KR960010083B1 - Process for the preparation of ammonium thiosulfate - Google Patents

Process for the preparation of ammonium thiosulfate Download PDF

Info

Publication number
KR960010083B1
KR960010083B1 KR1019930023754A KR930023754A KR960010083B1 KR 960010083 B1 KR960010083 B1 KR 960010083B1 KR 1019930023754 A KR1019930023754 A KR 1019930023754A KR 930023754 A KR930023754 A KR 930023754A KR 960010083 B1 KR960010083 B1 KR 960010083B1
Authority
KR
South Korea
Prior art keywords
ammonium thiosulfate
hydrogen sulfide
ammonia
catalyst reactor
sulfur
Prior art date
Application number
KR1019930023754A
Other languages
Korean (ko)
Other versions
KR950013979A (en
Inventor
양오봉
김병기
정종식
남인식
Original Assignee
조말수
포항종합제철주식회사
백덕현
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조말수, 포항종합제철주식회사, 백덕현, 재단법인산업과학기술연구소 filed Critical 조말수
Priority to KR1019930023754A priority Critical patent/KR960010083B1/en
Publication of KR950013979A publication Critical patent/KR950013979A/en
Application granted granted Critical
Publication of KR960010083B1 publication Critical patent/KR960010083B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/64Thiosulfates; Dithionites; Polythionates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The process includes the steps of; (a) oxidizing hydrogen sulfide and ammonia with air or oxygen in heterogeneous oxidation catalyst reactor(A); (b) condensing the product by condenser(B) and separating the condensed mixture solution into ammonium thiosulfate and sulfur by solid-liquid separator(c); (c) recovering the concentrated or crystallized ammonium thiosulfate by filtering and concentrating the separated ammonium thiosulfate; (d) recycling the ammonia, evaporated from the concentrator(E), and recycling the hydrogen sulfide made by hydrogenating the sulfur produced as a byproduct in hydrogenation catalyst reactor.

Description

티오황산암모늄((NH4)2S2O3) 제조방법Ammonium Thiosulfate ((NH4) 2S2O3)

제1도는 본 발명의 제조방법에 따른 공정의 개략도.1 is a schematic view of a process according to the manufacturing method of the present invention.

본 발명은 황화수소(H2S)와 암모니아(NH3)를 원료로하여 티오황산암모늄(ammonium thiosulfate, (NH4)2S2O3)를 연속적으로 제조하는 방법에 관한 것이다. 좀더 상세히 언급하면, 불균일상 촉매를 이용하여 기상 산화반응에 의하여 황화수소와 암모니아로부터 티오황산암모늄을 제조하는 방법에 관한 것이다.The present invention relates to a method of continuously producing ammonium thiosulfate (NH 4 ) 2 S 2 O 3 ) using hydrogen sulfide (H 2 S) and ammonia (NH 3 ) as raw materials. More specifically, the present invention relates to a method for producing ammonium thiosulfate from hydrogen sulfide and ammonia by gas phase oxidation using a heterogeneous catalyst.

티오황산암모늄은 흰색 결정으로 물에 잘 용해되며, 밀도는 1.679g/㎤이다. 티오황산암모늄 용액은 50℃ 이하에서 서서히 분해되고, 100℃ 이상에서 아황산암모늄((NH4)2SO3)과 원소황(S)으로 분해되며, 50% 정도는 사진 현상액으로 50% 정도는 농업용으로 사용되고 있다. 본래 티오황산암모늄은 아황산암모늄((NH4)2SO3)과 황화물(sulfides) 또는 다황화물(polysulfides)의 반응에 의해 제조되었으며, 이를 반응식으로 자세히 설명하면 다음과 같다.Ammonium thiosulfate is white crystals, soluble in water and has a density of 1.679 g / cm 3. The ammonium thiosulfate solution is slowly decomposed at 50 ° C or lower, and decomposed into ammonium sulfite ((NH 4 ) 2 SO 3 ) and elemental sulfur (S) at 100 ° C or higher. About 50% is a photographic developer and 50% is used for agriculture. Is being used. Originally, ammonium thiosulfate was prepared by the reaction of ammonium sulfite ((NH 4 ) 2 SO 3 ) with sulfides or polysulfides, which is described in detail as follows.

(NH4)2SO3+(NH4)2S8→ (NH4)2S2O3+(NH4)2S7(1)(NH 4 ) 2 SO 3 + (NH 4 ) 2 S 8 → (NH 4 ) 2 S 2 O 3 + (NH 4 ) 2 S 7 (1)

(NH4)2SO3+(NH4)2S7→ (NH4)2S2O3+(NH4)2S6(2)(NH 4 ) 2 SO 3 + (NH 4 ) 2 S 7 → (NH 4 ) 2 S 2 O 3 + (NH 4 ) 2 S 6 (2)

상기 (1) 및 (2) 유형의 반응이 계속되어 최종적인 다황화물(polysulfide, (NH4)2Sx)가 황화암모늄(ammonium sulfide)이 될때까지 계속되며, 최종 반응은 아황산(SO2) 또는 아황산수소암모늄(ammonium bisulffite)에 의하여 반응식(3)과 같이 종결된다.The reactions of the above (1) and (2) types are continued until the final polysulfide (NH 4 ) 2 Sx becomes ammonium sulfide, and the final reaction is sulfurous acid (SO 2 ) or Ammonium bisulffite is terminated as in Scheme (3).

3SO2+(NH4)2SO3+2(NH4)2S → 3(NH4)2S2O3(3)3SO 2 + (NH 4 ) 2 SO 3 +2 (NH 4 ) 2 S → 3 (NH 4 ) 2 S 2 O 3 (3)

이렇게 만들어진 용액은 활성탄 처리에 의하여 색을 맑게하며 미량의 황을 제거하기 위하여 여과되어진다. 무수결정형태의 티오황산암모늄을 만들기 위해서는 암모니아 존재하에서 저온건조처리되어야 한다. 현재 상업적으로는 회분식과 연속반응기에서 과량의 황을 사용하여, 85~110℃ 운전조건에서 반응식(4)와 같이 아황산암모늄과 직접 반응시켜 제조하고 있다.(미국특허 No. 3,473,891(Oct. 21, 1969)참조).The solution thus made is cleared by activated carbon treatment and filtered to remove traces of sulfur. Ammonium thiosulfate in anhydrous crystalline form must be dried at low temperature in the presence of ammonia. Currently commercially prepared by using an excess of sulfur in a batch and a continuous reactor, reacted directly with ammonium sulfite as in Scheme (4) at 85 ~ 110 ℃ operating conditions (US Patent No. 3,473,891 (Oct. 21, 1969).

(NH4)2SO3+S → (NH4)2S2O3(4)(NH 4 ) 2 SO 3 + S → (NH 4 ) 2 S 2 O 3 (4)

이때 얻어진 티오황산암모늄은 농축없이 70% 정도 농도이며, 미반응된 과량의 황은 여과에 의해 분리되고, 용액의 색깔은 활성탄 또는 규산나트륨(sodium silicate)처리에 의하여 맑게된다.The obtained ammonium thiosulfate is at a concentration of about 70% without concentration, unreacted excess sulfur is separated by filtration, and the color of the solution is cleared by treatment with activated carbon or sodium silicate.

전술한 선행기술은 티오황산암모늄을 제조하기 위하여 아황산암모늄과 황화물을 반응물로 사용한다. 이에 반하여, 본 발명에서는 선행기술과는 전혀 다르게 황화수소(H2S)와 암모니아(NH3)를 원료로 사용하여 공기 또는 산소로 산화반응을 시킴으로써 직접 티오황산암모늄을 연속적으로 제조할 수 있는 방법을 제공하고자 하는 것이다. 본 발명에 의하여, 불균일 산화촉매 반응기(A)에서 황화수소와 암모니아를 공기 또는 산소로 직접 산화시키는 단계; 반응생성물을 냉각기(B)를 통해 응축시키고 응축된 티오황산암모늄과 원소황의 혼합물을 물로 용해시켜 고액분리기(C)에서 원소황 및 티오황산암모늄 용액을 분리시키는 단계; 분리된 티오황산암모늄 용액을 여과기(D)를 통과시킨 다음 농축기(E)에서 농축시켜 농축액상태 또는 결정상태의 티오황산암모늄을 회수하는 단계; 및 농축기에서 증발 산출되는 암모니아를 재순환시키고 부산물로서 산출되는 원소황을 수소화 촉매반응기(F)상에서 수소화시켜 황화수소로 재순환시키는 단계를 포함하여 구성되는, 황화수소와 암모니아로부터 티오황산암모늄을 연속적으로 제조하는 방법이 제공된다.The foregoing prior art uses ammonium sulfite and sulfides as reactants to produce ammonium thiosulfate. On the contrary, the present invention provides a method for continuously producing ammonium thiosulfate continuously by oxidizing with air or oxygen using hydrogen sulfide (H 2 S) and ammonia (NH 3 ) as raw materials. It is to provide. According to the present invention, a step of directly oxidizing hydrogen sulfide and ammonia to air or oxygen in a heterogeneous oxidation catalyst reactor (A); Condensing the reaction product through a cooler (B) and dissolving the condensed mixture of ammonium thiosulfate and elemental sulfur in water to separate the elemental sulfur and ammonium thiosulfate solution in the solid-liquid separator (C); Passing the separated ammonium thiosulfate solution through a filter (D) and then concentrating in a concentrator (E) to recover ammonium thiosulfate in a concentrated or crystalline state; And recycling the ammonia produced by evaporation in the concentrator and hydrogenating the elemental sulfur produced as a by-product on a hydrogenation catalytic reactor (F) to hydrogen sulfide. This is provided.

이제 본 발명을 첨부도면을 참조하여 설명한다.The present invention will now be described with reference to the accompanying drawings.

제1도에서, 티오황산암모늄이 생성되는 산화촉매반응기(A)애서의 반응은 다음 반응식(5)로 나타낼 수 있다.In FIG. 1, the reaction in the oxidation catalyst reactor (A) in which ammonium thiosulfate is produced can be represented by the following reaction formula (5).

2H2S+2NH3+2O2→ (NH4)2S2O3+H2O(5)2H 2 S + 2NH 3 + 2O 2 → (NH 4 ) 2 S 2 O 3 + H 2 O (5)

황화수소와 암모니아를 산소와 함께 산화촉매반응기(A)로 통과시켜 180~550℃에서 반응시킨다. 산화촉매반응기(A)에 사용될 수 있는 촉매들로는 알루미나 또는 기타 산성의 고표면적 무기물(예 : 티타니아, 실리카-알루미나, 제올라이트등)에 코발트, 몰리브덴, 바나듐 또는 그 혼합물들을 담지시킨 것들을 들 수 있다. 산화촉매반응기(A)에서는 티오황산암모늄 이외에 산화반응부산물로 소량의 원소황(S)과 이산화황가스가 생성된다. 반응기를 나오는 생성물은 온도가 50℃ 이하로 유지되는 냉각기(B)를 지나면서 고체 티오황산암모늄과 원소황으로 응축된다. 응축된 티오황산암모늄과 원소황 혼합물은 물로 용해, 세척시켜 고액분리기(C)에서 원소황과 티오황산암모늄의 용액으로 분리된다. 그 다음 티오황산암모늄 용액을 활성탄소섬유 여과기(D)를 통과시켜 용액의 색을 말게함과 동시에 분리되지 않은 약간의 황미스트를 제거한다. 활성탄소 섬유로는 피치(pitch)계 탄소섬유를 수증기 부활법으로 활성화시키는 것이 바람직하며, 100~250MPa 정도의 강도와 0.01~0.1정도의 체적밀도(bulk density) 및 1000~2000㎡/g 정도의 비표면적을 갖는 것이 바람직하다. 활성탄소 섬유 단위 g당(약 10㎖/g) 단위 시간당 총 오염물질이 100ppm 정도 포함된 티오황산암모늄 용액을 600㎖~3000㎖(LHSV=60~300)범위로 통과시킬때 3~15시간내에 오염물질을 완전히 제거할 수 있었다. 이러한 활성탄소섬유의 특징은 기존의 활성탄에 비하여, 같은 조건에서 처리가능한 액체유량, 활미스트제거 효율 및 색도 개선 효율면에서 2배 이상 효과적이라는 것이다. 또한, 오염물질 제거능을 상실한 활성탄소 섬유도 불활성기체 흐름하에 400℃에서 6시간 정도 처리하면 완전히 재생되어 다시 사용할 수 있었다. 티오황산암모늄 용액을 농축기(E)에서 100℃ 이하에서 서서히 증발시키면 농축액이나 결정형태의 티오황산암모늄을 얻을 수 있다. 이때 증발되어져 나오는 암모니아는 다시 원료가스로 재순화시켜 사용한다. 부산물로 얻어진 고체황은 증발시켜 수소화촉매반응기(F)에 주입된다. 모든 황화합물들을 황화수소로 전환시키는 특성을 가진 수소화촉매반응기(F)(대한민국 특허 출원 91-22218)에서는 유입된 원소황을 불균일계 촉매하에서 수소와 반응후 황화수소로 전환시킨 후 반응물로 재순환시킨다. 수소화 촉매로는 코발트와 몰리브덴을 알루미나에 담지시킨 촉매를 사용하여, 수소화촉매반응기 상에서는 200~350℃ 온도범위에서 반응식(6)과 (7)과 같이 수소화반응을 통하여 원소황이 황화수소로 전환된다.Hydrogen sulfide and ammonia are passed together with oxygen through an oxidation catalyst reactor (A) to react at 180 to 550 ° C. Catalysts that can be used in the oxidation catalyst reactor (A) include those in which cobalt, molybdenum, vanadium, or mixtures thereof are supported on alumina or other acidic high surface minerals (eg, titania, silica-alumina, zeolite, etc.). In the oxidation catalyst reactor (A), in addition to ammonium thiosulfate, a small amount of elemental sulfur (S) and sulfur dioxide gas are generated as oxidation by-products. The product leaving the reactor is condensed into solid ammonium thiosulfate and elemental sulfur as it passes through a cooler (B) whose temperature is kept below 50 ° C. The condensed ammonium thiosulfate and elemental sulfur mixture is dissolved and washed with water and separated in a solid-liquid separator (C) into a solution of elemental sulfur and ammonium thiosulfate. The ammonium thiosulfate solution is then passed through an activated carbon fiber filter (D) to dry the color of the solution and remove some undissociated sulfur mist. As activated carbon fiber, it is preferable to activate pitch-based carbon fiber by the steam activation method, and the strength of about 100 to 250 MPa, the bulk density of about 0.01 to 0.1, and about 1000 to 2000 m 2 / g It is desirable to have a specific surface area. When passing ammonium thiosulfate solution containing about 100ppm total pollutant per unit of activated carbon fiber per unit time (approximately 10ml / g) within 600ml ~ 3000ml (LHSV = 60 ~ 300) within 3 ~ 15 hours The contaminants could be completely removed. The characteristic of such activated carbon fiber is that it is more than twice as effective in terms of liquid flow rate, bow mist removal efficiency and color improvement efficiency that can be treated under the same conditions as conventional activated carbon. In addition, activated carbon fibers that lost their ability to remove contaminants could be completely regenerated and reused after treatment at 400 ° C. for 6 hours under inert gas flow. The ammonium thiosulfate solution is slowly evaporated in the concentrator (E) at 100 ° C. or lower to obtain a concentrate or ammonium thiosulfate in crystalline form. At this time, the evaporated ammonia is recycled back to the source gas and used. Solid sulfur obtained as a by-product is evaporated and injected into a hydrogenation catalyst reactor (F). In the hydrogenation catalyst reactor (F) (Korean Patent Application No. 91-22218) having the property of converting all sulfur compounds to hydrogen sulfide, the introduced elemental sulfur is converted to hydrogen sulfide after reacting with hydrogen under a heterogeneous catalyst and recycled to the reactant. As a hydrogenation catalyst, elemental sulfur is converted into hydrogen sulfide through a hydrogenation reaction in a temperature range of 200 to 350 ° C. in a hydrogenation catalyst reactor using cobalt and molybdenum supported on alumina.

S+H2→ H2S(6)S + H 2 → H 2 S (6)

SO2+3H2→ H2S+2H2O(7)SO 2 + 3H 2 → H 2 S + 2H 2 O (7)

수소의 양은 전환하고자 하는 황화합물과 당량비로 결합할 수 있는 양 이상이면 충분하다.The amount of hydrogen is more than the amount that can be combined with the sulfur compound to be converted in an equivalent ratio.

본 발명에 의하면, 티오황산암모늄의 수율에 영향을 주는 인자는 산소의 양과 반응온도이다. 산소의 양이 증가할수록 티오황산암모늄의 수율은 증가하나 부산물인 이산화황 가스가 증가하기 때문에 과량의 산소 사용은 바람직하지 않다. 이때 원소황의 생성을 감소한다. 산소의 양은 황화수소 양의 0.2~5배가 적당한데 티오황산암모늄의 수율을 최대로 하기 위한 보다 바람직한 산소양은 황화수소의 0.3~3배이다. 반응온도는 160℃에서 550℃ 사이가 적당한데 반응온도가 증가할수록 티오황산암모늄의 수율은 증가한다. 그러나 반응온도가 500℃ 이상이 되면 부산물인 이산화황이 증가하여 티오황산암모늄의 수율이 감소할 뿐아니라 촉의 파괴위험성이 있고, 160℃ 이하에서는 반응활성이 낮아 황화수소의 전환율이 낮을 뿐 아니라 촉매의 비활성화가 빨라져 바람직하지 못하다. 따라서 본 발명에서 티오황산암모늄의 수율을 최대로 하기 위한 보다 바람직한 반응온도는 180~500℃이다.According to the present invention, factors affecting the yield of ammonium thiosulfate are the amount of oxygen and the reaction temperature. As the amount of oxygen increases, the yield of ammonium thiosulfate increases, but the use of excess oxygen is undesirable because the by-product sulfur dioxide gas increases. This reduces the production of elemental sulfur. The amount of oxygen is suitably 0.2 to 5 times the amount of hydrogen sulfide, and the more preferable amount of oxygen to maximize the yield of ammonium thiosulfate is 0.3 to 3 times that of hydrogen sulfide. The reaction temperature is suitably between 160 ° C and 550 ° C. As the reaction temperature increases, the yield of ammonium thiosulfate increases. However, if the reaction temperature is higher than 500 ℃, sulfur dioxide, a by-product, increases, and the yield of ammonium thiosulfate decreases, and there is a risk of breakdown of the chip. It's faster and not desirable. Therefore, in the present invention, a more preferable reaction temperature for maximizing the yield of ammonium thiosulfate is 180 to 500 ° C.

본 발명에 필요한 암모니아의 양은 황화수소 양의 당량비 이상이면 충분하나 생성된 티오황산암모늄의 농축시 암모니아 존재가 티오황산암모늄의 분해를 방지하여 잉여 암모니아를 재순화시켜(제1도) 사용할 수 있기 때문에 당량비의 2~5배 정도의 암모니아 사용이 바람직하다. 당량비 이상 암모니아가 과량 존재하여도 촉매의 비활성화나 티오황산암모늄 수율에 큰 영향이 없었다.The amount of ammonia required for the present invention is more than the equivalent ratio of the amount of hydrogen sulfide, but the equivalent ratio of ammonia may be used when the ammonia is present in the concentration of the produced ammonium thiosulfate to prevent the decomposition of ammonium thiosulfate so that the excess ammonia can be recycled (Figure 1). It is preferable to use about 2 to 5 times of ammonia. The presence of excess ammonia in an equivalent ratio did not significantly affect the deactivation of the catalyst or the yield of ammonium thiosulfate.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

5wt%의 코발트와 5wt%의 몰리브덴을 알루미나에 담지시킨 촉매 2g을 석영으로 만들어진 U튜브형 반응기에 넣고 반응온도인 350℃까지 올린다음, 황화수소 6㎖/min, 암모니아 12㎖/min와 산소 3㎖/min를 반응기에 주입시켰다. 반응기 후단에서 50℃ 이하로 유지되는 냉각기에서 생성물을 응축시켰다. 응축되지 않는 기체는 160℃로 가열시키고 미반응 황화수소, 암모니아가스, 및 생성된 이산화황가스를 매 30분 간격으로 분석하였다. 이때 기체 분석결과는 시간에 상관없이 항상 일정한 조성을 나타냈다. 이와같이 24시간 동안 반응후 응축된 생성물질을 물에 녹여 여과한 후 고체황과 티오황산암모늄을 분리하여 각각의 무게를 측정하였다. 황을 기준으로 계산하였을때 혼합가스중에 존재하는 황화수소의 전환율(X)는 99%, 티오황산암모늄에 대한 선택도(S1)는 70%, 원소황에 대한 선택도(S2)는 29%, 이산화황에 대한 선택도(S3)는 1%이었다.2 g of a catalyst having 5 wt% cobalt and 5 wt% molybdenum supported on alumina was added to a U-tube reactor made of quartz, and the reaction temperature was raised to 350 ° C., followed by hydrogen sulfide 6 ml / min, ammonia 12 ml / min and oxygen 3 ml / min was injected into the reactor. The product was condensed in a cooler maintained below 50 ° C. at the back of the reactor. The non-condensed gas was heated to 160 ° C. and unreacted hydrogen sulfide, ammonia gas, and generated sulfur dioxide gas were analyzed every 30 minutes. At this time, the gas analysis result always showed a constant composition regardless of time. After the reaction for 24 hours, the condensed product was dissolved in water, filtered, and solid sulfur and ammonium thiosulfate were separated and weighed. When calculated based on sulfur, the conversion rate (X) of hydrogen sulfide in the mixed gas is 99%, the selectivity for ammonium thiosulfate (S 1 ) is 70%, and the selectivity for elemental sulfur (S 2 ) is 29%. , Selectivity to sulfur dioxide (S 3 ) was 1%.

[실시예 2~4]EXAMPLES 2-4

산소의 유량을 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 행하였으며, 황을 기준으로 계산하였을때 황화수소 전환율(X), 티오황산암모늄에 대한 선택도(S1), 황에 대한 선택도(S2), 이산화황에 대한 선택도(S3)는 표 1과 같다.Except for changing the flow rate of oxygen was carried out in the same manner as in Example 1, hydrogen sulfide conversion (X), selectivity for ammonium thiosulfate (S 1 ), selectivity for sulfur, calculated on the basis of sulfur (S 2 ), selectivity (S 3 ) for sulfur dioxide is shown in Table 1.

[표 1]TABLE 1

[실시예 6~15][Examples 6-15]

실시예 1과 같은 반응조건에서 반응온도에 따른 전환율과 선택도가 표 2에 나타나있다.The conversion and selectivity according to the reaction temperature in the same reaction conditions as in Example 1 are shown in Table 2.

표 2에서 보는 것처럼 반응온도가 증가함에 따라서 티오황산암모늄의 수율이 증가하였다.As shown in Table 2, the yield of ammonium thiosulfate increased as the reaction temperature increased.

[표 2]TABLE 2

[실시예 16]Example 16

실시예 1에서 반응기를 거쳐 나오는 생성물을 50℃ 이하로 유지된 냉각기를 통과시켜 고형물을 석출한 뒤 물로 세척 용해시켜 고체인 황을 분리하고 여액을 진공건조기로 60℃에서 서서히 건조하여 백색의 분말 결정을 얻었으며, 원소분석 결과 N : H : S : O의 몰비가 1 : 4 : 1 : 1.5로 정확하게 티오황산암모늄에 해당되었으며 X-선 회절분석결과 티오황산암모늄 결정외에 다른 불순물을 검지할 수 없었다. 농축기에서 분리된 혼합가스중의 잔여 황화수소와 이산화황의 농도는 각각 250ppm과 720ppm이었으며 소각후 배기가스중 총 SOx 농도는 12% 산고기준 100ppm 이하로 유지할 수 있었다.In Example 1, the product passing through the reactor was passed through a cooler maintained at 50 ° C. or lower to precipitate a solid, washed with water to dissolve it, and sulfur was separated. The filtrate was slowly dried at 60 ° C. with a vacuum dryer to give a white powder crystal. As a result of elemental analysis, the molar ratio of N: H: S: O was 1: 4: 1: 1.5, which corresponded to ammonium thiosulfate accurately, and X-ray diffraction analysis showed no other impurities except ammonium thiosulfate crystals. . The residual concentrations of hydrogen sulfide and sulfur dioxide in the mixed gas separated from the concentrator were 250ppm and 720ppm, respectively, and the total SOx concentration in the exhaust gas after incineration was kept below 100ppm at 12%.

[실시예 17]Example 17

실시예 1에서 물의 양을 20㎖/min(약 50vol%)까지 첨가해 보았으며, 또한 암모니아양을 60㎖/min까지 증가시켜 보았으나 촉매의 활성과 티오황산암모늄에 대한 수율에는 큰 변화가 없었다.In Example 1, the amount of water was added up to 20 ml / min (about 50 vol%) and the amount of ammonia was increased up to 60 ml / min, but there was no significant change in the activity of the catalyst and the yield for ammonium thiosulfate. .

이상의 실시예에서 제시된 것처럼 본 제조공정의 장점은 제조공정이 기존 공정에 비해 단순하며 티오황산암모늄 용액의 농축시 증발하는 암모니아 및 황화합물을 다시 반응기로 순환시켜 재사용함으로써 폐수에 의한 공해를 유발하지 않는다는 점이다. 또한 반응시 높은 전환율과 SO2발생이 거의 없다는 점이 본 발명의 특징이다.As shown in the above examples, the advantages of the present manufacturing process are that the manufacturing process is simpler than the conventional process, and the ammonia and sulfur compounds which evaporate when the ammonium thiosulfate solution is concentrated are recycled back to the reactor and reused so as not to cause pollution by waste water. to be. In addition, it is a feature of the present invention that high conversion and little SO 2 generation during the reaction.

Claims (3)

불균일 산화촉매반응기(A)에서 황화수소와 암모니아를 공기 또는 산소로 직접 산화시키는 단계; 반응생성물을 냉각기(B)를 통해 응축시키고 응축된 티오황산암모늄과 원소황의 혼합물을 물로 용해시켜 고액분리기(C)에서 원소황 및 티오황산암모늄 용액을 분리시키는 단계; 분리된 티오황산암모늄 용액을 여과기(D)를 통과시킨 다음 농축기(E)에서 농축시켜 농축액상태 또는 결정상태의 티오황산암모늄을 회수하는 단계; 및 농축기에서 증발 산출되는 암모니아를 재순환시키고 부산물로서 산출되는 원소황을 수소화촉매반응기(F) 상에서 수소화시켜 황화수소로 재순환시키는 단계를 포함하여 구성됨을 특징으로 하는, 황화수소와 암모니아로부터 티오황산암모늄을 제조하는 방법.Directly oxidizing hydrogen sulfide and ammonia to air or oxygen in a heterogeneous oxidation catalyst reactor (A); Condensing the reaction product through a cooler (B) and dissolving the condensed mixture of ammonium thiosulfate and elemental sulfur in water to separate the elemental sulfur and ammonium thiosulfate solution in the solid-liquid separator (C); Passing the separated ammonium thiosulfate solution through a filter (D) and then concentrating in a concentrator (E) to recover ammonium thiosulfate in a concentrated or crystalline state; And recycling the ammonia produced by evaporation in the concentrator and hydrogenating elemental sulfur produced as a by-product on a hydrogenation catalyst reactor (F) to recycle hydrogen sulfide to produce ammonium thiosulfate from hydrogen sulfide and ammonia. Way. 제1항에서는, 사용되는 산소의 양은 황화수소양의 0.5~5배이고 촉매반응 온도는 180~500℃인 것을 특징으로 하는 방법.The method according to claim 1, wherein the amount of oxygen used is 0.5-5 times the amount of hydrogen sulfide and the catalytic reaction temperature is 180-500 ° C. 제1항 또는 2항에 있어서, 산화촉매반응기에 사용되는 촉매가 알루미나, 티타니아, 실리카-알루미나 및 제올라이트로 구성된 군으로부터 선택된 산성의 고표면적 무기물이거나 또는 상기 산성의 고표면적 무기물에 코발트 몰리브덴, 바나듐 또는 그 혼합물들을 담지시킨 것임을 특징으로 하는 방법.The catalyst used in the oxidation catalyst reactor according to claim 1 or 2, wherein the catalyst used in the oxidation catalyst reactor is an acidic high surface area inorganic material selected from the group consisting of alumina, titania, silica-alumina and zeolite or cobalt molybdenum, vanadium or Characterized in that the mixtures are supported.
KR1019930023754A 1993-11-09 1993-11-09 Process for the preparation of ammonium thiosulfate KR960010083B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023754A KR960010083B1 (en) 1993-11-09 1993-11-09 Process for the preparation of ammonium thiosulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023754A KR960010083B1 (en) 1993-11-09 1993-11-09 Process for the preparation of ammonium thiosulfate

Publications (2)

Publication Number Publication Date
KR950013979A KR950013979A (en) 1995-06-15
KR960010083B1 true KR960010083B1 (en) 1996-07-25

Family

ID=19367685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023754A KR960010083B1 (en) 1993-11-09 1993-11-09 Process for the preparation of ammonium thiosulfate

Country Status (1)

Country Link
KR (1) KR960010083B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879707B1 (en) * 2007-03-27 2009-01-19 경북대학교 산학협력단 A molybdenum based catalyst?sorbent for concurrently removing h2s and nh3, the process for preparing the catalyst?sorbent, gas purifying system and gas purifying method using the catalyst?sorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318331B1 (en) * 2017-11-17 2021-10-26 주식회사 엘지화학 Manufacturing method of sintered magnet and sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879707B1 (en) * 2007-03-27 2009-01-19 경북대학교 산학협력단 A molybdenum based catalyst?sorbent for concurrently removing h2s and nh3, the process for preparing the catalyst?sorbent, gas purifying system and gas purifying method using the catalyst?sorbent

Also Published As

Publication number Publication date
KR950013979A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
US4029752A (en) Method of producing sulfur from sulfur dioxide
MX2007000681A (en) Method for purifying co2 gasflow.
US4623533A (en) Desulfurization of H2 S-containing gases
US4066739A (en) Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases
CN113200878B (en) Circulation method for producing taurine from ethanolamine
KR960010083B1 (en) Process for the preparation of ammonium thiosulfate
KR100488985B1 (en) Method of recovery of terephthalic acid and ethylene glycol from polyethylene terephthalate wastes
US3719742A (en) Process for the removal of sulfur dioxide from a sulfur dioxide-containing gas
US3558272A (en) Treatment of thiosulfate-containing solutions with hydrogen in the presence of a nickel sulfide catalyst
US3714338A (en) Treating a water stream containing a sulfite compound to produce elemental sulfur
FI75329C (en) Process for removing the sulfur content of a thinned sulfur dioxide containing gas.
US4058591A (en) Process for purifying waste water containing ammonium sulfate
KR970001270B1 (en) Process for removing h2s
US4610862A (en) Process for producing purified diammonium phosphate from wet process phosphoric acid
KR100575352B1 (en) Process for production of ammonium thiosulphate
KR100282481B1 (en) Method for producing high purity sodium thiocyanate
US4029745A (en) Process for reducing molten ammonium sulfates containing metallic impurities to ammonia and sulfur dioxide
KR100590416B1 (en) Purification of Thiophene
US3634037A (en) Treatment of a water stream containing ammonium sulfide salts
CN1566085A (en) Method for preparing chlorine sulfonyl isocyanic ester
CA1057028A (en) Process for producing sulfur from sulfur dioxide
JPS63282111A (en) Manufacture of thiocianate
KR100584761B1 (en) A Method Of Preparing Ammonium Thiocyanate From Acid Gas Generated In Cokes Preparation
KR930005317B1 (en) Method of recovering the by-products in process for producing sodium hyposulfite
SU747813A1 (en) Method of obtaining elementary sulphur from industrial waste gases

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010703

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee