Claims (8)
입력 음성신호를 양자화하여 음성을 대표하는 특징벡터를 추출하는 음성특징 추출과정과, 상기 추출된 음성 특징벡터열을 데이타 베이스화된 중심어모델의 중심어와 이에 대응하는 필러모델의 비중심어를 이용하여 중심어 누적 확율값과 이에 대응되는 비중심어의 확율값을 추출하는 중심어 추출과정과, 상기 추출된 중심어의 확율값과 비중심어 확율값의 비를 연산하여 중심어를 판정하는 중심어판단과정으로이루어짐을 특징으로 한 음성인식 시스템의 중심어 인식방법.Speech feature extraction process for extracting feature vectors representing speech by quantizing an input speech signal, and accumulating the extracted core feature vectors by using the center word of the database-centered central word model and the non-center word of the corresponding filler model A central word extraction process for extracting a probability value and a probability value of a non-central word corresponding thereto, and a central word determination process for determining a central word by calculating a ratio of the probability value and the non-central probability value of the extracted central word. Recognition method of core word in recognition system.
제1항에 있어서, 중심어모델은 인식대상 중심어 집합과 이들 중심어가 포함한 문장으로 구성된 데이타베이스를 이용해서 중심어만을 추출하여 각각의 중심어 그룹에 대해 은익 마코브 모델을 만들어 이루어진 것을 특징으로 한음성인식 시스템의 중심어 인식방법.The central word model of claim 1, wherein the central word model is made of a hidden markov model for each central word group by extracting only the central word by using a database composed of the central word set and sentences included in the central word. Recognition method.
제1항에 있어서, 필러모델은 중심어모델의 중심어에 대응되는 유사 음성으로 된 것을 특징으로 하는 한 음성인식 시스템 중심어 인식방법.The method of claim 1, wherein the filler model is a pseudo-voice corresponding to the central word of the central word model.
제3항에 있어서, 필러모델의 유사음성은 비중심어를 제거하여 얻어진 음성이 입력될시 오류알람이 발생된 경우의 음성구간으로 함을 특징으로 한 음성인식 시스템의 중심어 인식방법.4. The method of claim 3, wherein the similar voice of the filler model is a voice section when an error alarm occurs when a voice obtained by removing the non-central word is input.
제3항에 있어서, 필러모델의 갯수는 중심어 갯수와 동일하고 각각의 중심어로 잘못 스포팅된 유사음성 구간을 이용해서 중심어모델에 대응되는 모델로 이루어진 것을 특징으로 한 음성인식 시스템의 중심어 인식방법.4. The method of claim 3, wherein the number of pillar models is the same as the number of core words and is made of a model corresponding to the central word model using a similar voice interval spotted incorrectly.
제1항에 있어서 중심어판단과정은 중심어의 확율값과 비중심어 확율값의 비가 1보다 크면 중심어로 인식하고 작으면 비중심어로서 제거하는 것을 특징으로 한 음성인식 시스템의 중심어 인식방법.2. The method of claim 1, wherein the process of determining the central word recognizes the central word when the ratio of the probability value of the central word and the non-central word probability value is larger than 1, and removes the non-centered word when the ratio is small.
입력 음성신호를 양자화하여 특징벡터를 추출하는 음성인식수단과, 중심어만을 추출하여 데이타 베이스화된 중심어모델수단과, 상기 중심어모델수단에 데이타 베이스화딘 중심어의 갯수와 동일하고 각각의 중심어로 잘못 스포팅된 유사음성구간을 이용해서 중심어에 대응되는 유사음성이 데이타 베이스화되어 있는 필러모델수단과, 상기 음성인식수단에서 추출된 음성데이타의 특징벡터열을 상기 중심어모델수단의 중심어와 필러모델 수단의 비중심어를 이용하여 중심어 누적 확율값과 이에 대응되는 비중심어의 확율값을 각각 구하여 중심어를 추출하는 중심어추출 인식수단과, 상기 중심어추출 인식수단에서 추출된 중심어 확율값과 이에 대응하는 비중심어 확율값의 비를 연산하여 중심어를 판단하는 리젝션수단으로 구성함을 특징으로 하는 한 음성인식 시스템의 중심어 인식장치.Speech recognition means for quantizing the input speech signal to extract the feature vector, central word model means for extracting only the central word and database, and similarity to the central word model means equal to the number of database word center words and wrongly spotted for each central word Filler model means having a database of similar voices corresponding to the central word by using the speech section, and feature vector strings of the speech data extracted from the speech recognition means are used as the central word of the central model model means and the non-central word of the filler model means. Calculating a ratio of the central word extraction means and extracting the central word, and calculating the ratio of the central word probability value extracted from the central word extraction recognition means and the corresponding non-central probability value. By rejection means for judging the central word Stem word recognition unit of the speech recognition system.
제7항에 있어서, 음성인식수단은 입력된 음성신호를 전기적인신호로 변화하여 주는 입력수단과, 상기 입력수단을 통한 전기적인 음성신호를 저역필터링하는 저역필터와, 상기 저역필터로 부터 필터링된 아날로그 음성신호를 디지탈 음성신호로 변환하는 아날로그/디지탈 변환기와, 상기 아날로그/디지탈 변환기에서 변환된 음성데이타의 특징벡터를 추출하여 중심어추출 인식수단으로 입력하는 특징추출기로 구성함을 특징으로 한 음성인식 시스템의 중심어 인식장치.8. The apparatus of claim 7, wherein the voice recognition means comprises: an input means for converting the input voice signal into an electrical signal, a low pass filter for low pass filtering the electric voice signal through the input means, and a low pass filter filtered from the low pass filter; Voice recognition comprising: an analog / digital converter for converting an analog voice signal into a digital voice signal; and a feature extractor for extracting feature vectors of the voice data converted from the analog / digital converter and inputting them to the central word extraction recognition means. System's core word recognition device.
※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.