 것으로 상기〈표 2〉와 같이 높은 초기 투자율(7MHz에서 450)과 함께 종래 및 선출된 보다 포화자속밀도 값이 월등히 높은 6400gauss정도로 나타났다.In the above embodiment of the present invention, the saturation magnetic flux density (B 10 ) characteristic value is 6300gauss or more to select a typical chemical model to add SnO 2 and V 2 O 5 to the high initial as shown in Table 2 Along with the permeability (450 at 7 MHz), the saturation magnetic flux density value was much higher than that of conventional and elected 6400gauss.

실시예 2Example 2

본 실시예는 포화자속밀도 값이 6300gauss이상이고, 고주파 특성(7MHz)에서 400 이사으이 높은 투자율 값을 얻을 수 있는 모조성의 한계범위를 알기 위해〈표 3〉과 같이 모조성을 변화시켜(특히 Fe2O3량) 실험한 것이다.In this embodiment, the saturation magnetic flux density value is 6300gauss or more, and in order to know the limit range of the counterfeitability which can obtain a permeability value of 400 moving points at high frequency characteristics (7MHz), the counterfeit property is changed as shown in Table 3 (particularly Fe 2 O 3 amount) was an experiment.

실험에 다른 제조방법은 실시예 1과 동일하게 하였다.Another manufacturing method in the experiment was the same as in Example 1.

그 결과〈표 3〉에서 나타난 바와 같이, 본 발명의 모조성 범위를 벗어난 비교재(시료 4)는 Fe2O3량이 적게 함유되어 포화자속밀도 값이 기대치에 못미치게 되었고, 비교재(시료 5)는 Fe2O3량이 과다하게 함유되어 포화자속밀도 값은 높았으나 초기투자율 값이 기대치에 미치지 못하였다.As a result, as shown in <Table 3>, the comparative material (Sample 4) outside the range of imitation of the present invention contained less Fe 2 O 3 content so that the saturation magnetic flux density value was lower than expected, and the comparative material (Sample 5) ), The saturation magnetic flux density was high due to the excessive amount of Fe 2 O 3, but the initial permeability did not meet expectations.

따라서 Fe2O3량을 65∼70mol%범위내로 함이 바람직하였다.Therefore, the Fe 2 O 3 amount is preferably in the range of 65 to 70 mol%.

이상에서와 같이 본 발명은 단결정 페라이트 모조성뭘을 Fe2O3, MnO, ZnO로 하되 그 조성비를 종래 또는 선출원기술과 달리하고 여기에 SnO2, V2O5를 첨가함으로써 초기 투자율을 비롯한, 특히 높은 포화자속밀도를 갖는 단결정 페라이트를 얻을 수 있어 이를 이용한 고기능성 헤드용에 널리 이용될 수 있다.As described above, the present invention uses Fe 2 O 3 , MnO, and ZnO as a single crystal ferrite dummy, and its composition ratio is different from the conventional or prior application technology, including the initial permeability by adding SnO 2 , V 2 O 5 , In particular, it is possible to obtain a single crystal ferrite having a high saturation magnetic flux density, which can be widely used for high-functional heads using the same.

Claims (1)

모조성(母組成)이 몰비(mol%)로 좌표상의 A점(Fe2O365%, MnO 15%, ZnO 20%), B점(Fe2O370%, MnO 12%, ZnO 18%), C점(Fe2O365%, MnO 25%, ZnO 10%), D점(Fe2O370%, MnO 22%, ZnO 8%)으로하여 각 좌표점이 AB, BD, DC, CA간에 직선으로 각각 연결한 영역내에 있고, 상기 영역내에 SnO2를 0.5∼2.0mol%, V2O5중량% 첨가하여 조성됨을 특징으로 하는 자기헤드용 단결정 페라이트.Mole ratio (mol%), A point (Fe 2 O 3 65%, MnO 15%, ZnO 20%) on coordinates, B point (Fe 2 O 3 70%, MnO 12%, ZnO 18 %), C point (Fe 2 O 3 65%, MnO 25%, ZnO 10%), D point (Fe 2 O 3 70%, MnO 22%, ZnO 8%). In a region connected to each other in a straight line between CA and 0.5 to 2.0 mol% of SnO 2 and 5 % by weight of V 2 O in said region.
KR1019940005133A 1994-03-15 1994-03-15 Single crystal ferrite for magnetic head KR970005663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940005133A KR970005663B1 (en) 1994-03-15 1994-03-15 Single crystal ferrite for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940005133A KR970005663B1 (en) 1994-03-15 1994-03-15 Single crystal ferrite for magnetic head

Publications (2)

Publication Number Publication Date
KR950027683A KR950027683A (en) 1995-10-18
KR970005663B1 true KR970005663B1 (en) 1997-04-18

Family

ID=19378936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940005133A KR970005663B1 (en) 1994-03-15 1994-03-15 Single crystal ferrite for magnetic head

Country Status (1)

Country Link
KR (1) KR970005663B1 (en)

Also Published As

Publication number Publication date
KR950027683A (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US6210598B1 (en) Mn-Zn ferrite
US6375862B1 (en) Ferrite sintered compact
US6547984B2 (en) Mn-Zn ferrite and production process thereof
EP1138648B1 (en) Mn-Zn ferrite and production process thereof
KR960012995B1 (en) Single crystal ferrite
US6180022B1 (en) Mn-Zn ferrite
EP0136599B1 (en) Barium ferrite magnetic powder and recording medium employing the same
US6468441B1 (en) Mn-Zn ferrite and production process thereof
KR970005663B1 (en) Single crystal ferrite for magnetic head
EP0350101B1 (en) Monocrystalline mnzn-ferroferrite material having a high content of zn, and a magnetic head manufactured from said material
US4719148A (en) Magnetic head having a core of Mn-Zn-Co ferrous ferrite
EP0086005B1 (en) Magnetic head
US6461531B2 (en) Mn-Zn ferrite and production process thereof
JPH0244099A (en) Single crystal ferrite, magnetic head using same, and production of single crystal ferrite
US4331548A (en) Ferrite single crystal and magnetic head containing the same
JPS6156185B2 (en)
KR900007425B1 (en) Mn-zn ferrite singlecrystal manufacturing method for ctr head
KR880002423B1 (en) Mn zn single crystal ferrite
KR890004866B1 (en) Amorphous alloy for audio head
KR960015989B1 (en) Junction ferrite magnetic head
JPS61101458A (en) Manganese base ferrite composition
KR890004864B1 (en) Magnetic alloy for magnetic head
KR0143068B1 (en) A method of oxide magnetized material
JPH05217734A (en) Low-loss manganese zinc ferrite and its production
JPS6249645B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000321

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee